
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

1 | P a g e

www.ijacsa.thesai.org

LSB based Image Steganography by using the Fast

Marching Method

Xiaoli Huan
1
, Hong Zhou

2
, Jiling Zhong

3

Department of Computer Science, Troy University, Troy, Alabama, USA
1, 3

Department of Mathematical Sciences, University of Saint Joseph, West Hartford, Connecticut, USA
2

Abstract—This paper presents a novel approach for image

steganography based on the Least Significant Bit (LSB) method.

Most traditional LSB methods choose the initial embedding

location of the cover image randomly, and the secret messages

are embedded sequentially without considering the image pixels’

values and positions. Our approach utilizes the user-selected

seeds in the cover image to avoid the smooth/flat areas where

cause a higher detection rate. Then the fast marching method is

used to calculate T (the time of arrival of the front of the seeds)

and propagate the seeds by computational dynamics. The front

propagation process decides the embedding positions of the

secret messages. The same algorithm can be used to retrieve the

hidden information as well. The coordinates of the seeds are used

as the shared key only known to the sender and receiver to add

additional security protection. Peak Signal to Noise Ratio (PSNR)

is evaluated to measure the quality of resulting images. The

experiments show that the proposed approach generates results

with high payload capacity and satisfied imperceptibility.

Keywords—Image steganography; LSB; the fast marching

method; coordinates; PSNR

I. INTRODUCTION

Steganography has been an ancient practice to hide secret
information within a media in such a way other people cannot
easily detect the presence of the hidden contents. Cryptography
and steganography are both techniques used to prevent the
third party from reading the secret messages. However, they
differ in the respect that cryptography makes the data
exposable but not understandable without having the proper
key to decode, while steganography hides the secret data inside
a media and this modification of the original media cannot be
easily perceived. In nowadays, steganography is used in many
legal or illegal applications. For example, embedded digital
watermarking techniques are developed to identify the
ownership of the property. It is also reported that terrorist
groups had used steganography to exchange information due to
their affordability compared to dedicated secure networks [1].

The basic structure of image steganography is composed of
the following:

 Secret-message: The information is to be hidden and
delivered.

 Cover-image: An original image is used as a media to
embed the secret-message.

 Stego-image: After the cover-image embeds the secret-
message, the resulting image is known as the stego-
image.

 Stego-key: Additional information is used for
embedding and extracting the secret-message. The
stego-key is a shared key known to the sender and
receiver only.

II. RELATED WORK

Least Significant Bit (LSB) steganography is a popular
technique in which the least significant bits (lowest bits) of
pixels of the cover-image embed the secret-message. The
changes to the cover-image are minimal and imperceptible to
the human visual system [2]. However, the secret-message can
be easily detected in the traditional LSB methods since the
embedding positions are generated randomly and data are
embedded sequentially [3]. These methods call for higher
security features.

Steganographic methods which utilize a pixel's dependency
on its neighborhood and psycho-visual redundancy to
determine the smooth areas and edged areas in the gray level
images are presented in [4]. However, in this method distortion
is introduced and anyone is possible to recover the image due
to its lack of stego-key protection. The approach in [5] uses a
secret key to hide a secret-message in different channels of the
LSB of a cover-image to protect it from unauthorized
receivers. This method does not consider the pixels’ values and
positions in the cover-image. Therefore, the smooth/flat
regions in the cover-image will be contaminated and cause low
visual quality after data hiding. Edge adaptive schemes have
been investigated. For example, the edge-detecting filter is
used in [6]. Mean and standard deviation and canny edge
detection are used in [7]. Methods hiding data around the edge
boundary of an object are proposed in [8]. However, when the
cover-image is mostly smooth or without sharp edges, the
payload is limited in these approaches.

In our proposed method, we use the level set method to
determine the embedding positions of the secret-message. The
level set method (LSM) was proposed by S. Osher and J.
Sethian in 1988 [9]. LSM is a computational technique for
tracking interface motion over time and has various
applications including image processing [10], fluid dynamics
and physical modeling. LSM involves propagating a
continuous scalar variable. “Considering G(t) to be a moving
closed curve in two dimensions. An Eulerian formulation for
the motion of the interface is produced. The motion of the
interface propagates along its normal direction with speed F,
where F can depend on many factors, including the curvature,
normal direction, shape, position of the front, or underlying
fluid velocity. The interface G(t) can thus be represented as the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

2 | P a g e

www.ijacsa.thesai.org

zero-height level set of a function ”. For a more detailed
description of level set methods, the reader is referred to
Sethian’s published book [11].

Let’s assume that the interface either moves “outward” (F >
0) or “inward” (F < 0) during the interface motion. The arrival
time of the interface front at each grid point (T(x,y)) can be
calculated and used to determine the propagating process of the
front. This is the so-called fast marching method. In this
method, all the arrival time values are composed of a function
T(x,y) which renders a surface. This surface tells the position
of the interface front at any actual time T. “This surface is
called the arrival time surface because it gives the arrival time
of the interface passing at each grid point” [12].

The equation for the arrival time function is called
boundary value formulation, which is

| T|F 1, F e- | G * (x,y,z)| (1)

T 0 on , where Γ is the initial location of the interface.
is the fast marching method exponential coefficient which is
set to 60 in our algorithm. T was discretized by the quadratic
equation [12]:

[
max (Di,j

-x
T,0)

2
+min (Di,j

+xT,0)
2
+

max (Di,j

-y
T,0)

2
+min (Di,j

+y
T,0)

2
]

1/2

 1 Fi,j
⁄ (2)

D+ and D- represent forward and backward difference
operators. Equation (2) is solved at each grid point in the
propagating process, and the root with the largest value is
chosen as the correct viscosity result.

The advantages of using the fast marching method for LSB
image steganography are the following:

 The seeds initially selected can be encrypted as the
stego-key to add additional security protection.

 The user can choose seeds in non-smooth/flat regions in
the cover-image to avoid low visual quality data hiding.
The fast marching method enables image segmentation
[13].

 The algorithm is straightforward to implement. The
same algorithm can be used for embedding and
retrieving the secret-message.

III. PROPOSED ALGORITHM

A. Finding the Embedding Positions by the Fast Marching

Method

Equation (2) is applied in our image stenography algorithm.
T=0 is assigned to the user-selected seeds in the cover-image.
The user can select the seeds in the non-smooth/flat regions to
avoid higher detection rate, and the seeds’ positions can be
encrypted as the stego-key. By solving (2), the front position at
any time T can be obtained. This equation can be solved for
each pixel in the cover-image until two times of the number of
the hidden bytes is reached (one byte is hidden over two
pixels). These pixels can then be mapped in a queue in the
increasing order of T. The pixel with the smallest T is called
first to hide the secret-message. In this way, the embedding

order of pixels in the cover-image is obtained. Fig. 1 shows the
user-selected seeds in non-smooth/flat regions, and the seeds
propagate by using the fast marching method.

Fig. 1. The user-Selected Seeds Propagate by the Fast Marching Method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

3 | P a g e

www.ijacsa.thesai.org

The scheme of FMM has been briefly described above. A
detailed process is shown in the following:

1) Initialize four vectors: far_away, alive, try and

neighbor.

2) Assign max T (e.g., DBL_MAX in C++) for all pixels

in the cover-image and set their status as far-away (push them

into the far_away vector).

3) For each user-selected seed point:

a) set the smallest T (zero) value.

b) Remove it from the far_away vector and set the

status as alive (push it into the alive vector).

c) Check its four adjacent points (up, down, left and

right) in the cover-image and set their status as try (push them

into the try vector). Calculate their T values by the following

equation:

T(x,y) 1/ exp(-1 * 60 * grad mag x y)

grad_mag is the gradient magnitude value of the pixel. The
cover-image first uses a Gaussian smoothing filter. Then the
gradient magnitude values are computed in all color channels,
and the values in the channel with the largest magnitude are
picked [14].

4) For each point in the try vector:

a) Pick the point with the smallest T. Set the point as

alive (push it into the alive vector) and remove it from the try

vector.

b) Check its four adjacent points (up, down, left and

right) in the cover-image. If the neighbor point is alive status,

do nothing. If it is in the try vector, push it into the neighbor

vector. If it is in far_away vector, push it into both the try and

neighbor vectors and remove it from the far_away vector.

c) For each point (i, j) in the neighbor vector: Update its

T. s1(a,b,c) and s2(a,b,c) are the functions to get the two roots

of a quadratic function
-b √b2-4ac

2a
. There are 16 possible roots

to consider for (2) and the largest root is picked as T:

double F 1.0 / exp(-1 * 60 * grad mag i j)

root[0] = s1(2, -2 * (T[i][j-1] + T[i-1][j]), T[i][j-1]* T[i][j-1] +

T[i-1][j] * T[i-1][j] - F * F);

root[1] = s2(2, -2 * (T[i][j-1] + T[i-1][j]), T[i][j-1]* T[i][j-1] +

T[i-1][j] * T[i-1][j] - F * F);

root[2] = s1(2, -2 * (T[i][j-1] + T[i+1][j]), T[i][j-1]* T[i][j-1] +

T[i+1][j] * T[i+1][j]-F * F);

root[3] = s2(2, -2 * (T[i][j-1] + T[i+1][j]), T[i][j-1]* T[i][j-1] +

T[i+1][j] * T[i+1][j]-F * F);

root[4] = s1(2, -2 * (T[i][j+1]+T[i-1][j]), T[i][j+1] * T[i][j+1]

+T[i-1][j] * T[i-1][j] -F * F);

root[5] = s2(2, -2 * (T[i][j+1]+T[i-1][j]), T[i][j+1] * T[i][j+1]

+T[i-1][j] * T[i-1][j] -F * F);

root[6] = s1(2, -2 * (T[i][j+1]+T[i+1][j]), T[i][j+1]* T[i][j+1] +

T[i+1][j] * T[i+1][j]-F * F);

root[7] = s2(2, -2 * (T[i][j+1]+T[i+1][j]), T[i][j+1]* T[i][j+1] +

T[i+1][j] * T[i+1][j]-F * F);

root[8] = T[i][j-1]+F;

root[9] = T[i][j-1]-F;

root[10] = T[i][j+1]+F;

root[11] = T[i][j+1]-F;

root[12] = T[i-1][j]+F;

root[13] = T[i-1][j]-F;

root[14] = T[i+1][j]+F;

root[15] = T[i+1][j]-F;

d) Repeat step 4 until the number of points in the alive

vector is greater than two times the number of hidden bytes.

The pixel points in the alive vector are ordered by T

ascendingly.

Fig. 2 shows an example of embedding orders with two
user-selected seeds in a cover-image. T is calculated by using
the fast marching method based on the image pixels’ values
and positions. The bands in the same color represent the pixels
on the bands with the same T values. Pixels embed the secret-
message in the increasing order of T.

Fig. 2. Illustration of the Embedding Order with Two User-Selected Seeds.

B. Encoding the Secret-Message

After the embedding positions are obtained above, the
algorithm starts the Least Significant Bit (LSB) encoding
process. One byte of data is hidden into two adjacent points’ R,
G, B and Alpha channels in the alive vector. Any byte M from
0 to 255 can be extended to the form:

 a12
0 + b1 2

1 + c12
2 + d12

3 + a22
4 + b22

5 + c22
6 + d22

7

If p
1
 and p

2
 are two adjacent elements in the alive vector of

the cover-image and (p
1
r, p

1
g, p

1
b, p

1
a) and (p

2
r, p

2
g, p

2
b, p

2
a)are

their RGB and Alpha values, the two new pixels’ ()
values after M is embedded are:

p
r
n1 p

r
1-p

r
1 2+a1

p
g
n1 p

g
1-p

g
1 2+b1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

4 | P a g e

www.ijacsa.thesai.org

p
b
n1 p

b
1-p

b
1 2+c1

p
a
n1 p

a
1-p

a
1 2+d1

p
r
n2 p

r
2-p

r
2 2+a2

p
g
n2 p

g
2-p

g
2 2+b2

p
b
n2 p

b
2-p

b
2 2+c2

p
a
n2 p

a
2-p

a
2 2+d2

C. Decoding the Secret-Message

Extracting the hidden data from the stego-image works
similarly. The coordinates of the user-selected seed points can
be encrypted as a shared stego-key. The extracting order is
done by the fast marching method as the embedding process. If
p

1
 and p

2
 are two adjacent elements in the alive vector of a

stego-image and (p
1
r, p

1
g, p

1
b, p

1
a) and (p

2
r, p

2
g, p

2
b, p

2
a) are their

RGB and Alpha values, the secret data can be constructed by:

 (p
r
1 2)20+ (p

g
1 2) 21+(p

b
1 2)22+(p

a
1 2)23+

(p
r
2 2)24+ (p

g
2 2) 25+(p

b
2 2)26+(p

a
2 2)27

IV. RESULTS AND ANALYSIS

The experimental results presented in this section compare
the effectiveness of our proposed algorithm with existing
methods. Several main factors affect an information hiding
scheme: visual quality of the stego-images (HVS-human visual
system) [15], embedding capacity, and error metrics such as
PSNR.

Our experiment results show the proposed method achieves
plausible HVS quality based on luminance similarity, structure
correlation, edge similarity, and color similarity due to the
nature of the fast marching method. It can have a larger
payload capacity than methods such as [8].

We use the Mean Square Error (MSE) and the Peak Signal
to Noise Ratio (PSNR) as the error metrics to evaluate stego-
image quality. The MSE is computed by averaging the
cumulative squared error between the original image and the
stego-image, whereas PSNR represents a measure of the peak
error. The following is the equation to compute MSE
composed of d number of channels:

 SE
∑ 1(m,n)- 2 (m,n)

2
m,n

d m n

The higher the value of PSNR, the closer is the stego-image
to the cover-image. To compute the PSNR, the following
equation is used:

 S R 10 log
10
(
 A 2

 SE
)

I_MAX is the largest possible variation in the input image
data type. It is 255 in case of the simple single byte per pixel
per channel.

Table I is the results of PSNR on original LSB, edge-based
LSB [7] and our method. Our method has higher PSNR values.

TABLE I. COMPARISON OF PSNR OF LSB, EG_LSB AND THE PROPOSED

METHOD

Method Image Size Hidden bits PSNR

LSB 512*512 36584 51.12

EG_LSB 512*512 36584 54.22

Our Method 512*512 36584 65.67

Fig. 3 shows the cover-images Lena, Baboon and Pepper,
the secret-message (image Baboon) and stego-images by using
the proposed method. Table II is the comparison of PSNR of
LSB with Four Neighbor method [4], Secret Key [5] and our
method.

Fig. 3. Cover Images, Secret Messages and Stego Images by our Method.

TABLE II. COMPARISON OF PSNR OF LSB WITH FOUR NEIGHBOR

METHOD [4], SECRET KEY [5] AND THE PROPOSED METHOD

Cover

image

Hidden

bits

PSNR

neighbor

PSNR

secretKey

PSNR

Our

method

Lena 392208 41.15 53.76 55.48

Baboon 435223 36.52 53.75 55.03

Pepper 393567 41.03 53.78 55.44

V. CONCLUSION

In this paper, a novel approach for LSB image
steganography by using the fast marching method is presented.
The approach can avoid non-smooth/flat regions and the user-
selected seeds can be used as the stego-key. The embedding
and extracting positions are determined by the computational
technique fast marching method based on image pixels’ values
and positions. The experiments show that the proposed method
has plausible visual quality and desirable PSNR. Future work
can include testing by using different kinds of steganalysis
algorithms and extend the proposed method to other
steganographic medias such as audio/video.

REFERENCES

[1] M. Conway, "Code Wars: Steganography, Signals Intelligence, and
Terrorism," Knowledge, Technology and Policy, Vols. 16, No. 2, no.
Technology and Terrorism, p. 45~62, 2003.

[2] K. Bailey and K. Curran, "An Evaluation of Image Based
Steganography," Multimedia Tools and Applications, vol. 30, no. 1, pp.
55-88, 2006.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

5 | P a g e

www.ijacsa.thesai.org

[3] A. Pfitzmann and A. Westfeld, "Attacks on steganographic systems," in
Proc. 3rd Int. Workshop on Information Hiding, 1999.

[4] M. Hossain, S. Haque and F. Sharmin, "Variable rate Steganography in
gray scale digital images using neighborhood pixel information," in
Proceedings of 2009 12th International Conference on Computer and
Information Technology, Dhaka, 2009.

[5] S. Masud Karim, M. Saifur Rahman and M. Ismail Hossain, "A New
Approach for LSB Based Image Steganography using Secret Key," in
Proceedings of 14th International Conference on Computer and
Information Technology, Dhaka, 2011.

[6] K. Hempstalk, "Hiding behind corners: Using edges in images for better
steganography," in roc. Computing Women’s Congress, Hamilton,
New Zealand, 2006.

[7] A. Chaturvedi and K. Doeger, "A Novel Approach for Data Hiding
using LSB on Edges of a Gray Scale Cover Images," International
Journal of Computer Applications, vol. 86, no. 7, 2014.

[8] M. Hussain and S. Haque, "Embedding data in edge boundaries with
high PSNR," in 7th International Conference on Emerging
Technologies, Islamabad, Pakistan, 2011.

[9] Osher and Sethian, "Fronts propagating with curvature dependent speed:
algorithms based on Hamilton-Jacobi formulations.," Journal of
Computational Physics, pp. 79:12-49, 1988.

[10] X. Huan, B. Murali and A. Ali, "Image restoration based on the fast
marching method and block based sampling," Computer Vision and
Image Understanding, vol. 114, no. 8, pp. 847-856, 2010.

[11] J. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
Univ. Press, 1999.

[12] J. Sethian, "A Fast Marching Level Set Method for Monotonically
Advancing Fronts," in Proc. Natl. Acad. Sci., 1996.

[13] N. Forcadel, C. Le Guyader and C. Gout, "Generalized fast marching
method: applications to image segmentation," Numerical Algorithms,
vol. 48, p. 189, 2008.

[14] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection," in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, San Diego, CA, 2005.

[15] S. J. Thorpe, "Image Processing by the Human Visual System," in
Advances in Computer Graphics, Berlin, Heidelberg, Springer, 1991, p.
309~341.

