
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

430 | P a g e  

www.ijacsa.thesai.org 

A Categorical Model of Process Co-Simulation 

Daniel-Cristian Crăciunean
1
, Dimitris Karagiannis

2
 

Computer Science and Electrical Engineering Department, Lucian Blaga University of Sibiu, Sibiu, Romania
1 

Faculty of Computer Science, University of Vienna, Vienna, Austria
2 

 

 
Abstract—A set of dynamic systems in which some entities 

undergo transformations, or receive certain services in successive 

phases, can be modeled by processes. The specification of a 

process consists of a description of the properties of this process 

as a mathematical object in a suitable modeling language. The 

language chosen for specifying a process should facilitate the 

writing of this specification in a very clear and simple form. This 

raises the need for the use of various types of formalisms that are 

faithful to the component subsystems of such a system and which 

are capable of mimicking their varied dynamics. Often in 

practice, the development of domain specific languages is used to 

provide building blocks adapted to the processes. Thus, the 

concept of multi-paradigm modeling arises which involves the 

combination of different types of models, the decomposition and 

composition of heterogeneous specified models as well as their 

simulation. Multi-paradigm modeling presents a variety of 

challenges such as coupling and transforming the models 

described in various formalisms, the relationship between models 

at different levels of abstraction, and the creation of metamodels 

to facilitate the rapid development of varied formalisms for 

model specification. The simulation can be seen as a set of state 

variables that evolve over time. Co-simulation is a synthesis of all 

simulations of the components of the system, coordinated and 

synchronized based on interactions between them. The theory of 

categories provides a framework for organizing and structuring 

formal systems in which heterogeneous information can be 

transferred, thus allowing for the building of rigorous cohesion 

bridges between heterogeneous components. This paper proposes 

a new model of co-simulation of processes based on the category 

theory. 

Keywords—Process modeling; metamodel; modeling 

grammars; categorical grammars; category theory; categorical 

sketch; co-simulation, simulation 

I. INTRODUCTION 

Contemporary systems are, in most cases, integrated from 
subsystems with complex structures and behaviors from the 
real or virtual world with various behaviors. Given the 
diversity of the components and the resulting complexity of the 
systems, simulation plays an essential role in all phases of 
system development and optimization. Simulation models at 
the system level can be developed to help analyze 
requirements, evaluate potential architectural solutions, and 
develop detailed design, implementation, and simulation 
specifications. These models aim at meeting specific objectives 
of each phase [2,12,14]. 

The concept of process is one of the possible methods of 
mathematical modeling of dynamic systems behavior. A 
process is a mathematical model that represents the behavior of 
a dynamic system that performs actions. Many systems, 
especially technological systems, can be modeled as Discrete 

Event System (DES) driven by discrete events evolving in 
relation to the occurrence of asynchronous events over time. 
These systems in which certain entities undergo 
transformations or receive certain services in successive phases 
can be modeled by processes. 

The purpose of building a process that represents the 
behavior of a dynamic system is to facilitate the verification of 
system properties, simulation and system optimization. 
Therefore choosing the level of detail of the system's actions 
depends on the analyzed properties. Because a process does not 
take into account all the details, a behavior of an analyzed 
system can be represented by several processes that reflect 
either different degrees of detail of actions performed by a 
system or different points of view in relation to the intended 
purpose [12, 14]. 

Specifying a process consists of a description of the 
properties of this process in the form of a mathematical object. 
For this we need a proper modeling language. Therefore, the 
language chosen for specifying a process should facilitate the 
writing of this specification in a very clear and simple form. 
Thus, the need for the use of various types of formalisms that 
are faithful to the component subsystems of such a system and 
which are capable of mimicking their varied dynamics. Often 
in practice, the development of domain-specific languages, 
which provide building blocks adapted to DES models, is used 
in practice [4]. 

This heterogeneity of the systems inevitably implies the use 
of heterogeneous processes that provide through specific 
facilities a greater capacity to describe behaviors and 
interactions between subsystems than homogeneous processes. 
Thus, the concept of multi-paradigm modeling arises which 
involves the combination of different types of models, the 
decomposition and composition of heterogeneous specified 
models as well as their simulation. 

Multi-paradigm modeling presents a variety of challenges 
such as coupling and transforming the models described in 
various formalisms, the relationship between models at 
different levels of abstraction, and the creation of metamodels 
to facilitate the rapid development of varied formalisms for 
model specification. 

The simulation can be seen as a set of state variables that 
evolve over time. The variation space of the states of a 
simulation can be defined by two axes, a time axis, and a space 
axis. The objective of the simulation thus becomes, the 
calculation, ordered in time, of the state variable values. Co-
simulation is a synthesis of all simulations of the components 
of the system, coordinated and synchronized based on 
interactions between them. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

431 | P a g e  

www.ijacsa.thesai.org 

The theory of categories provides a framework for 
organizing and structuring formal systems in which 
heterogeneous information can be transferred, thus allowing 
for the building of rigorous cohesion bridges between 
heterogeneous components [8,15]. 

Multi-paradigm modeling involves, among other things, the 
transformation of structures from a given form into a form 
required to achieve this cohesion, which is often complicated. 
The category theory is based on the manipulation of structures 
consisting of objects and formal functions that coexist and 
work together as well as the preservation of these structures 
and their properties when they are transformed from one form 
into another through functors. 

This paper proposes a new co-simulation model based on 
the category theory. In section 3 we present the construction of 
the simulation category, in section 4 we present the co-
simulation model based on the categorical sketch and in section 
4 we will see how the co-simulation category is built. 

II. THEORETICAL FOUNDATIONS AND NOTES 

A category 𝓒 is an algebra of formal functions in which the 
operation is the partial formal composition of functions [9,10]. 
The domains and codomains of functions form the set of 
objects of the category which we denote with ob(𝓒) and the 
formal functions are the arcs of the category. We will denote 
these objects in uppercase A, B, .. X, Y, Z, ... The set of arcs 

between two objects f:XY will be denoted with 𝓒 or 
Hom(X,Y). 

So, a category is a construct structured from two types of 
atomic elements, formal functions that we call arrows and 
objects that are the domains and codomains of formal 
functions. This structure, completed with the composition 
operation of arrows, forms an edifice with a remarkable 
expressivity called the category. Because the functions are 
formal and the objects of the category could be formal, which 
implies great flexibility that is essential for modeling. 

A functor is an application between two categories: 

:𝓒𝓓 which maps objects to objects, arrows to arrows, and 
preserves the structure, i.e. transfers certain properties from 
one category to another [9,10]. 

One very important thing for modeling is that a functor can 
also be viewed as the image of a category in another category, 
that is, it can be viewed as a substructure consisting of objects 
and arrows taken together as one entity in a larger structure. 
These substructures are models of a category in another 
category. The set of categories together with the functors 
between them and the composition operation of functors form a 
category that is called the functors category and is written with 
Cat. 

Between two functors :𝓒𝓓 and :𝓒𝓓, which have 
common domains and codomains, we define applications that 

take the image of  into the image of , respecting some 
naturality conditions in relation to the arrows in the two 
categories, which are called natural transformations [9,10]. 

The structure formed from the set of functors that have 
common domains and codomains, as objects, along with the set 

of natural transformations, as arrows, complemented by the 
composition of natural transformations is a category called the 
category of functors and natural transformations. 

The essential difference between a graph and a category is 
the composition operation that exists in categories and does not 
exist in graphs [9,10]. But any graph 𝓖 can be extended to a 
category called the free category generated by 𝓖 which has as 
objects the nodes from 𝓖, as arrows the arcs from 𝓖 plus the 
identity arrows added to each object, and the composition 
operation is the concatenation of the paths from 𝓖. In this way, 
any graph homomorphism naturally extends to a unique 
functor between the free categories generated by the two 
graphs. Note that not every functor between two free categories 
can be restricted to a graph homomorphism. With this remark, 
we will use the notion of functor even when the domain and/or 
codomain are graphs. 

The image of a graph 𝓟 in another graph 𝓖 through a 

functor D:𝓖 is called the diagram of 𝓟 in 𝓖, and 𝓟 is called 
the graph shape of the diagram D. Similarly, the diagram can 
also be defined if 𝓖 is a category [9,10]. 

If we have a diagram D:𝓒 where 𝓖 is a graph and 𝓒 a 
category then a natural transformation from a constant diagram 

C:𝓖𝓒 to D is a commutative cone with the vertex C and the 
base D [3,4, 9.10]. 

Among the cones we can define morphisms compatible 
with the natural transformations from the cone definition and 
so the set of cones together with these morphisms form the 
cone category generated by diagram D. The limit of a diagram 
D in a category 𝓒 is a terminal element in the cone category 
generated by diagram D. 

There are a series of particular limits, useful in modeling, 
such as the categorical product which is the limit of a discrete 
diagram or the limit of a cospan which is a pullback. The 
pullback for example is useful to characterize monomorphisms. 

If we have a diagram D:𝓒 where 𝓖 is a graph and 𝓒 a 
category then a natural transformation from diagram D to a 

constant diagram  C:𝓖𝓒 is a commutative cocone with the 
vertex C and the base D [3,4 ,9,10]. 

Between cocones we can define morphisms compatible 
with the natural transformations from the definition of the 
cocones and so the set of cocones together with these 
morphisms form the category of cocones generated by the 
diagram D. The colimit of diagram D in a category 𝓒 is an 
initial element in the cocone category generated by diagram D. 

There are a series of particular colimits, useful in modeling, 
such as the disjoint union which is the colimit of a discrete 
diagram or the colimit of a span which is a pushout. The 
pushout for example is useful to characterize epimorphisms. 

The notion of model exists also in logic. Its definition is 
based on the mathematical logic language. In the category 
theory a model can be specified by sketches. The major 
advantage of the sketches in modeling is that they can be 
defined by graphical notation for specifying visual modeling 
grammars. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

432 | P a g e  

www.ijacsa.thesai.org 

Thus a sketch 𝓢=(𝓖, 𝓓, 𝓛, 𝓚) consists of a graph 𝓖 and 
three collections of diagrams, namely 𝓓 which is a collection 
of commutative diagrams, 𝓛 which is a collection of cones and 
𝓚 which is a collection of cocones [3,4,9,10]. 

The arrows of the graph 𝓖 are sketch operators that can be 
implemented at the meta-metamodel level, possibly with small 
adjustments at the metamodel level. The three collections 𝓓, 𝓛 
and 𝓚 can be fully implemented at the meta-metamodel level, 
thus ensuring the syntactic correctness of any metamodel 
specified by a sketch. 

A model of a sketch 𝓢=(𝓖, 𝓓, 𝓛, 𝓚) is the image of the 
graph 𝓖 through a functor M in the Set category that complies 
with all the conditions imposed by the collections 𝓓, 𝓛 and 𝓚, 
i.e. it selects for each diagram in D a commutative diagram in 
Set, for each cone from 𝓛 its limit and for each cocone from 𝓚 
its colimit [3,4,9,10]. 

III. THE SIMULATION CATEGORY 

The simulation consists in reproducing the dynamic 
behavior of a system in order to obtain conclusions about the 
behavior of the system. Simulation is very important for 
analyzing the behavior of complex systems. Simulation of a 
process in a certain formalism (such as PN, EPC, UML, 
BPMN) calculates the trace of the process execution in time 
represented by states, inputs and outputs. The simulation 
conclusions can be useful for determining the proper structure 
of the model, identifying the optimum values of the 
parameters, imitating system behavior, etc. [12,13,14]. In many 
cases, the model has predictive validity, i.e. it is able to predict 
the behavior of the system in the future [1,2]. 

Simulation of a system (behavior trace) can be described as 
a language on the set of states (inputs and outputs) in which 
each word represents a trajectory followed by states (inputs and 
outputs) of the system. Co-simulation composes the trajectories 
described by a set of components that interact. Interaction of 
components is made through incoming and outgoing ports that 
must be specified in the sketch that generates the model [2,11]. 
These will be associated to the nodes corresponding to the 
input and output constructs of the sketch. 

Thus in [4], the sketch of the Medical Laser Manufacturing 
Systems (MLMS) metamodel specifies a model as a graph 

𝓖=(X,,,) with imposed restrictions. The imposed 
restrictions lead to the sketch MLMS [4], 
L

1
(MLMS)=(𝓖,𝓓,𝓛,𝓚) where: 𝓖 is the graph from Fig. 1, 𝓓 is 

the set of commutative diagrams 𝓓={D1}, 𝓛 is the set of cones 
𝓛={L1,L2,L3,L4} and 𝓚 is the set of cocones 𝓚={K1,K2,K3}. 

The graph of the sketch contains the nodes corresponding 
to the atomic concepts of the modeling language such as: set of 
input buffers for the primary components (xi), set of output 
buffers for finished products (xo) stations (xw), set of test 
stations (xt) and nodes corresponding to the associations 
between them (Fig. 1). 

The diagram D1 defines the function :XX which will 

become a monomorphism provided that the pullback of  with 

 defined by cone L3 is equal to . The Cartesian product is the 

limit of the discrete diagram L2. The function wt:wtXw 

becomes a monomorphism provided that the pullback of wt 

with wt has to be wt, which is imposed by the cone L4. The 

Cocone L1 will require  to become a terminal object in Set. 
The condition that the graph is connected is imposed by the 
limit of the cocone K1 which will become a terminal element in 
Set. The cocones K2 and K3 serve to partition the concepts of 
the model [4]. 

To these nodes we add the node 
i
 in the graph of the 

sketch representing the input interface and the node 
o
 which 

represents the output interface represented by the input and 
output ports of the model. These will be associated with the 

input and output concepts by the arrows i and o (Fig. 1), 
which will have to become bijective functions in each model. 

For the arrow i to become a surjective function, the 

pushout of i with i should be equal to xi, i.e. the diagram 
from Fig. 2 has to become a pushout diagram in the Set 

category. In order for the arrow i to become an injective 

function, the pullback of i with i will have to be equal to I, 
i.e. the diagram from Fig. 3 has to become a pullback diagram 
in the Set category. 

Analogously, the arrow o becomes a surjective function if 

the pushout of o with o is equal to o, i.e. the diagram from 
Fig. 4 becomes a pushout diagram is the Set category. And the 

arrow o becomes an injective function if the pullback of o 

with o will be equal to xo, i.e. the diagram from Fig. 5 will 
become a pullback diagram in the Set category. 

Therefore, the introduction of interfaces in the metamodel 
sketch implies in this case the addition of two more cones to 
the set of cones 𝓛 according to Fig. 3 and Fig. 5 and adding 
two more cocones to the set 𝓚 according to Fig. 2 and Fig. 4. 
Finally, it follows that the set of cones is 
𝓛={L1,L2,L3,L4,L5,L6} and the set of cocones is 
𝓚={K1,K2,K3,K4,K5}. 

 

Fig. 1. The Graph of the MLMS Sketch. 

 

it 

i

xt 

xi 


it
 


it
 

x 
 

 

xx 

1 


2
 

 



 

xw 


tw

 


wt

 


to

 


td

 xd 

xo 


tw

 


wt

 


td

 


to

 

 
 


i
 


o
 

i 


o
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

433 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Pushout Diagram. 

 

Fig. 3. Pullback Diagram. 

       

Fig. 4. Pushout Diagram. 

 

Fig. 5. Pullback Diagram. 

A model of the sketch 𝓢 is a functor mapping the graph of 
the sketch in Set and all diagrams from D in commutative 
diagrams, all cones from L in cone limits and all cocones from 
K in cocone colimits. 

The sketch 𝓢 reflects the relation between the abstract 
definition of a class of models and the concrete models 
specified by the sketch. Therefore, the sketch is the formal 
object that specifies the metamodel that in turn represents a 
class of models and contains all the semantics necessary to 
express the syntactic constraints of the entities in this class of 
models. 

Therefore, a concrete model of the sketch L
1
 is a functor 

H
2
:L

1
Set that associates to the classes (nodes), in the sketch 

L
1
, set of extensions of these classes. The H

2
 model associates 

to the nodes (classes) from L
1
 with sets of  extensions of these 

classes representing all types of objects that make up the 
model, as well as all types of relations that can be defined 
between the entities of the model and the arcs are the sketch 
operators. We will denote with L

2
=H

2
(L

1
) a model of the 

sketch L
1
, i.e. a process constructed according to the 

grammatical rules imposed by the sketch L
1
. 

The behavior of a process is based on the state idea 
determined by the values of the attributes. The simulation 
begins with an event initializing the process with the data 
describing its initial state. Values of attributes that constitute 
the state of the system at one time produce events that trigger 
the execution of some actions of the process. Execution of 
these actions changes the state of the process and as a result 
determine again the execution of some actions [3,4]. 

So if we know the state of a process at a certain moment we 
can simulate the evolution of the process without knowing the 
history of the previous states that determined the current state. 
This means that the current state of a process concentrates the 
entire previous evolution of the process. 

In our case a state of the process is represented by an 
instance of the model [3,4]. An instance of the L

2
 model is a 

functor :  Sets with the property that  ∘H
2
 is a model of 

the sketch L
1
, i.e. it complies with all the conditions imposed 

by the metamodel, and which associates to each set of classes 
from L

2
 a set of instances, i.e. from each class one or more 

instances will be created. 

If we have two instances ,:  Set then we can define a 

natural transformation :. The set of all instances together 
with all the natural transformations between them form a 
category that we call the process reaction category L

2
 and we 

denote it with PRC. Thus, the evolution of the process from 
one state to another is represented by a natural transformation. 

But the process has an initial state that in our case is an 
initial instance that we denote with 𝕴0. We consider a 
subcategory of the PRC category, which we call the process 
simulation category (PSC) that has the objects: 

Ob(PSC)={𝕴k|Hom(𝕴o,𝕴k)}, and the arrows are all arrows 
from the RPC category that have domains and codomains in 
Ob(PSC). The paths from the PSC category that have as a 
starting point object the instance 𝕴o represent the traces of the 
model in the simulation or execution process. 

In the context of our model, simulation traces are sequences 
of instances that can be obtained by natural successive 
transformations from the initial instant. Each trace represents 
an alternative to executing the process. Therefore, if 
𝕴=ob(PSC) then the set of simulation traces form a language 

L(𝕴)𝕴* defined as follows: L(𝕴)={ 𝕴o𝕴1 … 𝕴n𝕴* | 

𝕴k=(𝕴k-1) for k≥1, and  is a natural transformation and 𝕴o is 
the initial instance} 

IV. CATEGORICAL MODEL OF CO-SIMULATION 

The modeling of a large system involves the disassembly of 
the system into several real or virtual components from 
different domains integrated into a single model. Thus, the 
model is divided into several submodels, and each of these 
submodels requires the use of a certain formalism to specify 

i 

i 


i
 

x
i
 

x
i
 


i
 

 


i
 

 
x

i
 

i 

i 


i
 

i 

 

i 

i 

 

i 

 

xi 

xo 

o 


o
 


o
 


o
 


o
 

 


o
 

 


o
 

xo 

o 


o
 

xo 

 

xi 

o 

 

o 

 

i 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

434 | P a g e  

www.ijacsa.thesai.org 

the process in optimal conditions of fidelity, robustness and 
simplicity. 

A process describes the behavior of a natural or artificial 
entity, real or virtual, under conditions imposed by a particular 
context. The context can also be represented by other processes 
that interact with the considered process, which leads to 
processes composed of several subprocesses. Both the 
composed process and its individual components are 
characterized by inputs, outputs, and internal states between 
which transitions are made that define how inputs and states 
cause outputs. The overall behavior of a process is therefore a 
composition of the individual behavior of its subprocesses. 

In this type of hierarchical modeling, in which each 
component is independently specified, a model is a collection 
of models that in the simulation process must work together to 
achieve the common goal. This results in a co-simulation 
process that integrates several independent simulation 
subprocesses that synchronize to interact with each other. The 
concept of co-simulation involves subprocess coupling 
techniques to build the behavior of the integrated process. 

Each subprocess has to provide through its ports its 
functions for other subprocesses involved in co-simulation. 
Also, the outputs of a subprocess influence the evolution of 
other subprocesses, and therefore the evolution of each 
process, although it seems independent, also depends on the 
evolution of the other processes. 

Combining dependent and independent behavior of 
subprocesses is essential to the optimum process evolution, but 
can cause major problems if it is not done correctly. 
Subprocesses must be coupled through their inputs and outputs 
to reproduce the behavior of the integrated process [8]. Thus 
co-simulation of a process is the sum of the correlated 
simulations of the coupled subprocesses. 

To coordinate the co-simulation, an orchestrator is required 
to control how components of the model are synchronized, 
translates and transfers data from subprocess outputs to inputs 
of other subprocesses, according to an appropriate co-
simulation scenario. In our approach, the orchestrator is 
represented by a categorical sketch whose graph has as nodes 
the sketches generating the submodels involved and a series of 
association relations that will implement the interactions 
between the models. The other components of the sketch will 
impose submodel coupling conditions. We will call this sketch: 
the sketch of the co-simulation model or co-simulation sketch. 

We will consider a co-simulation sketch 𝓢=(𝓖, 𝓓, 𝓛, 𝓚), 
where the graph 𝓖 has as nodes objects representing sketches 
of models and as arcs sketch operators. For example, the graph 
of a sketch with three models could be the one in Fig. 6. 

This graph already implies several conditions on the co-
simulation model, namely: 

1) The models of the sketchs s1 and s3 do not interact 

directly with each other. 

2) The models of the sketch s1 interact directly only with 

the models from s2, and the models from the sketch s2 interact 

with those from the sketches s1 and s3. 

3) The models from the sketch s3 can interact with each 

other. 

We can then introduce a set of other restrictions on the co-
simulation model through the other components of the co-
simulation sketch such as: 

4) The models of the sketch s3 should not contain loops, 

meaning there are no associations in which the source and 

targhet coincide. 

This assumes that the coequalizer of the source and 
destination functions of the a33 association is the empty set, i.e. 
there is no arc in the model for which the destination and 

source coincide. In categorical terms, the coequalizer of 33 

and 33 (Fig. 8) is the colimit of the diagram from Fig. 7, which 
we denote with K1. This colimit will have to become, in the Set 
category, the empty set, so as in Fig. 3, i.e. the colimit of the 
void diagram that we denote with K2 and which becomes the 
initial object in the Set category. 

1) The commutative diagram from Fig. 9, which we 

denote with D1, ensures the connection of model pairs two by 

two. Commutativity implies 12∘21=id21, 21∘12=id12, 

meaning that a12 and a21 are isomorphic. Similarly, a23 and a32 

are also isomorphic. 

2) Condition 5 does not assure us that there is only one 

pair of associations between two models. For this we have to 

put the condition that there is only one arc between any two 

models. Due to the isomorphism between a12 and a21, it is 

sufficient to put the condition for one of them. We will put the 

condition for a12. 

 

Fig. 6. The Graph of a Sketch with Three Models. 

 

Fig. 7. Coequalizer Diagram. 

 

Fig. 8. Coequalizer of 33 and 33. 

a21 

s2 

s1 
12

 
21

 

s3 

a
32

 

a
33

 

a
12

 

a
23

 


21

 


32

 
13

 


12

 


23

 
32

 


33

 
33

 

s3 a33 

 

 

S3 A33 

 

 

 
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

435 | P a g e  

www.ijacsa.thesai.org 

In the metamodel sketch we will have to impose the 

condition that 12 and 12 be isomorphisms. But, 12 and 12 are 
epimorphisms if and only if the diagrams from Fig. 12 and Fig. 

13 are pushout diagrams, i.e. 12 and 12 are epimorphisms. We 

denote these two diagrams with K3 and K4. The functions 12 

and 12 are monomorphisms if and only if the diagrams in Fig. 

10 and Fig. 11 are pullback diagrams, i.e. 12 and 12 are 
monomorphisms. We denote with L1 and L2 these two limits. 

For a23 and a32 the conditions are similar. So it also includes 
two more limits that we denote with L3 and L4 and two colimits 
that we denote with K5 and K6. 

 

Fig. 9. Commutative Diagram. 

 

Fig. 10. Pullback Diagram. 

 

Fig. 11. Pullback Diagram. 

 

Fig. 12. Pushout Diagram. 

 

Fig. 13. Pushout Diagram. 

1) The models of the sketch s3 form a connected graph. 

This assumes that the equivalence relation induced by the 

functions 33 and 33 on the set of models generated by the 

sketch s3 will determine a single equivalence class on the set 

of models generated by the sketch s3. For this, the diagram 

from Fig. 14 has to be a pushout diagram. That is, the span 

colimit determined by 33 and 33 is a terminal object in Set. 

We will denote with K7 this diagram. We also need a terminal 

element from Set that is the limit of an empty diagram that we 

denote with L5. 

The graph of the co-simulation sketch is shown in Fig. 15. 

The final sketch of the co-simulation model is 
𝓢=(𝓖,𝓓,𝓛,𝓚) where: 𝓖 is the graph from Fig. 4, 𝓓={D1}, 
𝓛={L1,L2,L4,L4,L5} and 𝓚={K1,K2,K3,K4,K5,K6,K7}. 

A model of a co-simulation sketch is a functor M:Set that 
associates to each node of type sketch from the co-simulation 
sketch a set of models according to the model sketch 
corresponding to the node, to each node of type association a 
set of functions between models and the arcs that are the sketch 
operators will be interpreted accordingly. Mapping will be 
done with respect to the restrictions imposed by the 
components 𝓓, 𝓛 and 𝓚 of the co-simulation sketch. 

The functions corresponding to the association nodes will 
translate the source model outputs into inputs of the destination 
model, thus ensuring communication between the models 
involved in the co-simulation. 

Each model will therefore respect the conditions imposed 
by the sketch that generated it and the set of all the models that 
interact in the co-simulation process will respect the conditions 
imposed by the co-simulation sketch. 

A co-simulation model of the sketch 𝓢 from the example 
above could look like the one in Fig. 16 where we have 
denoted with hourglasses the models of the sketch s1, with 
rectangles the models of the sketch s2 and with diamonds the 
models of the sketch s3. In this model we have 9 instances, 3 of 
each sketch. The arcs represented by lines in Fig. 16 are 
function types, images through the functor M of the association 
nodes in the co-simulation sketch. From them will create 
function instances that will do communication between the 
instances of the models. These functions, which we will call 
connection functions, map the outputs of a model to the inputs 
of another model. On the set of connection functions we can 
introduce the natural composing operation. The resulting 
construction generates a free category that has as objects the 
models and as arcs the connection functions. We will call this 
category: categorical model of co-simulation (CMCS). 

a21 

s2 

s1 


12

 


21
 

s3 

a
32

 

a
12

 

a
23

 


21

 


32

 


13
 


12

 


23

 
32

 

12 


21

 


32

 


23

 

a12 

12 


12

 

a1,2 

a1,2 

12 

12 

s1 

a1,2 

12 


12

 

a1,2 

a1,2 

12 

 

12 

s2 

a12 

12 

 

12 

 

s1 

s1 


1
 

 


1
 

 

s1 

a23 

12 

 

12 

 

s2 

s2 


2
 

 


2
 

 

s2 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

436 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 14. Pushout Diagram. 

 

Fig. 15. The Graph of the Co-Simulation Sketch. 

 

Fig. 16. Co-Simulation Model. 

V. THE CO-SIMULATION CATEGORY 

The categorical model of co-simulation was created. The 
instances of each co-simulation model have as an interaction 
support an orchestrater provided by the co-simulation sketch. 
This sketch is a graphical specification of a co-simulation 
model provided by the category theory. 

Let's see how an instance of the categorical model of co-
simulation looks like. In the categorical model of co-
simulation, the interaction is achieved through the connection 
functions. But in the co-simulation process, interaction occurs 
between models in certain represented states, as described in 

Section 3, through instance of component models. This means 
that interaction takes place between process simulation 
categories (PSC). It is natural that an instance of the categorical 
model of co-simulation will have to contain as objects process 
simulation categories (PSC) and as arrows connection functors 
between these categories that will be instances of the 
connection functions. 

Therefore, an instance of the co-simulation model is a 

functor :CMCSSet mapping each subprocess model Mi, 
i=1,2,..,n to the process simulation category corresponding to 
PSCi, i=1,2,..,n, as we saw in section 3, and each connection 

function fi,j for i,j∈{1,2, .. n} to a connection functor i,j for 
i,j∈{1,2, .., n} between the appropriate categories. Obviously, 
the image of this functor in Set (Fig. 17) can also be structured 
as a category in which the objects are simulation categories, the 
arrows are the connection functors and the composition is the 
composition of the functors. We will name this category the 
Reactive Category of Co-Simulation (RCCS). 

We denote the set of objects ob(PSCi)={  
  ,   

 ,…,   
 ,…} 

for all i{1,2,..,n} and the arrows between two objects with   
  

and    
   with  

  . A state 𝕴k of the co-simulation model is a 

tuple of the form 𝕴k=(  
   ,   

  ,…,   
  ) where    

  ob(PSCi)  

for all i{1,2,..,n}. 

We first consider that processes are parallel and 
independent. Then there is a macrotransition between two 

states 𝕴k=(  
   ,   

  ,…,   
  ) and 𝕴l=(  

   ,   
  ,…,   

  ) if for 

every pair of instances   
 

  
,   

 

  
 there is a transformation 

 
  : 

 

  
   

 

  
. But the evolutions in the categories of co-

simulation processes are not independent, some 
macrotransitions are independent and may evolve as above, 
other instances wait for rendezvous with instances of other 
subprocesses for information exchange that require 
synchronization [13,15]. 

 

Fig. 17. Category of Co-Simulation. 

s3 
a33 

s3 

33 

33 

 

a21 

s2 

s1 


12

 


21
 

s3 

a
32

 

a
12

 

a
23

 


21

 


32

 
13

 


12

 


23

 
32

 

a
33

 


33

 
33

 

 


21

 


12

 


32

 


23

 

In   

Out   

In   

Out   

In   

Out   

In   In   

In   In   

In   In   

Out   Out   

Out   Out   

Out   Out   

𝐇𝟏
𝟐(s1) 𝑯𝟐

𝟐(s
1
) 𝑯𝟑

𝟐(s
1
) 

𝑯𝟒
𝟐(s

2
) 𝑯𝟓

𝟐(s
2
) 𝑯𝟔

𝟐(s
2
) 

𝑯𝟕
𝟐(s

3
) 𝑯𝟖

𝟐(s
3
) 𝑯𝟗

𝟐(s
3
) 

f
41

 f
14

 f
25

 f
52

 f
63

 f
36

 

f
47

 f
58

 f
69

 f
74

 f
85

 f
96

 

f
87

 f
78

 f
98

 f
89

 


41

 
14

 
25

 
52

 
63

 
36

 


47

 
58

 
69

 
74

 
85

 
96

 


87

 
78

 
98

 
89

 

⧖        
⧖  

     ⧖ 
…

⧖   ⧖  

     ⧖ … 

⧖     ⧖  

     ⧖ … 

 ⧠     ⧠ 

     ⧠ … 

 ⧠     ⧠ 

     ⧠ … 

 ⧠     ⧠ 

     ⧠ … 

⟠        ⟠ 

     ⟠ … 

⟠        ⟠ 

     ⟠ … 

⟠        ⟠ 

     ⟠ … 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

437 | P a g e  

www.ijacsa.thesai.org 

For each process simulation category PSCi ,i=1,2,..n we 
will construct a subcategory that we call the rendezvous 
category of the process RCPi ,i=1,2,..n as follows: 

ob(RCPi)={  
  ob(PSCi) |  j so that the execution of the 

transformation   
  

 depends on a rendezvous} and the arrows 

remain all from the PSCi category which have the domains and 
codomains in ob(RCPi). 

In this way, an instance of the co-simulation model 

becomes a functor :CMCSSet that maps each subprocess 
model Mi, i=1,2,..,n to the rendezvous category of the process 
RCPi, i=1,2,..,n, and each connection function fp,q for p,q∈{1,2, 

.. n} to a connection functor p,q:RCPp  RCPq for p,q∈{1,2, 

.., n} between the rendezvous categories of process as follows: 

p,q(  
  =   

  if and only if the instance   
  needs as inputs the 

outputs of the instance    
  to be able to evolve. Defining p,q 

on arrows is implicit. Obviously, each resulting structure RCPi, 
i=1,2,..,n is a category. We will call this category the category 
of co-simulation (CCS). 

Then a macrotransition between two states 

𝕴k=(  
  ,  

  ,…,   
  ) and 𝕴l=(  

   ,   
  ,…,   

  ) must meet the 

following conditions: 

 For each pair of instances   
 

  
,   

 

  
 there is a 

transformation  
  :  

 

  
    

 

  
. If  

 

  
 =   

 

  
 then the 

transformation is the identity. In the simulation process 

this means that  
 

  
 is waiting for a rendezvous. 

 For each pair p and q there is a transformation from 

p,q(  

    to   

  
 in the RCPq category if and only if 

there is a transformation from    

  
 to q,p(  

  
) in the 

RCPp category. 

Condition ii) is necessary to avoid the deadlook situation in 
the co-simulation flow, i.e. a state in which each member of the 
tuple waits for another member to send its outputs to an 
instance that is not in the tuple or to receive inputs from 
another instance that is not in the tuple. Of course, each 
instance can execute the identity transformation for a number 
of steps but not for infinite without the process evolving. The 
condition ii) ensures that all instances will have the rendezvous 
they are waiting for, and there will be no deadlook. But 
obeying this condition is related to the definition of functors 

p,q for p,q{1,2,..,n}. For this, the functors p,q and q,p should 
be adjunct functors. 

The functor p,q:RCPp RCPq is the left adjunct of the 

functor  q,p: RCPq RCPp and q,p is the right adjunct of p,p 

and is denoted by p,q ⊣ q,p if and only if the set of arrows 

Hom(p,q -, -) and Hom(-,q,p -) are naturally isomorphic as 
functors of two variables with values in Set. We denoted with – 
the place of a variable in the formula [9]. This means, in our 
case, that for each pair p and q there is a transformation from 

p,q(  

    to    

  
 in the RCPq category if and only if there is a 

transformation from   

  
 to  q,p(  

  
) in the RCPp category, 

i.e. exactly the condition ii) from above. 

But the two functors are adjuncts [9,10] if there is a natural 

transformation p: idp  p,q○q,p, where idp is the identity 

functor in the RCPp category and p is the adjunct unit, so for 

any objects   
  from RCPp and   

  from RCPq and any arrow 

 
  :   

   q,p(  
 )=   

 , there is a unique arrow   
  : p,q(  

 ) 

=  
     

  so that the diagram in Fig. 18 commutes. 

We also have the dual characterization that if two functors 

p,q and q,p have the property p,q⊣ q,p then there is a natural 

transformation  q: p,q○q,p  idq called adjunct counity so 

that for any arrow   
  : p,q(  

 )=   
   

 , there is a unique 

arrow   
  :   

   q,p(  
 )=   

  so that the diagram in Fig. 19 

commutes. 

Therefore, if the natural transformations p or q exists with 
the above properties, the two functors are adjuncts. The natural 

transformation p provides a way to associate each arrow 

 
  :   

   
 =   

  from the RCPp category with an arrow 

 
  :p,q(   

 )=   
    

  from the RCPq category so that  

 
  =q,p( 

  ) p. 

In our case, the natural transformation  p:idp p,qq,p can 
be constructed taking into account the way the categories RCPi 

i{1,2,..,n} have been defined as subcategories of the process 

simulation categories PSCi ,i{1,2,..,n} in section 3. From this 

it follows that each Hom(   
 ,    

 ) contains a natural 

transformation  
   for all k0. We will define every 

component  
 
 :  

 p,qq,p(  
 )=  

  as follows: for each x  
  

we define  
 
 (x)= 

 
 ( 

  (z)) = 
  (z) where z  

  ; x= 
  (z) 

and   
  Hom(  

 ,   
 );  

  Hom(  
 ,   

 ). It is quite simple 

to prove that p defined as such respects the naturality property 
and thus is a natural transformation. 

 

Fig. 18. Commutativ Diagram. 

 

Fig. 19. Commutativ Diagram. 

 𝑝
𝑘 

q,p( 𝑞
𝑙 ) 

p,q( 𝑝
𝑘) q,pp,q( 𝑞

𝑙 ) 

 𝑞
𝑙  

𝑝
𝑘𝑡 ! 𝑞

𝑡𝑙 
q,p( 𝑞

𝑡𝑙) 

p 

RCPp RCP
q
 

 𝑝
𝑘 

q,p( 𝑞
𝑙 ) 

p,q( 𝑝
𝑘) 

p,qq,p( 𝑞
𝑙 )  𝑞

𝑙  

! 𝑝
𝑘𝑡 𝑞

𝑡𝑙 
p,q( 𝑝

𝑘𝑡) 

q 

RCPp RCP
q
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

438 | P a g e  

www.ijacsa.thesai.org 

We observe that the component 
 
   of the natural 

transformation p exists if and only if the number of elements 

from   
  is greater or equal to the number of elements in   

 . 

Similarly, the natural transformation q:p,q○q,pidq can be 
constructed in the RCPq category. If the natural transformations  


 
  and 

 
  exist for all k≥0 then the two functors p,q and q,p 

are the adjuncts and the condition ii) is fulfilled. Otherwise we 
will have to try all the variants admitted by the model in 

question to define the functors p,q and q,p to obtain two 
adjunct functors. If there is no such option we will have to 
make changes at the model level. In principle, it should be 

observed that for each object   
   from the RCPp category, the 

functor Hom(  
 ,q,p-):RCPqSet has a universal element [9]. 

But we will deal with this problem in a future paper. 

VI. CONCLUSION 

Multi-formalism modeling aims to facilitate the use of 
more modeling formalisms in certain situations where it is 
necessary to compose heterogeneous models, thus allowing 
experts from different disciplines to collaborate more 
effectively in the development of increasingly complex 
systems. This approach involves specifying processes through 
different modeling grammars. 

Many times the solution to this challenge is the 
development of grammars specific to the component 
subprocesses starting from a common meta-metamodel that 
facilitates their coupling in a co-simulation process that allows 
the study of the overall system behavior. There is a gap of 
remarkable results in the field of modular coupling, of 
simulators in dynamic structure scenarios at the state level [2]. 
The concept of categorical modeling method along with the 
MM-DSL [3,4,5,6,7] language facilitates this approach. The 
present paper proposes a co-simulation category (CCS) as a 
model for the co-simulation state space. The categorical sketch 
for co-simulation can be specified in a graphical language 
provided by the category theory for specifying the syntax of 
the co-simulation model. 

This facilitates the separation of the model specification 
from the execution algorithms. Universal constructs offered by 
the category theory can be implemented as universal 
algorithms and mechanisms [6,7] at the meta-metamodel level 
and used in each model for process coupling. This type of 
algorithms reduce the complexity of syntax specification for 
coupling and provides support for domain specific modeling 
and distributed execution. Thus, the universal constructs from 
the category theory can be seen as a collection of tools for 
specifying and structuring the dynamic coupling of processes. 

Synchronization can be elegantly modeled by adjunct 
functors. Composition of adjuncts is also an adjunct [9]. We 

have seen in section 5 the determination of the adjunct unit, if 
it exist it can be relatively simple. We will have to find general 
criteria for characterizing the situations in which these adjuncts 
exist. This problem as well as the problem of finding practical 
and efficient algorithms for determining synchronization 
adjuncts will be addressed in a future paper. 

REFERENCES 

[1] Bernard P. Zeigler, Alexandre Muzy, Ernesto Kofman, Theory of 
Modeling and Simulation Discrete Event and Iterative System 
Computational Foundations - Academic Press 2019 , ISBN: 978-0-12-
813370-5. 

[2] Claudio Gomes, Casper Thule,  David Broman, Peter Gorm Larsen, 
Hans Vangheluwe - Co-simulation: State of the art, - ACM Computing 
Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016. 

[3] Daniel C. Crăciunean, Dimitris Karagiannis, 2018, Categorical 
Modeling Method of Intelligent WorkFlow. In: Groza A., Prasath R. 
(eds) Mining Intelligence and Knowledge Exploration. MIKE 2018. 
Lecture Notes in Computer Science, vol 11308. Springer, Cham. 

[4] Daniel C. Craciunean, Categorical Grammars for Processes Modeling” 
International Journal of Advanced Computer Science and 
Applications(IJACSA), 10(1), 2019. 
http://dx.doi.org/10.14569/IJACSA.2019.0100105 

[5] Dimitris Karagiannis, Robert Andrei Buchmann  2018, A Proposal for 
Deploying Hybrid Knowledge Bases: the ADOxx-to-GraphDB 
Interoperability Case, Published in HICSS, 
DOI:10.24251/hicss.2018.510. 

[6] Dimitris Karagiannis, N. Visic, 2011. Next Generation of Modelling 
Platforms. Perspectives in Business Informatics Research 10th 
International Conference, BIR 2011 Riga, Latvia, October 6-8, 2011 
Proceedings 

[7] Dimitris Karagiannis, Heinrich C. Mayr, John Mylopoulos, 2016. 
Domain-Specific Conceptual Modeling Concepts, Methods and Tools. 
Springer International Publishing Switzerland 2016. 

[8] Vagner, D., Spivak, D. I., & Lerman, E. M., 2015. Algebras of open 
dynamical systems on the operad of wiring diagrams. Theory and 
Applications of Categories, 30, 1793-1822, Nov 30 2015. 

[9] Michael Barr, Charles Wells, 2012. Category Theory For Computing 
Science, Reprints in Theory and Applications of Categories, No. 22, 
2012. 

[10] R. F. C. Walters, 2006. Categories and Computer Science, Cambridge 
Texts in Computer Science, Edited by D. J. Cooke, Loughborough 
University, 2006. 

[11] Robin Milner, 2009. The Space and Motion of Communicating Agents, 
Cambridge University Press, 2009. ISBN 978-0-521-73833-0 

[12] Weske, Mathias, 2012. Business Process Management - Concepts, 
Languages, Architectures, 2nd Edition. Springer 2012, ISBN 978-3-642-
28615-5, pp. I-XV, 1-403. 

[13] Winskel Glynn, 2009. Topics in Concurrency, Lecture Notes, April 
2009. 

[14] Wil M.P. van der Aalst, 2011. Process Mining Discovery, Conformance 
and Enhancement of Business Processes, Springer-Verlag Berlin 
Heidelberg 2011. 

[15] Diskin Z., König H., Lawford M., 2018. Multiple Model 
Synchronization with Multiary Delta Lenses. In: Russo A., Schürr A. 
(eds) Fundamental Approaches to Software Engineering. FASE 2018. 
Lecture Notes in Computer Science, vol 10802. Springer, Cham. 

 

https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-73833-0

