
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

A Hybrid Exam Scheduling Technique based on
Graph Coloring and Genetic Algorithms Targeted

Towards Student Comfort

Osama Al-Haj Hassan∗,1, Osama Qtaish†,2, Maher Abuhamdeh‡,3, Mohammad Al-Haj Hassan§,4
∗Computer Networks Department, Isra University, Amman, Jordan
†Software Engineering Department, Isra University, Amman, Jordan

‡Computer Information Systems Department, Isra University, Amman, Jordan
§Computer Science Researcher, Amman, Jordan

Abstract—Scheduling is one of the vital activities needed in
various aspects of life. It is also a key factor in generating exam
schedules for academic institutions. In this paper we propose
an exam scheduling technique that combines graph coloring and
genetic algorithms. On one hand, graph coloring is used to order
sections such that sections that are difficult to schedule comes
first and accordingly scheduled first which helps in increasing
the probability of generating valid schedules. On the other hand,
we use genetic algorithms to search more effectively for more
optimized schedules within the large search space. We propose
a two-stage fitness function that is targeted toward increasing
student comfort. We also investigate the effect and potency of the
crossover operator and the mutation operator. Our experiments
are conducted on a realistic dataset and the results show that
a mutation only hybrid approach has a low cost and converges
faster toward more optimized schedules.

Keywords—Exam scheduling; optimization; graph coloring;
genetic algorithms; time tabling; fitness value

I. INTRODUCTION

Several life activities exploit scheduling to ensure efficient
and proper operation including exam scheduling that is used
in academic institutions for producing high quality exam
schedules [1], [2], [3].

Exam scheduling is an optimization problem that aims to
produce valid and optimized exam schedules. Several crite-
rions govern the concept of ‘Optimized Exam Schedule’. For
example, a schedule might be optimized based on finishing the
whole examination period in a minimum number of days. It
can also be optimized based on having the minimum number of
exams for a given student per day. Another way of optimizing
an exam schedule is maximizing the time period between
exams for a given student which gives the student more time
to prepare for his exams. In other words, the criterion upon
which an exam schedule is optimized largely depends on the
administration and their notion of a good schedule.

Exam scheduling problem is a case of graph coloring
problem which is known to be NP-Complete [4]. Therefore, in
real-world scenarios where exists a large number of faculties,
courses, sections and students; finding the optimum exam
schedule is a time consuming and cumbersome process. Ac-
cordingly, the aim of exam scheduling algorithms is generating
exam schedules that are closer to the optimum schedule. Since
it is very difficult to know the optimum schedule in the first
place, then any improvement on the fitness of schedules would

be considered as one step closer to the optimum schedule.
We consider exam scheduling in an academic institution

setting where academic faculties consist of departments. Those
departments offer courses that have sections. Therefore, the
aim of the exam scheduling process is to schedule sections in
a way that generates optimized schedules.

Graph coloring is one of the techniques used for exam
scheduling. It depends on a greedy approach that schedules
sections in the current best possible slot such that no hard
scheduling constraint is violated. It generates high quality
exam schedules in an efficient way. However, due to its greedy
nature and huge search space, it fails to find more optimized
exam schedules.

Exam scheduling problem can be tackled using genetic
algorithms which are approaches that depend on randomization
to explore the large search space of possible solutions. The
search space is explored in a time and resource intensive man-
ner. Due to their randomized nature, they are able to find more
optimized exam schedules. However, they are time intensive
techniques. We explain our methodology as follows. The
techniques that rely on randomization are the most effective
for exam scheduling problem. Some of those approaches are
genetic algorithms, ant colony, bee colony, particle swarm,
and memetic algorithms. The reason behind that success is
because it is nearly impossible to find the most optimized
solution in problems with large search space using exhaustive
search. Therefore, the randomized nature of the previously
mentioned algorithms helps in scanning many areas of the
large search space to find better solution. However, those
randomized approaches tend to be blind in the way they
cover the search space and accordingly might miss several
good solutions. Consequently, it is strongly advised to support
those techniques with other more focused approaches that help
in guiding the randomized algorithms to cover the areas of
the search space that are more likely to have higher quality
solutions. This is why we choose a hybrid approach that
utilizes the randomized nature of genetic algorithms and the
guided search of graph coloring.

A. Contribution

In this paper, we develop a technique in which we combine
graph coloring and genetic algorithms to design a hybrid
approach that generates exam schedules that come closer to
finding optimum schedules. Our paper contribution is laid out

www.ijacsa.thesai.org 503 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

in the following points:

• Exploiting graph coloring and genetic algorithms in a
realistic scenario comprising realistic exam scheduling
constraints.

• Proposing a new course registration dataset as a con-
tribution to the research community.

• Designing a unique two-stage fitness function that
focuses on increasing student’s comfort during the
examination period.

• Investigating the necessity of existence of crossover
and mutation operators via inspecting their cost and
effectiveness.

This paper is organized as follows. In Section II we present
literature conducted in the areas of graph coloring and genetic
algorithms and both of them combined. Then, in Section III we
define the exam scheduling problem in the context of graph
coloring and genetic algorithms. After that, we propose our
hybrid exam scheduling approach in Section IV. Following
that, we evaluate our approach in Section V. Finally, we
conclude our work in Section VI.

II. RELATED WORK

In this section, we investigate different research work
related to graph coloring, genetic algorithms and combining
both of them.

A. Graph Coloring

Graph coloring has been used in several works for schedul-
ing purposes. In [1] authors employ graph coloring to generate
course timetabling and exam timetabling and they take into
consideration several hard and soft constraints in the process.
Their work focuses on measuring the degree of satisfaction
of constraints and they try to achieve even distribution of
courses. Authors in [2] exploit graph coloring to generate
exam schedules by following a two phase scheme such that
in phase one they schedule exams regardless of number of
available seats in halls. Then, in phase two, they check if the
number of needed seats in the generated schedule exceeds the
number of available seats. If that happens, then they remove
the scheduling of some exams and reschedule them again.
In [5], authors provide a performance study for various graph
coloring algorithms including First Fit, Welsh and Powell,
Largest Degree Ordering, Degree of Saturation, Incidence
Degree Ordering and Recursive Largest First. Graph coloring
is used in [6] to enhance communication with users in massive
multiple input multiple output wireless networks. The idea is
to use graph coloring for pilot assignment instead of assigning
pilot randomly on users which leads to reduced inter-cell
interference between users. Most research focus on using graph
coloring in situations where the graph does not change (static).
However, the research in [7] investigates using graph coloring
in problems where the graph is dynamic. They take into con-
sideration random and heuristic changes on the graph. Graph
coloring for dynamic graphs is also investigated in [8] where
authors focus on a technique to ensure high effectiveness and
high efficiency. They achieve that by performing incremental
color propagation as the graph changes. An attempt to reduce

the time needed to color a graph is conducted in [9] where
authors identify edge cover graphs and independent graphs
within the graph to be colored. The graph coloring attempts
for solving the scheduling problem only generate good enough
solutions but they fail in finding near optimal solutions.

B. Genetic Algorithms

Genetic algorithms are key optimization techniques which
have been used in various problems. In [10], a genetic algo-
rithm is developed to help robots choose the most optimal path
to their goal. It is also used in real time task scheduling [11]
where the goal is to minimize the number of processors
needed to accomplish all the given tasks. Authors in [12]
focus on solving the exam timetabling problem using a genetic
algorithm that maximizes time between student classes. This
ensures that students have enough time and comfort to succeed
in their exams. Scheduling tasks that include batch delivery
on machines is investigated in [13]. It is achieved by using a
genetic algorithm that minimizes job completion time while
at the same time minimizes machine deterioration. A genetic
algorithm for project scheduling is proposed in [14] where
it is assumed that project tasks cannot be preempted and
they use finite resources. Their goal is to minimize project
completion time. Authors in [15] present a genetic algorithm
for task scheduling in cloud computing. They analyze user
characteristics and type of requests in order to classify jobs
and their requirements. A genetic algorithm is utilized in [16]
to find optimal buses routes that pick up and drop students at
different locations. The employed genetic algorithm is able to
find the shortest path for university buses. In [17] the graph
coloring problem is solved using a Michigan genetic algorithm
where each chromosome of the population represents one
vertex and therefore the population represents one solution.
Each chromosome evolves to find a better coloring decision
and this evolution is also supported with local search to
find better coloring decisions. The genetic algorithms that we
mentioned in this section have a main shortcoming which is
starting with bad solutions and that results in increasing the
convergence time for the genetic algorithm.

C. Hybrid Graph Coloring and Genetic Algorithms

Several attempts have been performed to combine graph
coloring and genetic algorithms. In [18], authors employ graph
coloring to build their initial population and then they utilize
genetic algorithms to evolve to better solutions using a fitness
function that calculates the number of conflicts for each
solution. Authors in [19] propose a technique that depends
on varying weights for measuring conflicts and their fitness
function relies on minimizing the number of colors used in
finding solutions. The research conducted in [20] experiments
with an algorithm that uses Tabu search and authors claim
that eliminating the Tabu search component from the algorithm
does not degrade the algorithm effectiveness. The work pro-
posed in [21] adds parallelism to genetic algorithms and graph
coloring combination, authors use sub populations (islands)
that evolve to find solutions. Authors in [22] propose using
adaptive parent selection and mutation techniques that work
with genetic algorithms and graph coloring. Authors in [23]
propose a hybrid approach that is targeted to exam scheduling
problem and their fitness value depends on number of conflicts

www.ijacsa.thesai.org 504 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

Fig. 1. Representation of ‘Slot’ and ‘Color’.

in exam schedules. Our work is different in two points; first,
none of the previous hybrid approaches investigates the use of
graph coloring combined with genetic algorithms specifically
designed for exam scheduling settings except the work in [23].
However, the work in [23] does not discuss the possibility of
omitting the crossover or the mutation operator. Second, none
of the previous hybrid techniques investigates the necessity
of existence of crossover or mutation operators except the
work in [19]. However, the work in [19] does not target
the exam scheduling problem, and therefore their choice of
fitness function is too general. Also, the work in [19] does not
clarify in details how crossover operator is performed while
maintaining valid solutions. Moreover, our two-stage fitness
function is different than what is used in the previous works.

III. PROBLEM DEFINITION

To make a concrete definition of exam scheduling problem,
it is important to clarify the definition of a ‘slot’ in which
an exam can be scheduled and the definition of a ‘color’
that a section can be assigned. We will also explain the
scheduling problem in the context of graph coloring and
genetic algorithms.

A. Slot and Color Definition

Suppose that DayList = {D1, D2, ..., Dd} is a set of days
during which an exam can be scheduled. Also, suppose that
TimeList = {T1, T2, ..., Tt} is a set of existing time periods
in each day. Suppose also that HallList = {H1, H2, ...,Hh}
is a set of halls available in each time period. Each intersection
of a day Di and time period Tj is considered a color such that
ColorList is a list of length d ∗ t that contains all colors. For
example, the qth color in colors list corresponds to day Di

and time period Tj and is denoted as Ci,j
q . For presentation

purposes, we only use the subscript of colors in the manuscript
unless we needed to mention the day and time period to which
a color belongs. A slot represents preserving number of seats
in a given hall in a specific day and time for a single exam.
Based on that, SlotList is a set of slots to which exams are
assigned such that a single ‘slot’ is denoted as Si,j

k,w which
represents holding an exam in day Di and time period Tj

where the exam takes place in hall Hk wherein w seats are

Fig. 2. Graph representation of exam scheduling problem.

reserved for the exam out of the total capacity of hall Hk.
This representation of a color and a slot is illustrated in Fig. 1.
For example, in Fig. 1 the slot marked with number ‘5’ is a
slot in which an exam is scheduled such that it is held on
‘Monday’ at ‘9-10’ in hall ‘4142’ where ‘5’ seats are reserved
for the exam out of 22 seats that represents the total hall
capacity. Based on our previous definition, a single slot can
be occupied by only one exam. Most related works represent
a slot as a (Day,Time) pair. In our opinion, our definition is
more precise and closely reflects reality and it eases the stage
of implementing the algorithm. Since a color is represented
by a day and time pair, then all slots that belong to the same
day and time are said to have the same color. For example, in
Fig. 1, all slots of day ‘Monday’ and time ‘9-10’ belong to
the same color which we mark in red.

B. Graph Coloring for Exam Scheduling

In graph coloring, the exam scheduling problem can be
thought of as follows. Suppose V ertexList = {V1, V2, ..., Vv}
is a set of vertices in an undirected graph such that each vertex
represents a section of a course. EdgeList = {E1, E2, ..., Ee}
is a set of edges such that an edge between two vertices
(sections) represents the number of common students who
are currently registered in the two sections. An example is
illustrated in Fig. 2. This graph is represented as an adjacency
matrix where the value at the intersection of two sections
represents the number of common students between them
(Table I). Recall that any two slots that share the same day and
time are given the same color. Therefore, the exam scheduling
problem can be solved by applying graph coloring where the
exam of each section is scheduled in a slot such that no two
adjacent vertices (sections with common students) are assigned
slots of the same color. Graph coloring depends on a greedy
approach that schedules sections in the current best possible
slot.

C. Genetic Algorithms for Exam Scheduling

Genetic algorithms use the concept of evolution to find
high quality schedules. In the context of exam scheduling, a
chromosome represents a solution for the exam scheduling
problem where each section is scheduled in a slot of a

www.ijacsa.thesai.org 505 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

TABLE I. ADJACENCY MATRIX OF THE GRAPH IN FIGURE 2.

V1 V2 V3 V4 V5

V1 0 10 0 0 6

V2 10 0 3 0 0

V3 0 3 0 0 2

V4 0 0 0 0 5

V5 6 0 2 5 0

TABLE II. CHROMOSOME REPRESENTATION EXAMPLE.

0 1 2 3 4 5 6 7
C1 C2 C3 C4 C5 C6 C7 C8

V1,V9 V2 V4 V5,V7 V3,V9 V8 V11 V10

Algorithm 1 Initialization Code
Input: VertexList,dayIndex,TimePeriodIndex
Output: None

1: createDayIndex();
2: createTimePeriodIndex();
3: sectionListDegreeOrdering();
4: sectionListWeightOrdering();

given color. In other words, a chromosome represents a ready
exam schedule. For example, Table II shows an example of a
chromosome representing 11 sections and the colors that are
used for each section’s exam. A population of chromosomes
is created where each chromosome has a specific fitness
value that determines how good the exam schedule is. Several
chromosomes are chosen from this population for mating and
mutation. The matting process generates offspring consisting
of new chromosomes. The offspring chromosomes replace
chromosomes in the population that have fitness value worse
than the fitness value of offspring chromosomes. This round
of evolution is repeated for several generations hoping that
the evolution process will eventually generate more optimized
chromosomes (schedules).

IV. THE HYBRID APPROACH

In this section we describe the design and algorithms of
the hybrid approach.

A. Day Index and Time Period Index

The forthcoming algorithm normally needs to traverse day
list and time period list. For convenience purposes, we create
an index for day list and an index for time period list. The
indexes are simply arrays that control the order in which we
traverse the elements in the day list and time period list.
Initially, the day index and the time period index are set to
the normal array indexes that start from zero and end with
the array size minus 1. However, the hybrid approach relies
on randomization, and therefore, these two indexes will be
manipulated in a random fashion and utilized in the hybrid
approach which helps in generating diverse exam schedules.
Consequently, lines 1 and 2 of the code in Algorithm 1 are
executed as part of the initial steps of the hybrid approach.
Due to presentation purposes, we do not provide pseudocode
for most of the functions in the forthcoming algorithms.

B. Section List Ordering

Recall that a section is a vertex in the exam scheduling
undirected graph. Therefore, the degree of a section is the
number of adjacent nodes. In other words, the degree of a
section is the number of sections with which it has common
students. The weight of a section is the largest weight among
weights of the edges connecting the section with its adjacent
sections. For example, in Fig. 2, the degree of section 5 is 2
and its weight is 6. In our algorithm we order sections list in
descending order based on their degree. After that, sections
of the same degree are ordered in descending order based on
their weight. Sections in the start of the list will be scheduled
first. The rationale behind this is that sections with high degree
and weight have higher number of students in common with
other sections, and therefore, scheduling this type of sections
is difficult. Consequently, it is better to start scheduling these
sections early while we still have many available slots. This is
why lines 3 and 4 of the code in Algorithm 1 are executed as
part of the initial steps of the hybrid approach.

C. The Graph Coloring Part

The graph coloring algorithm is shown in Algorithm 2.
For each section, we first test if the section has already been
colored (assigned a slot). If this is true, then we move on
to the next section (Lines 2-5). All colors will be searched
for an available slot (lines 6-12) such that exam scheduling
constraints are not violated. Among the available slots, the
chosen one for the section’s exam is the one that keeps the
number of students having two exams in the same day as
minimum as possible. This is why we need variables ‘minT-
woExamsCount’ (line 6) and ‘selectedSlot’ (line 7) to keep
track of the slot that would currently generate the minimum
number of students with two exams in the same day if the slot
is chosen for the exam assignment. Notice that lines 9 and 11
make use of the previously mentioned indexes to access the
days and time periods. This gives us the flexibility of accessing
the days and time periods in the order we desire. Line 12
represents the color in which the algorithm tries to find a slot
available for the section’s exam. After that (Line 14), we call
Algorithm 3 which goes through a set of scheduling constraints
and returns a slot for the exam if possible. If the output of
the aforementioned algorithm is ‘null’, then it means that no
available slot was found in that color and hence we move on
to the next color (Lines 15-18). Otherwise, we find how many
students would have two exams in the same day if the exam
is scheduled in the returned slot. We keep track of the slot
that minimizes this number as much as possible(Lines 19-23).
Eventually, a slot may be found such that it does not violate
any constraint while at the same time it generates the greedy
minimal number of students with two exams in the same day.
This slot is used for the section’s exam (line 26). If no slot
is found, then the section stays uncolored. Now, we briefly
explain each one of the constraints in the order they appear in
line 2 of Algorithm 3.

• Constraint 1: We make sure the maximum number of
exams for instructor per day is not reached.

• Constraint 2: Sometimes, there would be certain days
and time periods during which the instructor is not
available. For example, the instructor is leaving for a

www.ijacsa.thesai.org 506 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

Algorithm 2 Graph Coloring
Input: Previously mentioned lists
Output: A slot for each section if possible

1: for (each section Vi in VertexList) do
2: Section sec=Vi;
3: if (sec.color 6= null) then
4: continue;
5: end if
6: int minTwoExamsCount=Integer.MAXVALUE;
7: Slot selectedSlot=null;
8: for (each day Dj in DaysList) do
9: int dayPosition=dayIndex[j];

10: for (each TimePeriod Tk in TimePeriodList) do
11: int periodPosition=timePeriodIndex[k];
12: Color col=colorList[dayPosition,periodPosition];
13: boolean validColor=true;
14: Slot slot=ExamSchedulingConstraints(col,sec);
15: if (slot == null) then
16: validColor=false;
17: continue;
18: end if
19: int examCount=twoExamsCount(col,sec);
20: if (examCount<minTwoExamsCount) then
21: minTwoExamsCount=examCount;
22: selectedSlot=slot;
23: end if
24: end for
25: end for
26: sec.examTimeSlot=slot;
27: end for

conference trip. If this is one of those days and time
periods, then this assignment is considered invalid.

• Constraint 3: Some academic institutions operate in a
morning and evening system. In this case, a class held
in the morning session cannot have its exam scheduled
in the evening session.

• Constraint 4: We make sure the maximum number of
exams per color is not reached; this is usually used to
balance distribution of exams between colors.

• Constraint 5: An exam cannot be held in the same day,
time, and hall in which a class is being held.

• Constraint 6: An exam cannot be held in the same day,
time, and hall in which another exam is being held.

• Constraint 7: An exam cannot be held in a given day,
time if there exists common students with another
class held in the same day and time as those students
can either attend the class or the exam.

• Constraint 8: An exam cannot be held in a given day,
time if there exists common students with another
exam held in the same day and time as those students
cannot attend both exams simultaneously.

• Constraint 9: An exam cannot be held in a given
day, time if there exists another class for the same
instructor in the same day and time.

• Constraint 10: An exam cannot be held in a given

Algorithm 3 Exam Scheduling Constraints
Input: Color col, Vertex sec
Output: Slot

1: Slot slot=null;
2: if (isDailyMaxExamsForInstructor(col,sec) or
3: Not(canColorBeUsedForInstructor(col)) or
4: Not(colorWithinLimit(col,sec)) or
5: isMaxExamsPerColorReached(col) or
6: isClashWithAnotherSectionClass(col,sec) or
7: isClashWithAnotherSectionExam(col,sec) or
8: studentsOfSectionHaveClassInColor(col,sec) or
9: studentsOfSectionHaveExamsInColor(col,sec) or

10: instructorOfSectionHaveClassInColor(col,sec) or
11: instructorOfSectionHaveExamsInColor(col,sec) or
12: (slot=findAvailableHallForExam(col,sec))==null or
13: studentsCountWithThreeExamsViolated(col,sec) then
14: return null;
15: else
16: return slot;
17: end if

day, time if there exists another exam for the same
instructor in the same day and time.

• Constraint 11: We try to find an available hall for the
exam in the given color.

• Constraint 12: We check sure that placing an exam
here does not cause a student to undertake 3 exams in
the same day.

D. The Hybrid Part

In the hybrid approach, we utilize graph coloring in a
genetic algorithm for the purpose of generating high quality
schedules.

1) Fitness Value: Fitness value is the criterion used for
deciding which chromosome (solution) is better than the
other. Basically, the answer to the question ‘What is a good
schedule?’ governs the decision of defining and computing the
fitness value. As we mentioned in Section I, a good exam
schedule is something debatable. In this work, we compare
two schedules based on two stages such that if the first stage
failed to determine the best schedule among the two schedules,
then we use the second stage for that purpose. In stage 1, we
define a ‘good schedule’ as a schedule that has the minimum
total number of students having ’two exams in the same day’
throughout all exam schedule days. For example, if a given
schedule has 30 students having 2 exams in the same day over
the exam schedule period and another schedule has 20 students
having the same issue, then the later schedule is better. This
choice of fitness function ensures a more comfortable exam
schedule for students because we minimize the chance for a
student to undertake two exams in the same day. Suppose that
StudentList = {U1, U2, ..., Uu} represents a set of students.
Based on that, the fitness function can be formulated as in
Equation 1. The fitness function is the summation of the value
TE for all students {U1, ..., Uu} in all days {D1, ..., Dd} such
that TE equals 1 if the summation of exams for a given student
Ug in all time periods {T1, ..., Tt} of a given day Di equals
two, otherwise TE equals zero. Here, ECijg represents the

www.ijacsa.thesai.org 507 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

exams count for student Ug in day Di in time period Tj . We
can see that our optimization problem is a minimization one
where the goal is reaching a schedule with minimum fitness
value.

F =

u∑
g=1

d∑
i=1

TE : TE =

{
1, if

∑t
j=1 ECijg = 2

0, otherwise
(1)

In addition, we aim to maximize the time between consecutive
student exams. So, if two schedules are considered equal based
on stage 1, then in stage 2 we find the average number of gaps
between consecutive exams for all students. Consequently,
the schedule with more gaps between consecutive exams is
considered better. This value can be found by computing
Equation 2. Si1,j1

h1,w1 represents the slot assigned for the first
exam and Si2,j2

h2,w2 constitutes the slot assigned for the next
consecutive exam for a given student. So, if i2 = i1, then
the two exams are held in the same day and therefore the
gap between the two exams is actually the gap between the
time periods to which the two slots belong (j2 − j1 − 1).
However, if i2 6= i1, this means that the two exams are held in
different days. Accordingly, we calculate the gap between that
two exams as follows. First, we compute the day difference
(i2 − i1) and then we add 1 to the result for the purpose of
giving this case a higher weight than the case in which the
two exams belong to the same day. Second, we multiply the
result with the total number of time periods in a given day
(t). The final value CE is divided by number of students (u)
to find the average number of gaps between two consecutive
student exams. The combination of stage 1 and stage 2 leads
the algorithm to generate schedules that are more comfortable
to students.

F =

∑u
g=1

∑d
i=1 CE(Si1,j1

h1,w1, S
i2,j2
h2,w2)

u

: CE =


j2 − j1 − 1, if i2 = i1
(i2 − i1 + 1)× t, if i2 6= i1
0, otherwise

(2)

2) Population Generation: We start by creating a popula-
tion (pool) of chromosomes (solutions). The population size is
a parameter we control in the system. Instead of randomly
choosing section/slot assignment, we use graph coloring to
build each chromosome. The rationale behind this decision
is as follows. The sections ordering step in the graph coloring
algorithm increases the probability of generating good quality
exam schedules because the sections with high degree and high
weight are the toughest to schedule. Therefore it is important
to schedule them first. This leaves various scheduling options
for the rest of sections and consequently we end up with
good quality exam schedules. Moreover, random Section/Slot
assignment will generate invalid exam schedules because there
are many constraints that need to be met before a given
section’s exam can be assigned to a specific slot. Random Sec-
tion/Slot assignment is blind of these constraints and generates
invalid schedules. Fixing invalid schedules is a time consuming
inefficient process that we try to avoid as much as possible. In
addition, even if random section/slot assignment happened to
produce valid schedules, the fitness value of the schedules is
going to be high (poor schedules) and that would increase the
time needed for the evolution part of the hybrid approach to

converge to an optimized solution. The population generation
part of the algorithm is represented by lines 1-6 in Algorithm 4
.

Algorithm 4 Hybrid Approach
Input: Previously mentioned lists
Output: A slot for each section if possible

1: for (i = 0 to populationSize-1) do
2: randomizeDaysListIndex();
3: randomizeTimePeriodsListIndex();
4: chromosome[i]=graphColoringPart();
5: computeFitnessValue(chromosome[i]);
6: end for
7: for (i = 1 to numberOfGenerations) do
8: Schedule[] parents=getTwoSchedulesForMating();
9: Schedule[] offspring=performCrossover(parents);

10: Schedule offspring0=performMutation(offspring[0]);
11: Schedule offspring1=performMutation(offspring[1]);
12: survivalSelection(offspring0);
13: survivalSelection(offspring1);
14: end for

3) Parent Selection: The evolution process is performed
through several generations. The number of generations is a
parameter that we control in the system. The type of genetic
algorithm we use is incremental in which two chromosomes
are selected for mating (Crossover) in each generation. We use
roulette wheel selection for choosing the two chromosomes. In
roulette wheel selection, a slice in a pie (wheel) represents the
probability that a chromosome will be selected for mating.
Since our optimization problem is a minimization problem,
then the slice area is inversely proportional to the fitness value
of the chromosome. In other words, a chromosome with lower
fitness value (Better Schedule) occupies a larger slice in the
pie. Parent selection step is represented in line 8 of the code
in Algorithm 4 .

4) Crossover Operator: The two chosen chromosomes
(Table III and Table IV) will undergo a crossover (mating)
process. The type of crossover we use is a multi point crossover
where two points a1 and b1 are chosen randomly from the
range [0,z] where z is the length of chromosome (number of
colors) and b1 > a1. Next, the section assignments in the
middle section of the two parents are swapped (Table V and
Table VI). Here we make sure that {b1 − a1 ≤ z} so that
the swapping process is not performed over more than half
of the chromosome length. Otherwise, the crossover process
will turn into producing totally different chromosomes than its
parents. Also, emphasizing this restriction decreases the cost
of the crossover process which in turn increases the efficiency
of the system. The swapping process generates cases where
a section is assigned to two different slots (Conflict). For
example, Table IX shows two conflicts in offspring 1 and
two conflicts in offspring 2. In the case of a conflict, we
use two ways of conflict resolution. We try the first one

TABLE III. PARENT 1

C1 C2 C3 C4 C5 C6 C7 C8

V1,V2 V7 V5,V8 V3 V4,V6 V9 V11 V10

www.ijacsa.thesai.org 508 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

TABLE IV. PARENT 2

C1 C2 C3 C4 C5 C6 C7 C8

V7,V10 V1 V3 V2,V4 V9 V5 V6,V11 V8

TABLE V. OFFSPRING 1 BEFORE CONFLICT RESOLUTION

C1 C2 C3 C4 C5 C6 C7 C8

V1,V2 V7 V5,V8 V2,V4 V9 V5 V11 V10

TABLE VI. OFFSPRING 2 BEFORE CONFLICT RESOLUTION

C1 C2 C3 C4 C5 C6 C7 C8

V7,V10 V1 V3 V3 V4,V6 V9 V6,V11 V8

TABLE VII. OFFSPRING 1 AFTER CONFLICT RESOLUTION

C1 C2 C3 C4 C5 C6 C7 C8

V1 V2,V7 V8 V3,V4 V9 V5 V6,V11 V10

TABLE VIII. OFFSPRING 2 AFTER CONFLICT RESOLUTION

C1 C2 C3 C4 C5 C6 C7 C8

V7,V10 V1 V6 V3 V4 V2,V9 V11 V5,V8

and if it does not work then we go for the second one. The
first conflict resolution way is that we cancel the Section/Slot
assignment that came from the same parent and we allow the
new Section/Slot assignment coming from the other parent via
the swapping process. This type of conflict resolution might
fail because forcing a section’s exam to be scheduled in a
specific slot may violate exam scheduling constraints such as
a student having two exams in the same day and time or
exceeding the number of exams allowed for a student in a
given day. In this case, we follow the second conflict resolution
way in which we cancel the Section/Slot assignment that came
from the same parent and use the graph coloring algorithm to
schedule the section’s exam in an acceptable slot that does
not violate exam scheduling constraints. Notice that a new
problem results after crossover and before conflict resolution.
The problem is that few sections are missing from the offspring
chromosomes. V3 and V6 are missing from offspring 1 and V2

and V5 are missing from offspring 2. We resolve this issue by
calling the graph coloring routine after crossover is concluded
which assigns appropriate slots for the missing sections. The
new places for the missing sections are marked in blue color.
The crossover step is performed at line 9 of the code in
Algorithm 4. Tables VII and VIII show the final chromosomes
(schedules) after executing the conflict resolution process.

5) Mutation Operator: In the mutation step, we use a
mutation rate such that for each section we generate a random
number between 0 and 1 and if the number is less than or equal
to the mutation rate, then we cancel Section/Slot assignment.
After performing this step for all sections, we run the graph
coloring Algorithm 2 to find a slot for each section affected
by the previous step which results in creating new Section/Slot
assignments. Lines 10 and 11 carry out the mutation step.

6) Survival Selection: After crossover and mutation steps
are concluded, we have two offspring chromosomes that
represent valid exam schedules. So, we calculate the fitness

TABLE IX. CONFLICT RESOLUTION OF THE CONFLICTS AT
TABLES V, VI

Num Conflict Conflict Resolution 1 Conflict Resolution 2

V2 in C4 -unassign(V2,C1) -unassign(V2,C1)

Offspring 1 and C1 -assign(V2,C4) -graphcoloring()

-Result: Fail -Result: (V2,C2)

V5 in C6 -unassign(V5,C3)

Offspring 1 and C3 -assign(V5,C6) Not Needed

-Result: Success

V3 in C4 -unassign(V3,C3)

Offspring 2 and C3 -assign(V3,C4) Not Needed

-Result: Success

V6 in C5 -unassign(V6,C7) -unassign(V6,C7)

Offspring 2 and C7 -assign(V6,C5) -graphcoloring()

-Result: Fail -Result: (V6,C3)

Fig. 3. Degree distribution of nodes.

value for each of them. If the fitness value for a given
offspring chromosome happened to be less than the least fitness
value among population chromosomes, then the offspring
chromosome replaces that chromosome with the least fitness
value. In the cases where fitness value of the offspring does
not outperform any chromosome in the population, then the
offspring is discarded. Survival selection is realized at lines
12 and 13 of the code in Algorithm 4 .

V. EXPERIMENTS AND RESULTS

The algorithms we test in this section are as follows.
The first one is the original hybrid approach we explained
earlier (Original). The second one is a variation of the original
algorithm in which we remove the crossover step and rely only
on mutation (MutationOnly). The third one is the graph col-
oring algorithm (Graph). We implemented the aforementioned
algorithms in an exam scheduling software developed using
java language and MySQL database management system. The
fitness value measured in the experiments refers to the number
of students who have two exams in the same day throughout
the examination period. For more accurate results, we perform
50 runs and take the average of the output numbers.

The dataset we employ in our experiments [24] is a
new dataset that we propose for the research community.
The dataset contains complete registration information that

www.ijacsa.thesai.org 509 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

Fig. 4. Weight distribution for nodes.

Fig. 5. Convergence of techniques.

reflects the real scenario during the 2017/2018 second semester
in faculty of information technology at Isra University. Our
dataset contains 89 courses, 143 sections, 24 instructors, 686
students, and 25 halls. Our experiments assume that exams
take place during a span of 10 days such that each day
contains 13 overlapping morning time periods and 3 evening
time periods. In order to increase the degree of difficulty of
finding valid exam schedules, we take into consideration the
first and second exams and we exclude the final exams. This is
because there are classes held during the first and the second
exams, and therefore, the number of available halls in each
time period is considerably less than the number of available
halls during final exams which in turn makes scheduling
harder. The process of finding valid exam schedules becomes
more challenging when each section has common students
with many other sections (Degree Increase). The challenge
even escalates when the number of common students between
each two sections is higher (Weight Increase). Therefore, in
Fig. 3 and Fig. 4 we plot the degree distribution and weight
distribution for sections. This helps in giving the reader a
sense of the dataset under consideration. In Fig. 5, we aim to
find which technique generates better schedules (lower fitness
value). Here, we fix the number of generations at 500 and
mutation rate at 0.5 and population size at 200. We found that
the graph coloring technique is the worst because it depends
on a greedy approach and hence it cannot explore the whole
search space. On the other hand, both original and mutation

Fig. 6. Execution Time of techniques.

Fig. 7. Convergence speed for ’mutationOnly’ when population size increases

only techniques are able to find more optimized schedules
than graph coloring approach because of their genetic nature
that helps to cover more area of the search space. However,
looking back at the same Fig. 5, we notice that the mutation
only solution converges faster than the original approach. In
other words, the mutation only solution improves faster toward
finding more optimized schedules. Consequently, we conclude
that the mutation operator is more effective than the crossover
operator in progressing toward more optimized schedules. In
the second experiment illustrated in Fig. 6, we measure the
execution time (milliseconds) of the original and mutation only
techniques such that mutation rate is fixed at 0.5 and number of
generations is fixed at 1500. We noticed that original approach
is slower than the mutation only approach. This is due to the
fact that crossover might generate conflicts and consequently
time is spent to resolve those conflicts. This is why the
crossover operator takes more time than the mutation operator
that does not cause conflicts. Moreover, in the same figure
we vary population size between 20 and 200 and the result
shows that the execution time for both techniques increases
when population size increases because more time is needed
to generate the initial population. Also, both techniques require
iterating through solutions of the population which takes more
time as the population size increases. In the next experiment
in Fig. 7 we investigate the effect of increasing population
size (from 250 to 1000) on the speed of convergence for the
mutation only algorithm such that we fix the mutation rate
at 0.5 and number of generations at 1500. The figure shows
that when population size decreases the algorithm converges

www.ijacsa.thesai.org 510 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

Fig. 8. Execution time for ’mutationOnly’ when mutation rate increases.

Fig. 9. Convergence speed for ’mutationOnly’ when mutation rate increases.

faster. We noticed that when population size increases, the
algorithm still manages to find the best possible exam schedule.
However, it is interesting to point out that our experiments
show that the fastest convergence occurred when population
size equals to 1 which conforms with the result found in [19].
Next, we evaluate the effect of changing mutation rate on
convergence and execution time. Fig. 8 shows that execution
time increases when mutation rate increases which is the
result of increasing number of operations that cancels the
assignment of sections and makes scheduling decision for
them again. In the previous experiment, population size is
fixed at 200 and number of generations is fixed at 1500. We
use the same fixed values in Fig. 9 in which we notice that
increasing the mutation rate leads to faster convergence up
to a point where increasing mutation rate generates reversible
result (slower convergence). This actually makes sense because
when the mutation rate increases the difference between the
chromosomes before and after mutation becomes bigger. As a
consequence, the chromosome after mutation becomes a totally
new chromosome which would not preserve the quality genes
in the parents which defies the concept of evolution. In our
experiments, we obtained best results when mutation rate is
0.4. The previous set of experiments shows that combining
graph coloring and genetic algorithms is effective in finding
more optimized schedules. Also, the experiments indicate that
the crossover operator is a costly operator and it is not as
effective as the mutation operator.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hybrid approach that com-
bines graph coloring and genetic algorithms for finding more
optimized exam schedules. Our focus was to generate exam
schedules in which we minimize the total number of students
who have two exams in the same day. At the same time, we
increased the gap between consecutive student exams. This
helped in generating more comfortable exam schedule for
students. Also, several types of realistic exam scheduling con-
straints were taken into consideration. Moreover, we evaluated
our technique using realistic registration dataset. Our evalu-
ation showed that relying on mutation instead of crossover
leads to increased effectiveness and is not as computationally
expensive. The hybrid approach generates promising results
in terms of finding more optimized schedules that increase
student comfort throughout the examination period. We relied
on student comfort to measure the quality of schedules.by
minimizing the number of students who have two exams
in the same day. So, as a future work, we aim to expand
student comfort by adding more details such as increasing
the gap between exams for a given student. Moreover, we are
planning to investigate more measures for deciding the quality
of schedules and incorporate those measures in a realistic exam
scheduling tool such that the user can pick the measure he
needs.

REFERENCES

[1] R. Ganguli and S. Roy, “A study on course timetable scheduling using
graph coloring approach,” international journal of computational and
applied mathematics, vol. 12, no. 2, pp. 469–485, 2017.

[2] S. Saharan and R. Kumar, “Graph coloring based optimized algorithm
for resource utilization in examination scheduling,” Applied Mathemat-
ics and Information Sciences, vol. 10, no. 3, pp. 1193–1201, May 2016.

[3] N. G. N. Anand Nayyar, Dac-Nhuong Le, Advances in Swarm Intelli-
gence for Optimizing Problems in Computer Science. Chapman and
Hall/CRC, 2018.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[5] N. M. Gandhi and R. Misra, “Performance comparison of parallel graph
coloring algorithms on bsp model using hadoop,” in 2015 International
Conference on Computing, Networking and Communications (ICNC),
Feb 2015, pp. 110–116.

[6] H. T. Dao and S. Kim, “Vertex graph-coloring-based pilot assignment
with location-based channel estimation for massive mimo systems,”
IEEE Access, vol. 6, pp. 4599–4607, 2018.

[7] B. Hardy, R. Lewis, and J. Thompson, “Tackling the edge dynamic
graph colouring problem with and without future adjacency informa-
tion,” Journal of Heuristics, vol. 24, no. 3, pp. 321–343, Jun 2018.

[8] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Effective and effi-
cient dynamic graph coloring,” Proceedings of the VLDB Endowment,
vol. 11, no. 3, pp. 338–351, Nov. 2017.

[9] H. Patidar and D. P. Chakrabarti, “A novel edge cover based graph col-
oring algorithm,” International Journal of Advanced Computer Science
and Applications, vol. 8, no. 5, 2017.

[10] I. Ashiru, C. Czarnecki, and T. Routen, “Characteristics of a genetic
based approach to path planning for mobile robots,” Journal of Network
and Computer Applications, vol. 19, no. 2, pp. 149–169, 1996.

[11] J. Oh and C. Wu, “Genetic-algorithm-based real-time task scheduling
with multiple goals,” Journal of Systems and Software, vol. 71, no. 3,
pp. 245–258, 2004, computer Systems.

[12] C. Kalayci and A. Gungor, “A genetic algorithm based examination
timetabling model focusing on student success for the case of the college
of engineering at pamukkale university, turkey,” Gazi University Journal
of Science, vol. 25, pp. 137 – 153, 2011.

www.ijacsa.thesai.org 511 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 3, 2019

[13] M. Saidi-Mehrabad and S. Bairamzadeh, “Design of a hybrid genetic
algorithm for parallel machines scheduling to minimize job tardiness
and machine deteriorating costs with deteriorating jobs in a batched
delivery system,” Journal of Optimization in Industrial Engineering,
vol. 11, no. 1, pp. 35–50, 2018.

[14] R. L. Kadri and F. F. Boctor, “An efficient genetic algorithm to solve
the resource-constrained project scheduling problem with transfer times:
The single mode case,” European Journal of Operational Research, vol.
265, no. 2, pp. 454 – 462, 2018.

[15] K. Kaur, N. Kaur, and K. Kaur, “A novel context and load-aware
family genetic algorithm based task scheduling in cloud computing,”
in Data Engineering and Intelligent Computing. Singapore: Springer
Singapore, 2018, pp. 521–531.

[16] M. A. Mohammed, M. K. A. Ghani, R. I. Hamed, S. A. Mostafa,
M. S. Ahmad, and D. A. Ibrahim, “Solving vehicle routing problem
by using improved genetic algorithm for optimal solution,” Journal of
Computational Science, vol. 21, pp. 255 – 262, 2017.

[17] M. R. Mirsaleh and M. R. Meybodi, “A michigan memetic algorithm for
solving the vertex coloring problem,” Journal of Computational Science,
vol. 24, pp. 389 – 401, 2018.

[18] S. M. Douiri and S. Elbernoussi, “Solving the graph coloring problem
via hybrid genetic algorithms,” Journal of King Saud University -
Engineering Sciences, vol. 27, no. 1, pp. 114 – 118, 2015.

[19] A. Eiben, J. van der Hauw, and J. van Hemert, “Graph coloring with
adaptive evolutionary algorithms,” Journal of Heuristics, vol. 4, no. 1,
pp. 25–46, Jun 1998.

[20] C. A. Glass and A. Prügel-Bennett, “Genetic algorithm for graph
coloring: Exploration of galinier and hao’s algorithm,” Journal of
Combinatorial Optimization, vol. 7, no. 3, pp. 229–236, Sep 2003.

[21] Z. Kokosiński, M. Kołodziej, and K. Kwarciany, “Parallel genetic
algorithm for graph coloring problem,” in Computational Science -
ICCS 2004. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 215–222.

[22] M. Hindi and R. V. Yampolskiy, “Genetic algorithm applied to the
graph coloring problem,” in Proceedings of the 23rd Midwest Artificial
Intelligence and Cognitive Science Conference, 2012, pp. 60–66.

[23] W. Erben, “A grouping genetic algorithm for graph colouring and exam
timetabling,” in Practice and Theory of Automated Timetabling III.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 132–156.

[24] [dataset] Osama Al-Haj Hassan, “Student registration dataset of faculty
of information technology at isra university, amman, jordan, mendeley
data, v1,” 2018.

www.ijacsa.thesai.org 512 | P a g e


	Introduction
	Contribution

	Related Work
	Graph Coloring
	Genetic Algorithms
	Hybrid Graph Coloring and Genetic Algorithms

	Problem Definition
	Slot and Color Definition
	Graph Coloring for Exam Scheduling
	Genetic Algorithms for Exam Scheduling

	The Hybrid approach
	Day Index and Time Period Index
	Section List Ordering
	The Graph Coloring Part
	The Hybrid Part
	Fitness Value
	Population Generation
	Parent Selection
	Crossover Operator
	Mutation Operator
	Survival Selection


	Experiments and Results
	Conclusion and Future Work
	References

