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Abstract—In the automatic classification of colored natural 

textures, the idea of proposing methods that reflect human 

perception arouses the enthusiasm of researchers in the field of 

image processing and computer vision. Therefore, the color space 

and the methods of analysis of color and texture, must be 

discriminating to correspond to the human vision. Rock images 

are a typical example of natural images and their analysis is of 

major importance in the rock industry. In this paper, we 

combine the statistical (Local Binary Pattern (LBP) with Hue 

Saturation Value (HSV) and Red Green Blue (RGB) color spaces 

fusion) and frequency (Gabor filter and Discrete Cosine 

Transform (DCT)) descriptors named respectively Gabor 

Adjacent Local Binary Pattern Color Space Fusion (G-

ALBPCSF) and DCT Adjacent Local Binary Pattern Color 

Space Fusion (D-ALBPCSF) for the extraction of visual textural 

and colorimetric features from direct view images of rocks. The 

textural images from the two G-ALBPCSF and D-ALBPCSF 

approaches are evaluated through similarity metrics such as 

Chi2 and the intersection of histograms that we have adapted to 

color histograms.  The results obtained allowed us to highlight 

the discrimination of the rock classes. The proposed extraction 

method provides better classification results for various direct 

view rock texture images. Then it is validated by a confusion 

matrix giving a low error rate of 0.8% of classification. 

Keywords—Rock; classification; G-ALBPCSF; D-ALBPCSF; 

LBP; gabor; DCT; RGB; HSV; color texture 

I. INTRODUCTION 

In general, the classification and characterization of rocks 
are done visually following a long process by geologists and 
mineralogists with many years of experience or through by 
laboratory tests [1]. Therefore, this so-called manual 
classification takes time and seems approximate and 
subjective. However, the automatic classification of rocks 
could be beneficial and bridge this gap. Today, the analysis 
and automatic classification of color textures has become one 
of the areas of active search for shape recognition and 
computer vision. Several fields of application are covered; let 
us mention: biomedical [2], facial recognition [3], 
classification of rocks [4-14]. The automatic classification of 
rocks is a challenge in the field of image processing with an 
interest in geologists, universities and specific schools that 

study rocks and also these applications in construction (roads, 
buildings, monuments). This is mainly related to the complex 
nature of the rocks that make those natural textures are not 
homogeneous, directional natural textures with very different 
granularity and color properties, making their classification 
very difficult. In this classification, the physiological 
perception of texture and color is very important. Therefore, 
the color space and texture / color analysis methods to be 
used, must be chosen to match human vision. A good 
classification always starts from discriminating methods of 
extraction of texture / color characteristics that are robust to 
noise, rotation and change of illumination. Typically, the 
feature extraction process for texture analysis involves 
statistical, structural, and multiscale methods. However, 
statistical and multiscale (frequency) approaches for feature 
extraction are becoming more popular using co-occurrence 
matrices, histograms, Gabor filters, and various LBP 
enhancements with exponential use for facial detection [3]. 
All these characteristics are derived from the measurement of 
attributes such as energy, contrast, entropy. Then, they are 
used by various classification and indexing algorithms such as 
K nearest neighbors (K-NN) [5, 8], Boosting algorithms 
(LPBoosting) [6], Support Vector Machine (SVM) [7, 9], 
Artificial Neural Networks (ANN) [8, 10], Maximum 
Likelihood (MV) [11] and K-means [21] to result in a better 
classification. In general, the extraction techniques focus on 
three forms of analysis of visual attribute: spectral analysis, 
radiometric analysis and textural analysis in the joint or 
separate use of color and texture. In [10], Ishikawa and 
Virginia in 2013, based on these visual attributes (texture and 
color) and Raman spectroscopy, were able to differentiate 
minerals in igneous rocks from networks of neurons through 
the analyze of spectral signature of minerals. However, 
although the classification of minerals has been largely 
successful, it is difficult to apply the same methods to all rocks 
because the spectra may have a combination of signature 
concurrent. In addition, some minerals that were under-
represented with their method, were well identified with 
radiometric and textural analyzes. In [12], Blake et al. (2012), 
using X-ray diffraction, required rock samples to be collected 
and pulverized before chemical analysis. In [9], Galdames et 
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al. (2017), based on a textural and colorimetric analysis with 
3D Laser Range-based features, made a lithological 
classification to determine the approximate mineralogical 
composition of rocks. A method for identifying the texture of 
different basalts in RGB or grayscale images using neural 
networks has been introduced by Singh et al. (2010) [13]. In 
[7], Bianconi et al. (2012) presented a classification system for 
granite tiles incorporating textural and color features. They 
tested different characteristics and the best performance was 
obtained with the co-occurrence matrices. A method for 
classifying limestone types using features based on color 
image histograms and a probabilistic neural network has been 
introduced in [14]. Lepisto et al. (2005) [5], succeeded in 
classifying rocks with textural and colorimetric analysis of 
visual attributes by applying Gabor filters in different color 
channels independently. In this study, it has been shown that it 
is possible to improve the classification of natural rock images 
by combining the color information with the description of the 
texture. It is known that rock images are rich in texture and 
color information. Despite these cited works, the classification 
of rock texture images remains a real challenge for the image 
processing scientific community. In recent times, the texture 
analysis community has developed a variety of different 
descriptors for the effective capture of textural information for 
representation and analysis. Local Binary Pattern (LBP) [15] 
is one of the best texture descriptors for extracting local 
texture information and has been used in various applications 
such as face recognition [3] and rock classification [ 4]. In [4], 
the performance of LBP, Coordinated Cluster Representation 
(CCR) and Improved Local Binary Pattern (ILBP) are 
measured for the classification of granite textures by 
evaluating the robustness against the rotation of these different 
LBP descriptors. In 2003, Lepisto et al [16] improved the 
classification result with the application of K-NN by 
combining the color information in the HSI space and the 
extraction of the texture of the rocks by the Gabor filters. The 
HSI space proved better for this study. Over the past decade, 
various original LBP extensions have been proposed for 
classification performance. Attention has been focused on 
Gabor filters and the LBP operator fusion. Thus Zhang et al. 
[17] introduced the Local Gabor-based Binary Pattern 
Histogram Sequence (LGBPHS) by combining LBP and 
Gabor to enhance the discriminative capacity of LBP 
descriptors. For the same reasons, Shan et al. [18] proposed 
Local Gabor Binary Patterns (LGBP) in face recognition. In 
2013, Zhihua Xie in [19] showed that integrating global and 
local characteristics into facial recognition improved 
performance by comparing the DCT method to the new 
LGBPH classification method. However, these texture 
representation methods [17-19] do not consider, on the one 
hand, the color information in the texture and, on the other 
hand, its spatial representation in the texture and until now 
have not yet has been applied to our knowledge to the textures 
of rock direct view images. To overcome these problems, we 
propose in this paper two new color texture descriptors that 
consists in extending LBP color (ALBPCSF) [20] to Gabor 
Adjacent Local Binary Pattern Color Space Fusion (G-
ALBPCSF) by introducing before and impressively the 
filtering multi-orientation and multi-scale Gabor. And then the 
DCT Adjacent Local Binary Pattern Color Space Fusion (D-

ALBPCSF) compared to the color LBP considering spatial 
structure relationships and color characteristics. This paper is 
organized as follows. Section II refers to previous work on 
LBP and its merger with Gabor. In section III, we will present 
the proposed new approach. Finally, the experimental results 
obtained by the two strategies of our new approach are 
compared to the different methods used. In section IV, our 
results will be discussed, and then we end with section V with 
the conclusion and the perspectives. 

II. PREVIOUS WORK ON THE LBP AND ITS MERGER WITH 

GABOR 

In this section, a summary of the LBP algorithms is first 
presented as well as its merger with Gabor. 

A. Brief Review of Original LBP 

A common strategy for detecting textures in images is to 
consider local patches that describe the behavior of the texture 
around a group of pixels. One of the descriptors that follows 
this strategy is the LBP descriptor. The LBP operator 
introduced by Ojala et al. [22] is an effective element of 
texture description with its discriminating power and 
simplicity of calculation. As shown in Fig. 1, the operator 
labels the pixels of an image with decimal numbers, called 
local bit patterns or LBP codes, which encodes the local 
structure around each central pixel defined as the threshold for 
the 3x3 neighborhood. Then each pixel is compared to its 
eight neighbors by subtracting the value of the central pixel 
from that of each of these neighbors. The resulting strictly 
negative values are coded with 0 and the others with 1. 
Finally, a binary number is obtained by concatenating all the 
pixels in the direction of the hand of a watch. The decimal 
value is used for labeling. This process can be expressed 
mathematically as follows: 
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where cp is the gray value of the central pixel, ip  is the 

gray value of the neighboring pixels, P is the number of 
neighboring pixels on the circle, R is the radius of the 
neighborhood circle. 

Then primitive extensions considering neighborhoods of 
different sizes, use of circular neighborhoods, bilinear 
interpolation of pixel values, and use of uniform patterns are 
used to estimate pixels that are not exactly in the center pixels: 
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LBP and LBP  are respectively invariant by rotation of 

LBP and invariant by uniform rotation of LBP. These two 
improved LBP operators have been proposed by Ojala et al. in 
2002 [15]. 

 

Fig. 1. Example of the Coding Process of the Standard LBP Operator. 
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Fig. 2. An Example of an Original Image of Granodiorite (a), Its Image LBP 

(b), Its Image ALBPCSF (c) (The 3 Superimposed), the Histogram of the 
Image LBP (d) and the Histogram ALBPCSF (e). 

After completing this coding step for the LBP operators, 
the histogram of these two variants can be created based on 
the following equation: 
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where i is the gray level number i, 
i

H is the number of 

pixels in the image with i as the gray level and n is the number 
of different labels produced by the LBP operators. Other 
extensions and variants of the LBP operator followed (see Fig. 
2) one another with better performances in the extraction of 
textures, especially for the classification of facial images but 
will not be treated in this article. However, an exhaustive 
review of these LBP color and grayscale descriptors is done in 
[23, 24] for all readers interested in this descriptor which has 
gained an exponential popularity over the past ten years [2-4, 
9, 15, 17 -20, 23, 24]. 

B. Gabor Filter Combined with LBP 

To increase the applicability of the LBP operator, 
modifications of it have been proposed. For example, Zhang et 
al. [17] proposed the extraction of LBP characteristics from 
images obtained by filtering a facial image with 40 Gabor 
filters at different scales and orientations with remarkable 
results. In [9], the LBP operator was computed on color 
texture images transformed into the HSV color space after 
applying Gabor filters on each of the three channels 
independently.  In this same logic, we merge the two RGB and 
HSV color spaces by putting in the first line the relation 
between the spatial structure and the color characteristics as in 
[20]. 

III. PROPOSED APPROACHES 

Inspired in part by the remarkable achievements obtained 
by combining Gabor's features with the LBP operator, we 
propose in this paper two new feature extraction algorithms, 
the first of which is named Gabor Adjacent Local Binary 
Pattern color space Fusion (G-ALBPCSF) and the second 
DCT Adjacent Local Binary Pattern Color Space Fusion (D-
ALBPCSF). Indeed, the main interest of the combination of 
the first strategy, that is G-ALBPCSF compared to the original 
LBP lies in its ability to model the local characteristics of 
various orientations and scales provided by the transformation 
of Gabor and the likely consideration of color information. In 
G-ALBPCSF, the LBP operator applied on the different 
channels of the RGB and HSV color spaces, is built on the 
amplitudes of the Gabor filtered image rather than on the 
intensity of the original image. This coding makes it possible 
to exploit multi-resolution information and multi-orientations 
between the pixels, while being robust to the changes of 
illuminations. Then the second strategy named D_ALBPCSF, 
another extraction algorithm that combines the characteristics 
of the DCT and those of LBPcolor (ALBPCSF) to extract the 
capital information from the rocks. 

A. Extraction of Characteristics by Gabor Filters 

Gabor multi-resolution and multi-scale filters are 
frequency filters, located in space and with orientations 
convenient for the extraction and detection of contours. They 
are applied for decomposing input images for the sequential 
extraction of characteristics by changing two characteristic 
parameters that are: frequency and orientation. The Gabor 
filters for calculating quantities such as amplitude and phase 
[9] are defined by equation (3): 
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the orientations and the scales of the Gabor filters used. 

Gabor's transformation of an image that can be called a 
Gabor image is defined as the convolution of the original 

image  ,I x y  with the Gabor  ,
,

v
x y


  filters: 

, ,( , ) ( , ) ( , ) (4)G x y I x y x y    
            (4) 

The Gabor transformation is a complex function, and can 

be separated into amplitude  ,
,

v
A x y


 and phase  ,
,

v
x y


  

and thus can be rewritten as follows: 

, , ,( , ) exp( ( , )) (5)G x y A i x y     
              (5) 
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Equation (5) is a complex representation of the Gabor 
transformation of the image and from this transformation a 
feature vector is created (amplitude, phase). 
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It should be remembered that since the information phase 
varies over time (therefore very sensitive), in general, only the 
amplitude is explored. Thus, for each Gabor filter, an 
amplitude value is calculated at each position of the pixel, 
giving a total of 40 amplitudes corresponding to 5 scales and 8 
orientations. Fig. 3 shows an image of granite and other 
images of the same size called Gabor images whose 
characteristics: amplitude and phase were extracted for two 
wavelengths and four orientations (16 Gabor images of which 
4 are identical so 12 have been represented). 

These images clearly show, on the one hand, that the 
texture information is perceptible and better represented in the 
Gabor amplitude images, and on the other hand they show that 
whatever the orientation and / or the scale, the granularity and 
the structure remain the most important elements and differ 
significantly from those shown by LBP images (Fig. 3). 
However, we summarize that Gabor filters transform a given 
image in only three directions: vertical (0 ° or 180 °), 
horizontal (90 °) and diagonal (45 ° and 135 °). 

B. Extraction of Characteristics by ALBPCSF 

To improve the information in the amplitudes, we code the 
values of the amplitudes of Gabor by the operator ALBPCSF. 
In G-ALBPCSF, the ALBPCSF operator is driven on the 
amplitudes produced by the multi-resolution and multi-scale 
Gabor filters rather than on the intensities of the original 
images. The LBP operator uses the comparison between the 
central pixel and its eight neighbors in a 3 * 3 neighbor and 
their combination with the Gabor images thus exploiting the 
links between the pixels for several resolutions and 
orientations has proved to be very robust to enlightenment and 
change of scale [17]. Fig. 5 illustrates this combination well. It 
shows the application of ALBPCSF on five Gabor amplitude 
images for two different frequencies (λ = 4 for the images of 
the first line and λ = 8 for the images of the second line) and 
five orientations. Fig. 4 shows that the Gabor filters are more 
informative in the diagonal direction (45° and 135°) and 
confirms the directional structure of the studied rock. 

C. Combination of ALBPCSF with DCT for Extraction of 

Characteristics 

Discrete Cosine Transform (DCT) is a popular technique 
for imaging and compressing still images and video that 
transforms spatial representation signals into a frequency 
representation. As we know, a large amount of information 
about the original image is stored in a relatively small number 
of coefficients (in the upper left corresponding to the DCT 
components at low spatial frequencies of the image) in the 
image center of Fig. 5. This region contains most of the 
information, energy, and useful features of the image. 

 

Fig. 3. Examples of an Image Filtered by Four different Gabor Filters: (a1), 

(a2), (a3), (a'1), (a'2) and (a'3) are the different Images of Amplitudes and 

(b1), (b2), (b3), (b'1), (b'2) and (b'3) are the Images of the Gabor Phases for 

Two Wavelengths λ = 4 and λ = 8. 

 

Fig. 4. Gabor_ALBPCSF Image of the Original Granite5E Image for λ = 4 

(Top) and λ = 8 (Bottom) and for different Orientations (0 °, 45 °, 90 °, 135 °, 

180 °). 

 

Fig. 5. DCT Image (Middle) of the Original Granite5E Image (Left) and its 

Combination with ALBPCSF (Right). 

For a digital image ( , )f x y  of resolution M N , its 

two-dimensional DCT is defined as follows [19]: 
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Where, x and y are the spatial coordinates of the pixels of 
the image; i and j are the coordinates of the DCT coefficients 

of the pixels.  ,A i j  is the result of the DCT.    a i and a j  is 

defined as follows: 
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However, the performances of the DCT or the LBP taken 
independently show some insufficient. In [19], the 
combination of DCT with LGBPH on an ENT database 
showed better results compared to LGBPH applied alone. In 
this section, we propose a new algorithm for extracting rock 
texture features named D-ALBPCSF by combining the DCT 
and ALBPCSF to consider the color information in addition to 
the advantages already mentioned above. First, the DCT is 
performed on direct images of rock. Then we select some 
useful low frequency DCT coefficients to extract the overall 
characteristics of the rock texture images. In addition, the 
LBPcolor operator (more precisely ALBPCSF) is executed on 
these DCT characteristics of rock textures to now extract the 
local characteristics with high frequencies (see image on the 
far right in Fig. 5 above). As we know, the analysis of the 
existing has shown that using a combination of several 
classifiers of different types can improve the performance of 
the classification [5]. Indeed, descriptors based on global 
characteristics can contribute to a discriminant capacity 
complementary to descriptors based on local characteristics in 
the recognition of rocks [9]. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section we will analyze and comment on the results 
of our experiments. The selected direct view rock images 
shown in Fig. 6 below are images from our designed database. 
This database contains 160 images of magmatic and 
metamorphic rocks textures. These images have been grouped 
into eight classes (from class 1 to class 8). These 256x256 
resolution images, encoded on eight bits by colorimetric 
component, present textures that are not homogeneous and 
often show significant differences in directionality, granularity 
and color within a given class. Thanks to these texture and 
color characteristics, the original images were subjectively 
grouped into eight classes by a geology expert. 

A. Averages and Standard Deviation of Gabor and DCT 

Coefficients 

In our study, because of the directionality present in the 
rock textures, the Gabor filters were applied on these textures. 
Then, first-order (mean), second-order (standard deviation) 
were computed on Gabor amplitudes and DCT coefficients, 
then those of Gabor and DCT combined with ALBPCSF in the 
different channels. color. Indeed, the calculated average 
characterizes the luminous intensity of the energies in the 
image whereas the standard deviation characterizes the 
variation of the average intensity of all the pixels and 
corresponds to the changes of contrast of the image. The 
results are recorded in the tables below. 

The analysis of the statistical characteristics used in this 
work such as average and the standard deviation of the DCT 
coefficients and Gabor amplitudes for an orientation and a 
scale (lambda = 4, theta = 135°) indicated in Tables I to VIII 
shows that magmatic rocks have higher intensity rate than 
metamorphic rocks. These high intensity rate in magmatic 
rocks indicate that these rocks have a grainy texture and 
crystallize at higher temperatures and pressures than 
metamorphic rocks. Magmatic rocks are characterized by 
strong energies. However, shale, eclogite, and corneal 
metamorphic rocks have intensities comparable to those of 
magmatic rocks when DCT coefficients and Gabor amplitudes 
are used individually, indicating a lack of such approaches. 

 

Fig. 6. Examples of the Eight different Classes of Rock Images. 

TABLE I. AVERAGE GABOR AMPLITUDE COEFFICIENTS 

 Average of the coefficients of Gabor amplitudes calculated for different rocks, Lambda = 4, theta = 135° 

 Schiste Gabbro Granodiorite Granite Eclogite Migmatite Corneal Cipolin 

(R,V) 65.3018 46.945 55.5565 57.9142 44.8483 42.2141 57.9337 42.2962 

(G,V) 65.4266 45.9711 55.5565 57.9107 44.7356 42.4674 57.9511 42.8727 

(B,V) 65.4139 50.1033 55.5565 57.9674 44.7492 42.5286 57.9884 43.7508 

TABLE II. AVERAGES OF GABOR_ALBPCSF AMPLITUDE COEFFICIENTS 

 Mean coefficients of Gabor_ALBPCSF amplitudes calculated for different rocks, Lambda = 4, theta = 135° 

 Gabbro Granodiorite Granite Eclogite Migmatite Schiste Corneal   Cipolin 

(R,V) 16.2430 21.4266 15.4365 7.1122 7.8196 6.0078 6.0311 1.3431 

(G,V) 15.3746 21.4266 15.4598 7.0253 7.9517 6.0249 6.0753 1.4434 

(B,V) 18.3144 21.4266 15.5244 6.9742 7.9593 5.9887 6.0438 1.4487 
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TABLE III. AVERAGES OF THE DCT COEFFICIENTS 

 Averages of the DCT coefficients calculated for different rocks 

 Schiste Gabbro Granodiorite Granite Eclogite Migmatite Corneal Cipolin 

(R,V) 13.7518 13.2398 10.7357 8.5716 8.8443 8.0340 6.7993 5.6949 

(G,V) 13.7803 12.8244 10.7357 8.5775 8.7991 8.1157 6.8064 5.8441 

(B,V) 13.8325 13.8325 10.7357 8.6141 8.8009 8.1050 6.8198 5.9921 

TABLE IV. AVERAGES OF THE DCT_LBP COEFFICIENTS 

 Averages of the DCT_LBP coefficients calculated for different rocks 

 Gabbro Granodiorite Granite Eclogite Migmatite Schiste Corneal Cipolin 

(R,V) 7.2281 5.361 1.797 1.4901 1.1892 0.6873 0.479 0.3811 

(G,V) 6.7981 5.361 1.7917 1.4537 1.2444 0.6986 0.4772 0.4472 

(B,V) 7.379 5.361 1.8362 1.4636 1.2459 0.7399 0.4808 0.5074 

TABLE V. STANDARD DEVIATION OF GABOR AMPLITUDE COEFFICIENTS ON ORIGINAL IMAGES 

 Mean standard deviations of Gabor coefficients calculated for different rocks, Lambda = 4, Theta = 135 ° 

 Schiste Gabbro Granodiorite Granite Eclogite Migmatite Corneal Cipolin 

(R, V) 36.2668 28.2244 33.5475 35.0280 27.5958 29.0953 34.2396 28.0670 

(G, V) 36.3339 27.9218 33.5475 35.0924 27.6712 29.3490 34.2445 28.6090 

(B,V) 36.3649 30.3900 33.5475 35.0512 27.6677 29.3802 34.2505 28.8726 

TABLE VI. STANDARD DEVIATION OF THE COEFFICIENTS OF AMPLITUDES OF GABOR_ALBPCSF (G-ALBPCSF) 

 Mean standard deviations of G-ALBPCSF coefficients calculated for different rocks, Lambda = 4, Theta = 135 ° 

 Schiste Gab bro Granodiorite Granite Eclo gite Migmatite Corneal Cipolin 

(R, V) 27.7572 44.4104 50.9072 43.7388 28.1538 31.2973 26.5383 12.9097 

(G, V) 27.7616 43.1394 50.9072 43.7826 27.9202 31.5429 26.6805 13.3843 

(B,V) 27.6069 46.5493 50.9072 43.8905 27.8314 31.4801 26.6287 13.3801 

TABLE VII. STANDARD DEVIATION OF THE DCT COEFFICIENTS ON THE ORIGINAL IMAGES 

 Mean standard deviations of the DCT coefficients calculated for different rocks 

 Schiste Gab bro Granodiorite Granite Eclo gite Migmatite Corneal Cipolin 

(R, V) 21.8199 27.2926 26.2376 20.0985 20.8450 19.4737 16.2005 15.5525 

(G, V) 21.8907 25.7220 26.2376 20.1102 20.6854 19.8264 16.2257 16.3226 

(B,V) 22.1734 26.5375 26.2376 20.3104 20.7362 19.7837 16.2660 17.0531 

TABLE VIII. ECART-TYPE DES COEFFICIENTS DCT_ALBPCSF (D-ALBPCSF) 

 Mean standard deviations of D-ALBPCSF coefficients calculated for different rocks 

 Schiste Gab bro Granodiorite Granite Eclo gite Migmatite Corneal Cipolin 

(R, V) 7.9382 28.0933 24.6956 13.9308 12.2155 11.0881 6.2382 5.9663 

(G, V) 8.0066 27.1244 24.6956 13.9060 12.0336 11.3821 6.4121 6.6028 

(B,V) 8.2811 28.2027 24.6956 14.1372 12.1098 11.3792 6.4332 7.0632 
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However, the analysis of the means and the standard 
deviations of the G-ALBPCSF and D-ALBPCSF coefficients 
calculated from the combinations of the approaches for these 
same rocks show a good categorization of the rocks: 

 Magmatic rocks with higher intensity rate 

 Metamorphic rocks with lower intensity rate than those 
of magmatic rocks. 

These analyzes show that the approach combinations D-
ALBPCSF and G-ALBPCSF make it possible to better 
categorize the rocks, unlike the information with Gabor and 
DCT taken individually. However, the reflection that this raise 
is up to what threshold value or limit, we can consider that the 
average characteristics corresponds to that of a rock belonging 
to a given class? 

B. Comparison D-ALBPCSF and G-ALBPCSF based on the 

Measurements of Similarity of Intersection of Histograms 

and chi 2 

There are several frequently used metrics for measuring 
similarity between two histograms for comparing textures. 
These metrics calculate the distance between the characteristic 
vectors. In this study, we use the intersection of the histograms 
and the distance of the Chi 2 defined respectively in equations 
(8) and (9) below and will allow to compare the efficiency of 
these two types of characteristics described in Section 3 a little 
higher. 

2
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where 
i

h  are the histograms of the samples of the images 

of the rocks to be compared. Rock samples can be said to be 
similar by matching their characteristic histograms (color and / 
or texture) and when the value obtained is closer to 0 if not 

there is no similarity. The same process is followed for Chi2. 
The results with both metrics show good trends with very low 
values with the χ2. Values between 0 and 1 show that the 
histograms have been normalized. However, the HI and χ2 
applications have better results in terms of similarity between 
the rocks with the combination D-ALBPCSF compared to G-
ALBPCSF and the other methods used. This shows that the 
characteristics extracted by the DCT are practically common 
to all rocks of the same class and show a strong correlation 
between the rocks of the same class. Tables IX and X show 
the results of these first experiments. 

In this work, we will manly exploit he intersection metric 
of the histograms with the LBP and D_ALBPCSF approaches 
given that these approaches make it easier to appreciate the 
similarity with respect to G_ALBPCSF (see Tables XI and 
XII). 

The analysis of these two methods shows that some 
metamorphic rocks (migmatite, eclogite, cornea, ...) are like 
each other and to some magmatic rocks (granite, gabbro, ...). 
This can be justified by the fact that they have magmatic 
origins since genesis as it is the case for eclogite for example. 
The G-ALBPCSF strategy will be especially exploited in our 
future work. The results are shown in Fig. 7. 

 

Fig. 7. Intersection of Histograms of Rocks with LBP and D_ALBPCSF. 

TABLE IX. MEAN VALUES OF HI FOR THE DIFFERENT METHODS USED 

 Mean HI values of the different methods used 

Rocks ImagRGB LBP ALBPCSF DALBPCSF GALBPCSF 

Schiste 0.4375 0.0977 0.2822 0.0122 0.2422 

Granite 0.6737 0.2188 0.3847 0.0143 0.2665 

Ciprolin 0.6678 0.2663 0.3945 0.0077 0.5534 

Eclogite 0.9283 0.3756 0.5696 0.0799 0.5673 

Granodiorite 0.0635 0.0577 0.041 0.0359 0.0843 

Migmatite 0.5690 0.2199 0.3805 0.0137 0.3492 

Gabbro 0.7345 0.3358 0.4689 0.0764 0.6444 

Corneal 0.5457 0.194 0.3680 0.0096 0.3918 
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TABLE X. AVERAGE VALUES OF Χ2 OF THE DIFFERENT METHODS USED 

 Average values of χ2 of the different methods used 

Rocks ImagRGB LBP     ALBPCSF DALBPCSF GALBPCSF 

Schiste 25,2.10-4 3,59.10-4 14,5.10-4 0,62710-4 10,278.10-4 

Granite 44.10-4 7,75.10-4 20,4.10-4 0,62710-4 11,5610-4 

Ciprolin 53.10-4 13.10-4 14,25.10-4 0,3229.10-4 33.10-4 

Eclogite 71.10-4 13,5.10-4 36.10-4 1,4872.10-4 30,25.10-4 

Granodiorite 1,02.10-4 0,44.10-4 0,220.10-4 0,3971.10-4 0,9283.10-4 

Migmatite 33,2.10-4 9,014.10-4 20,6.10-4 0,4892.10-4 17.10-4 

Gabbro 52,8.10-4 19.10-4 28,6.10-4 2,7523.10-4 44,8.10-4 

Corneal 31,6.10-4 7,47.10-4 19,2.10-4 0,3398.10-4 20,8.10-4 

The figure shows a good similarity between the rocks of 
the same class and the D_ALBPCSF method showing the 
relevance of our proposed method compared to the existing 
LBP method. 

C. Matrix of Confusion 

A confusion matrix (Table XIII) was performed with the 
D_ALBPCSF method discussed in Section 3.2 above, to show 
the relevance of this method. The effectiveness of the latter is 
evaluated with the selection of five images of each rock class 
(8 classes), i.e. 48 images in total for a classification of 320 
crossings. For this experiment, the sensitivity (recall), 
specificity, accuracy and error rate of which the equations are 
described below and noted respectively (10), (11), (12) and 
(13) are performance indicators that were chosen to approve 
the effectiveness of the proposed method and that were also 
used by Vivek and Audithan in 2014 [6].  Sensitivity is the 
quality of a class. It indicates the likelihood of a rock to 
belong to the class knowing that it should belong to it, more 
simply it is the rate of true positives. Specificity indicates, for 
its part, the probability that a rock does not belong to its class 
appropriately, it is the rate of true negatives while the rate of 
errors corresponds to the general quality of the model. 
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           (13) 

where VP: True Positive, FP: False Positive; VN: True 
Negative; FN: False Negative. Here the definitions of the 
terms assume that one rock is like another if the value of the 
intersection of their histogram is the lowest. As a result, a true 
positive is a rock that belongs to a class and whose average 

value of the histogram intersections is the smallest. The false 
positive is a rock that does not belong to a class but has the 
average value of the smallest inter-sections of histograms. The 
false negative is a rock that does not belong to a class and 
does not have the smallest average value of the histogram 
intersections. The true negative is a non-class rock that does 
not have the smallest value of the histogram intersections. 

Both methods give similar performance at first sight from 
a general analysis of performance indicators such as 
sensitivity, specificity and accuracy. However, with a 
misclassification rate of almost 8% with both the LBP and 
D_ALBPCSF methods for the 5 classes of metamorphic rocks, 
the proposed method classifies magmatic rocks better with an 
error rate of 0.8% against 3.3% for the LBP method. These 
results show a slightly better performance of our method 
compared to LBP (see Fig. 8). This is consistent with the 
observation that can be made of these rock texture images. For 
images of magmatic rocks, we notice that the texture and the 
color in these images are somewhat regular in their spatial 
representation, unlike the case of certain metamorphic rocks 
where there is no homogeneity in the spatial representation of 
the tex. and color (examples of eclogite and migmatite). The 
color texture combination in the rock study has been 
beneficial for their identification. 

As a result, the local and global characteristics used in this 
study for their extraction have been very useful. 

 

Fig. 8. Precision and Recall of LBP and D_ALBPCSF Methods. 

0%

20%

40%

60%

80%

100%

Precision Recall

P
er

ce
n

ta
ge

 %
 

Precision and recall percentage of LBP and 
D_ALBPCSF 

LBP

D_ALBPCSF



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

9 | P a g e  

www.ijacsa.thesai.org 

TABLE XI. CONFUSION MATRIX WITH THE D_ALBPCSF METHOD 

          

  Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 

R 

E 
A 

L 

 
C 

L 

A 
S 

S 

E 
S 

Class 1 4 0 0 0 1 0 0 0 

Class 2 0 5 0 0 0 0 0 0 

Class 3 0 0 5 0 0 0 0 0 

Class 4 0 0 0 5 0 0 0 0 

Class 5 0 0 0 0 5 0 0 0 

Class 6 1 1 0 0 0 2 0 1 

Class 7 0 0 0 0 0 0 4 1 

Class 8 1 0 0 0 2 0 0 2 

TABLE XII. PERFORMANCE INDICATORS OF THE TWO METHODS 

Assessment indicators D_ALBPCSF LBP 

Images of rocks textures for different classes 

VP 32 32 

VN 272 272 

FP 8 8 

FN 8 8 

Sensitivity 0,8=80% 0,8=80% 

Specificity 0,97=97% 0,97=97% 

Accuracy 0,95=95% 0,95=95% 

Error rate 0,05 = 5% 0,05 = 5% 

TABLE XIII. COMPARISON OF LBP AND D_ALBPCSF METHODS 

  

Parameters 

of 

performance 

Granite  Granodiorite  Gabbro  Schiste Cipolin Eclogite Migmatite Corneal 

LBP 

  

VP=5 VP=5 VP=5 VP=5 VP=5 VP=0 VP=5 VP=2 

FN=0 FN=0 FN=0 FN=0 FN=0 FN=5 FN=0 FN=3 

VN=31 VN=35 VN=35 VN=35 VN=33 VN=35 VN=33 VN=32 

FP=4 FP=0 FP=0 FP=0 FP=2 FP=0 FP=2 FP=3 

Accuracy 

by class 
90% 100% 100% 100% 95% 87,50% 95% 85% 

Positive 

accuracy 
55,60% 100% 100% 100% 71,40% 0% 71,40% 40% 

Negative 

accuracy 
100% 100% 100% 100% 100% 87,50% 100% 94,10% 

Average 

accuracy 
Magmatic rocks : 96,7% Metamorphic rocks : 92,5% 

DALBPCSF 

  

VP=5 VP=5 VP=5 VP=4 VP=5 VP=2 VP=4 VP=2 

FN=0 FN=0 FN=0 FN=1 FN=0 FN=3 FN=1 FN=3 

VN=34 VN=35 VN=35 VN=33 VN=32 VN=35 VN=35 VN=32 

FP=1 FP=0 FP=0 FP=2 FP=3 FP=0 FP=0 FP=3 

Accuracy 

by class 
97,50% 100% 100% 92,50% 92,50% 92,50% 97,50% 85% 

Positive 

accuracy 
83,30% 100% 100% 66,70% 62,50% 100% 100% 40% 

Negative 

accuracy 
100% 100% 100% 97,10% 100% 92,10% 97,20% 94,10% 

Average 

accuracy  
Magmatic rocks : 99,2% Metamorphic rocks : 92% 
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V. CONCLUSION 

In this article, we present two new feature extraction 
methods applied to rock images. We combined the 
functionalities of Gabor-ALBPCSF and DCT-ALBPCSF to 
propose two new descriptors G_ALBPCSF and D_ALBPCSF 
and to better classify rock texture images. In general, this is a 
very difficult classification task because of the frequent 
differences observed within samples of the same type of rock. 
Experimental results on our direct view rock image database 
show that the G_ALBPCSF and D_ALBPCSF combinations 
improve the recognition performance compared to the original 
LBP and ALBPCSF taken separately. That makes it possible 
to understand that local and global information must be 
considered for the extraction of rock characteristics. 

In perspective, we plan to apply the K-SVD method to the 
proposed methods and then apply our methods to other types 
of images such as facial images. 
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