
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

127 | P a g e  

www.ijacsa.thesai.org 

Compound Mapping and Filter Algorithm for Hybrid 

SSD Structure 

Jin-Young Kim
1
 

Department of Computer Engineering 

Kangwon National University 

Samcheok, South Korea 

Se Jin Kwon
2
* 

Department of Computer, Media, Industry Engineering 

Kangwon National University 

Samcheok, South Korea 

 

 
Abstract—With the recent development of byte-unit non-

volatile random access memory (RAM), various methods 

utilizing quad level cell (QLC) not-AND (NAND) flash memory 

with non-volatile RAM have been proposed. However, tests have 

shown that these hybrid structures lead to a reduction in the 

performance of a hybrid solid state disk (SSD) owing to issues 

regarding space efficiency. This study proposes a compound 

address method and filter algorithm suitable for the next 

generation of NAND flash, called hybrid storage media, where 

QLCs and phase-change memory (PCM) are used together. The 

filter-mapping algorithm includes a management method that 

stores data in phase-change memory or flash memory according 

to the next command, which is accessed when a write command 

that is half or less than half a page in length is received from the 

file system. Tests have shown that the compound mapping and 

filter algorithm reduces the wasted pages by more than half and 

the number of merge operations is also significantly decreased. 

This leads to a decrease in the number of delete operations and 

improves the overall processing speed of the hardware. 

Keywords—Pram; hybrid architecture; QLC NAND flash 

memory; algorithm 

I. INTRODUCTION 

There have been rapid changes affecting the memory layer 
in recent years with the development of byte-unit non-volatile 
(NV) RAM (phase-change memory). Phase-change memory 
(PCM) is similar to not-AND (NAND) flash memory, but also 
includes fast read and write operations, which are 
characteristics of main memory units. Moreover, its lifespan is 
approximately 10 times higher than that of NAND flash 
memory. Key examples of NVRAM include ferroelectric 
RAM (FeRAM), phase-change memory, and resistive RAM 
(ReRAM). A hybrid solid state drive (SSD) includes a flash 
translation layer (FTL), which is a software layer used to 
efficiently exchange information between hardware 
components by considering the hardware properties of the 
phase-change memory and NAND flash memory [1]. 

The existing hybrid SSD [2, 3] categorizes data into hot and 
cold data depending on the reading and writing frequency, and 
then stores high-frequency hot data and metadata into phase-
change memory and stores low-frequency cold data into flash 
memory. When commands are given in duplicate locations it is 
possible to overwrite the phase-change memory and thus, 
reduce the number of merge operations in the flash memory to 
achieve the ultimate goal of improving overall performance. 

These existing hybrid SSD structures have the disadvantage of 
a reduction in overall space utilization efficiency because if a 
write operation delivers less than one page (a write unit) of 
data from the file system, the entire page will not be filled. To 
resolve the above issue, this paper proposes a compound 
mapping and filter algorithm for a hybrid SSD structure. 
Hybrid filtering refers to an algorithm that differentiates and 
stores data in the proper memory unit using two types of 
chips. This filter can be implemented through a buffer, such as 
a DRAM or resistor. The algorithm conducts two major 
functions; first, it gathers short write commands and stores 
them on a single page to improve the space efficiency. When a 
write command is one half of 8 KB or less (namely, 4 KB or 
less), where 8 KB is the standard page size in QLC NAND 
flash memory, the write command information is stored in a 
hybrid filter to await the next command. If the next command 
is 4 KB or less and would be written on a different page, both 
the existing command in the filter and the new command are 
stored in the phase-change memory. Second, the number of 
merge operations is reduced through the hybrid filter, which 
improves the overall performance. When a command is 
present in the same sector as the command stored in the filter, 
so that the data must be overwritten, there is no need for a 
separate operation because the command information is 
immediately overwritten in the filter, unlike a log block 
system, in which free blocks must be allocated to the log block 
to merge the commands. This reduces the number of merge 
operations, thereby improving the overall performance. 

Section 2 analyzes existing studies and analyzes 
limitations. Section 3 describes the newly proposed filter 
algorithm and its implementation examples. Finally, Section 4 
analyzes the test results and presents future research 
directions. 

II. PREVIOUS STUDIES 

A. Information Update Connection 

Existing FTL algorithms are categorized into 1:1 [4], 1:N 
[5, 6], and M:N [7, 8, 9] depending on the number of data 
blocks that are connected to a single logic block. A data block 
is where the data are first written, and a log block delays the 
merge operations as long as possible by recording the 
overwritten data in different locations according to each 
algorithm in the event of a store command involving 
overlapping pages. In the 1:1 connection, if a write command 
occurs on overlapping pages, a new log block is allocated 

* Corresponding author 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

128 | P a g e  

www.ijacsa.thesai.org 

from the free blocks, and a duplicate sector is recorded in that 
block to delay the merge operation. However, because only 
one data block is linked to a single log block, if repeated write 
commands occur in the same page, merge operations occur 
much more frequently, thereby reducing the overall 
performance of the flash memory. In the 1:N connection, a 
total of N data blocks are linked to one log block. In other 
words, several data blocks can share a single log block. In 
addition, because they are generally used an "out-of-place" 
method that fills the space in any order, the space utilization 
efficiency is extremely high. However, in the worst-case 
scenario, data blocks equaling the number of a page will be 
connected to a single log block, and a significant delay will 
occur when conducting merge operations. In the M:N 
connection, this architecture attempts to overcome the 
disadvantages of a 1:N connection. The main concept is to 
limit the number of data blocks that can be linked to a single 
log block. 

B. Limitations of Previous Studies 

The algorithms for the connection schemes mentioned in 
Section II.A are difficult to implement in hybrid SSDs, or do 
not provide optimum efficiency when implemented. 
Regardless of the algorithm applied, if the size of a write 
command is eight sectors (4 KB) or less, at least half of the 16 
sectors, which is the standard number for a QLC NAND flash 
memory page, will inevitably be wasted. If a sector mapping 
method is applied to resolve this phenomenon using only the 
NAND flash memory, it will require an extremely large 
memory volume in the main memory device. However, if a 
hybrid structure comprised of phase-change memory and 
NAND flash memory is applied, and a phase-change memory 
of a certain size is mapped based on sector units, a relatively 
small volume will be required instead. 

 

Fig. 1. Overall Structure. 

 

Fig. 2. Command Access and Storage in Filters 

Algorithm 1 

 

III. PROPOSED METHOD 

A. Issue Analysis 

Analysis of the traces of existing file system commands 
available in the UMass Trace Depository [10] indicated that 
25% of all traces were not written chronologically. Of these, 
24.7% were write commands of one half page size or less. 
Based on the characteristics of flash memory, if the next page 
is used after processing a write command, it is impossible to 
go back to the previously-written page. Pages with wasted 
sectors after writing fewer than eight sectors (4 KB) accounted 
for 7% of all write commands. In conclusion, only 26.8% of 
the volume in all blocks was used, indicating that 
approximately 73% of the total volume was wasted. 

B. Filter Algorithm  

To resolve the issues discussed above, a compound 
mapping and filter algorithm is proposed. The overall 
structure is shown in Fig. 1. If a command is given to the file 
system, the command is stored in the appropriate storage 
space of the PCM and NAND flash memory after passing 
through the filter algorithm area. The NAND flash memory 
has data blocks and log blocks. Data passes through the 
registers before being stored in these blocks. Finally, the PCM 
contains only data blocks. The general characteristic of flash 
memory and PCM is that one block consists of four pages and 
one page consists of sixteen sectors. In this architecture, PCM 
uses sector mapping and NAND flash memory uses block 
mapping. The filter algorithm is called a compound mapping 
because it uses both types of mappings.  

For existing 1:N association algorithms, only data blocks 
and log blocks are used, which places a heavy burden on these 
two block types. This can result in a significant number of 
merge operations, shortening a device‟s lifetime and reducing 
its performance. To mitigate these issues, we added a new 
PCM storage space and filter area. The filter area identifies the 
data according to Algorithm 1 to be described later, and either 
selects the PCM or flash memory and stores the data in the 
most suitable device. This will reduce the merging workload 
and increase storage space efficiency, ultimately improving 
overall performance. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

129 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Algorithm 1 Process with Examples (Proceeding Left to Right on the First Line). 

As shown in Fig. 2, a command contains „command, 
logical sector number, data, size‟ information. A „command‟ 
is a command that runs in the file system as flash memory. 
„W‟ means write and „R‟ means read, but only „W‟ is used 
because only write commands are needed. The „logical sector 
number‟ is the number of the sector corresponding to the write 
command. „Data‟ is the content to be saved and „size‟ is the 
capacity of the write command. The unit of size uses bytes by 
default. 

Given the data to process, divide the logical sector number 
(LSN) by the number of sectors per page to obtain the 
quotient, where the quotient is called the logical page number 
(LPN). The LSN and LPN will only reside in the DRAM in 
the filter area for a short time until the next command is given. 
The size of the filter in which the instruction can be stored for 
a short time is equal to the maximum capacity of the filter 
specified in Algorithm 1. 

In order to simplify the filter, it is represented as a single 
page. In this paper, the LSN is recorded in parentheses for 
intuitive confirmation. On an actual system, the LSN is not 
stored in the filter. 

For example, in Fig. 2, If LSN 1 is divided by 16, the 
quotient is 0 and the remainder is 1. Therefore, the LPN is 
written as 0 and data is written to sector 1 of the filter. This  
command is the „Filter_command‟ in Algorithm 1, and a 
detailed description of this will be provided in the next 
paragraph. A „Filter_command‟ will be saved to the PCM or 
flash memory and stored in the filter as determined by 
Algorithm 1 when processing the next command. 

Algorithm 1 describes the overall processing of the filter 
and example commands are provided in Fig. 3. We used 
"OLTP Application I / O", a collection of I / O command 

information given to storage among the traces provided 
publicly in UMass Trace Repository [10]. In Algorithm 1, a 
'Filter_command' implies that the command is already stored 
in the filter and a „Next_command‟ refers to the command that 
is currently being processed. 

The first item to check when given a command to process 
is the size of the command. If the size of the „Next_command‟ 
is less than or equal to the maximum value that can be stored 
in the filter, verify that the filter has a „Filter_command‟ 
already stored. 

In the case of an instruction given as  „(1) W, 1, A, 6144‟ 
in Fig. 3, the size of the instruction is larger than 4096 B, so it 
does not go through the filter (Algorithm 1, lines 17–18). This 
is because when a trace is analyzed, very few consecutive 
write commands that exceed the maximum size of the filter 
appear in the same sector. 

When a scenario occurs in which a command is to be 
stored in flash memory, the filter collects as many identical 
page commands into registers as possible before they are 
stored in flash memory. If the page currently being collected 
in the register is equal to the LPN of the command or if the 
register is empty, the command is stored in this register. This 
includes the processing of the „(3) W, 9, C, 512‟ and „(4) W, 4, 
D, 1536‟commands, for example. However, if the page 
number that is collected in the register differs from the LPN in 
the next instruction or if the next instruction causes a register 
overflow, the data of the existing register is stored in the flash 
memory before the next instruction is stored in the register. 

If a scenario occurs that saves a command to a filter, such 
as processing the „(2) W, 9, B, 512‟ command, the command 
can be saved to the filter immediately if the filter is empty 
(lines 1 and 15–16). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

130 | P a g e  

www.ijacsa.thesai.org 

If a „Next_command‟ must be saved in the filter (lines 3–
7), but the filter is not empty (a „Filter_command‟ is already 
stored in the filter), compare the LPNs of both commands 
(line 3). If the LPN is the same, the LSNs are compared again. 
If the LSNs are the same, the filter is overwritten (lines 4–5). 
In the figure, the command „(3) W, 9, C, 512‟ would overwrite 
command „(2) W, 9, B, 512‟. 

If the LSNs are not the same, two write commands, such 
as the „(3) W, 9, C, 512‟ and „(4) W, 4, D, 1536‟ commands, 
are stored in the flash memory on the same page and the filter 
state changes to empty (lines 6–7). 

When the „(6) W, 30, F, 512‟ command is given as the 
„Next command‟, the LPNs of the „Filter command‟ and „Next 
command‟ are different (line 8). Therefore, the sector mapping 
table is referred to and the PCM checks whether this is the 
same sector as the „Filter command‟. In the current situation, 
because the PCM is empty, there is no identical sector, so the 
„Filter command‟ is stored in the PCM and the „Next 
command‟ is stored in the filter (lines 12–14). 

When the command „(7) W, 15, G, 1536‟ is given, the 
PCM is not empty but there is no same sector for the filter 
command, so data „F‟ corresponding to the „Filter command‟ 
is newly saved in the PCM. However, if the „(8) W, 30, H, 512‟ 
command is given, the PCM overwrites existing data 'E' with 
filter command data „G‟ because this is the same sector as that 
of the filter command. If the algorithm used were the 1:N 
association, it would have already used a significant amount of 
log block space due to overwriting. 

C. Example Execution and Limitations 

Fig. 4(a) and (b) show the results of the 1:N algorithm and 
the proposed filter algorithm performed on the same 
command. The command is one of the "OLTP Application I / 
O” commands publicly available from the UMass Trace 
Repository used for performance evaluations [10]. 

In the results analysis of Fig. 4, when running the 
compound mapping and filter algorithm, three pages were 
used for NAND flash memory and 55 sectors were used for 
PCM, resulting in 52,682 B. However, using 1:N 
concatenation, 10 pages were used for the data block and 13 
pages for the 188,416 B log block. As a result, the space 
utilization efficiency of the filter algorithm is three times 
higher than for the 1:N association algorithm. In addition, the 
1:N association algorithm wastes approximately 17 times 
more space than the filter algorithm. 

Compared to the 1:N connection algorithm, not only does 
the compound mapping algorithm conduct much fewer merge 
operations, its use of partial sector mapping greatly improves 
the space utilization. Fig. 4(a) shows the processing of a 
command by this method. At a glance, the space utilization 
efficiency and the data storage density are much higher than 
the conventional 1:N association algorithm shown in Fig. 4(b). 

Use of the conventional 1:N association algorithm results 
in many page allocations, as shown in Fig. 4(b). However, the 
amount of data that is actually stored in this space is very 
small, resulting in wasted capacity and lower space utilization 
efficiency. 

The filter algorithm can store data on a sector-by-sector 
basis, and data of less than half a page (4 KB) can be 
algorithmically executed in the phase-change memory, where 
it is possible to overwrite data immediately when a write 
command occurs for the same position, and data are managed 
using sector-by-sector mappings. Complex flash memory 
mapping can be accomplished through a block-mapping 
application. With this approach, redundant sectors, which 
account for 79% of all traces, can be effectively managed. 

However, from a cost point of view, there is a limit to the 
capacity of the phase change memory because this memory is 
expensive. Therefore, a small amount of space should be 
allocated to maximize the cost efficiency of the phase change 
memory. A minimum amount of space should also be 
allocated for the merge operator because if data should be 
stored in the phase change memory, but its space is not 
sufficient or the amount of invalid data that can be overwritten 
is too low, a merge operation will be performed. That is, since 
the size of the phase change memory is small, the number of 
merging operations increases. Therefore, the cost of the merge 
operator should be minimized. 

As limitations, the volume used in the sector-mapping 
table is relatively large, and the cost of the phase-change 
memory is high. Therefore, a means to reduce the size of the 
mapping table and at the same time the amount of phase-
change memory that provides the greatest efficiency for each 
NAND flash memory capacity should be sought. It is also 
necessary to consider a more efficient method of merging and 
to check detailed conditions on how to exchange information 
between the flash memory and PCM. 

 

 

Fig. 4. Comparison of Space Utilization. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

131 | P a g e  

www.ijacsa.thesai.org 

TABLE I. ESTABLISHMENT OF TEST HYPOTHESIS 

Variable Value 

Number of blocks used in the test 2,048 

Number of pages per block 64 

Number of sectors per page 16 

Sector size (Byte) 512 

IV. TEST RESULTS AND DIRECTIONS FOR FUTURE 

RESEARCH 

A. Test  Results 

This section compares and analyzes the efficiency of the 
proposed algorithm to a compound mapping filter algorithm 
that uses 1:N linking sectors based on traces, and measures the 
number of operations performed and the time needed to 
achieve the results. The consumed time for flash memory is 
assumed in the simulation by referring to a technical note 
provided by Micron Technology [11]. The time required for a 
random write per sector is 55 μs, and the time required for a 
block erasure is 500 μs. Also, trace analysis indicates that the 
average size of one write operation is 3584 B. 

We used the "OLTP Application I / O", a collection of I / 
O storage command information for traces provided publicly 
by the UMass Trace Repository [10]. We analyzed the read / 
write command and the corresponding sector number and size, 
and conducted performance evaluations based on this 
command. Because QLC is still in the development stage, it 
was not possible to provide a hardware performance 
evaluation, so the evaluation was performed based on software 
coding. 

As common characteristics for the two algorithms, one 
block is composed of 64 pages, and each page consists of 16 
sectors, as shown in Table I. In both cases, the data block and 
log block domains use NAND flash memory. The 1:N 
connection algorithm uses a 1 GB data domain and a 10 MB 
log block domain; the filter algorithm was set up using a data 
domain of 1 GB, log block of 5 MB, and filter domain of 5 
MB, where the filter domain used dynamic, static, or 
parameter RAM (DRAM, SRAM, or PRAM). 

Table II shows the results of analyzing 378,914 write 
commands on a single chip. Here, a merge operation refers to 
merges between the data domain and log blocks in the NAND 
flash memory. For the 1:N connection algorithm, 1,112,738 
write operations were required. This represents approximately 
7,789,166 sectors (55 microseconds per sector), or 
approximately 428.4 seconds in total. On the other hand, the 
filter algorithm required 200.9 seconds because 522,012 
sectors were involved. Therefore, using the filter algorithm, it 
is possible to reduce the number of write operations and their 
associated time by 46% compared with the conventional 
method. Erase operations also yielded significant differences. 
In the 1:N chain algorithm, 546 block deletion operations and 
273 merge operations were performed. However, the filter 
algorithm applied only 34 block deletions and 17 merge 
operations. These numbers indicate that when using the filter 
algorithm, the numbers of delete and merge operations are 
reduced by 93% compared to the 1:N connections algorithm. 

TABLE II. COMPARISON OF ALGORITHM 

 Filter Algorithm 1:N Connection Algorithm 

Write operations 

(number) 
522,012 1,112,738 

Write operations  

(seconds) 
200.9 428.4 

Delete operations 

(number) 
34 546 

Delete operations 

(seconds) 
0.017 0.273 

Merge operations 

(number) 
17 273 

B. Directions for Future Research 

This study assumed that the filter will use DRAM or 
SRAM. However, such memory types are relatively expensive 
compared to PRAM, and hence the memory volume must be 
reduced as much as possible for greater cost efficiency. 
Therefore, a method that uses PRAM should be considered. 
PRAM has a slower access speed compared to DRAM or 
SRAM, and hence an algorithm that uses a two- or four-step 
pipeline technique must be designed to improve the speed. 

To the two-step pipeline, two filters (Filter 1 and Filter 2) 
composed of eight connected sectors operate within the phase-
change memory. After reading the write command in Filter 1, 
the write command is also read in Filter 2. Because 
differences in the delay time may occur depending on the 
input command, the filter that finishes its operation first will 
read the new command and process it according to the 
algorithm. 

To further elaborate, if the domain in a phase-change 
memory uses a filter, and phase-change memory is used for 
storage, the filter is converted into the data domain 
immediately, and the eight sectors that are connected out of 
the extra domains in the phase-change memory will be used as 
a new filter. The algorithm described in this paper requires 
two operations when data are stored in the NAND flash 
memory or phase-change memory because of data passage 
through the filter. However, when PRAM is used, the filter is 
incorporated in the phase-change memory architecture, so 
only one write operation is needed to store data in the phase-
change memory. 

ACKNOWLEDGMENT 

This work was supported by Basic Science Research 
through the National Research Foundation of Korea (NRF) 
funded by the Ministry of Education (NRF-
2017R1D1A3B04031440). This study was also supported by a 
2018 Research Grant from Kangwon National University (No. 
000000000). 

REFERENCES 

[1] Ahmed Izzat Alsalibi, Sparsh Mittal, Mohammed Azmi Al‐Betar, 
Putra Bin Sumari “A survey of techniques for architecting 
SLC/MLC/TLC hybrid Flash memory – based SSDs,” Practice and 
Experience, e4420, ISSN 1532-0626, 2018. 

[2] Jung Sik Park, Hi-seok Kim, Ki-Seok Chung, and Tea Hee Han, 
“PRAM and NAND Flash Hybrid Architecture based on Hot Data 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

132 | P a g e  

www.ijacsa.thesai.org 

Detection,” 2nd International Conference on Mechanical and Electronics 
Engineering ICMEE, 1, pp. 93-97, 2010. 

[3] Jin Kyu Kim, Hyung Gyu Lee, Shinho Choi, and Kyoung Il Bahng, “A 
PRAM and NAND Flash Hybrid Architecture for High-Performance 
Embedded Storage Subsystems,” EMSOFT '08 Proceedings of the 8th 
ACM international conference on Embedded software, pp. 31-40, 2008. 

[4] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min and Yookun 
Cho, “A space-efficient flash translation layer for CompactFlash 
systems,” IEEE Transactions on Consumer Electronics, 48(2), pp. 366- 
375, 2002. 

[5] Sang-Won Lee, Dong-Joo Park, Tae-sun Chung, Dong-Ho Lee, 
Sangwon Park, and Ha-Joo Song, “A log buffer-based flash translation 
layer using fully-associative sector translation,” Embedded Computing 
Systems (TECS), 6(3), pp. 1-27, 2007. 

[6] Usman Anwar, Se Jin Kwon, and Tae-Sun Chung,”SAF: States Aware 
Fully Associative FTL for Multitasking Environment,” Computer and 
Information Science 2015, 614, pp. 1-11, (2016) 

[7] Dawoon Jung, Jeong-Uk Kang, Heeseung Jo, Jinsoo Kim, and Joonwon 
Lee, “Superblock FTL: A superblock-based flash translation layer with a 
hybrid address translation scheme.” ACM Transactions on Embedded 
Computing Systems, 9(4), pp. 40:1-40:41, 2010. 

[8] Jeehong Kim,l authorDong Hyun Kang, Byungmin HaHyunjin Cho, and 
Young Ik Eom, “MAST: Multi-Level Associated Sector Translation for 
NAND Flash Memory-Based Storage System,” Computer Science and 
its Applications, 330, pp. 817-822, 2015. 

[9] Hyunjin Cho, Dongkun Shin, and Young Ik Eom, “KAST: K-
Associative Sector Translation for NAND flash memory in real-time 
systems,” DATE '09 Proceedings of the Conference on Design, pp. 507-
51, 2009. 

[10] UMass Trace Repository, “OLTP Application I/O” 
“http://traces.cs.umass.edu/index.php/storage/storage/“ 

[11] Micron Technology, Inc “NAND Flash 101: An Introduction to NAND 
Flash and How to Design it into Your Next Product”, 
“https://user.eng.umd.edu/~blj/CS-590.26/micron-tn2919.pdf” 

 


