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Abstract—To achieve acceptable quality and performance of 

any software product, it is crucial to assess various software 

components in the application. There exist various software-

testing techniques such as combinatorial testing and covering 

array. However, problems such as t-way combinatorial explosion 

is still challenging in any combinatorial testing strategy, as it 

takes into consideration the entire combinations of input 

variables. Therefore, to overcome this problem, several 

optimizations and metaheuristic strategies have been suggested. 

One of the most effective optimization algorithms based 

techniques is the Artificial Bee Colony (ABC) algorithm. This 

paper presents t-way generation strategy for both a uniform and 

variable strength test suite by applying the ABC strategy 

(ABCVS) to reduce the size of the test suite and to subsequently 

enhance the test suite generation interaction. To assess both the 

effectiveness and performance of the presented ABCVS, several 

experiments were conducted applying various sets of 

benchmarks. The results revealed that the proposed ABCVS 

outweigh the existing based strategies and demonstrated wider 

interaction between components as opposed to AI-search based 

and computational based strategies. The results also revealed 

higher prospect of ABCVS in the aspect of its effectiveness and 

performance as observed in the majority of case studies. 
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I. INTRODUCTION 

For investigate acceptable quality and performance for any 
software product, it is important to assess the various software 
components in the application. Software testing is afforded 
with many techniques and tools, divided into two major 
categories; Black box and White box testing. The inner 
components of the system under test (SUT) in performing 
white-box testing, are considered during the generation of the 
test case, while the input variables and how they interact as a 
significant function in black-box testing, occurs during test 
suite production [1]. Due to the complexity of the most 
software systems, therefore, all-inclusive testing taking the 
entire configurations and interactions into consideration is not 
feasible due to computational constraints as well as the need for 
sampling strategies [2]. From several of the techniques 
available for black box software, both combinatorial testing 
(CT) in addition to covering array (CA) are suitable approaches 
used for testing purposes. In fact, some studies of t-way 
interaction testing have indicated this form of testing to be 
effective in identifying nearly all of the flaws in a typical 
software system [3]. Notably, various uniform and variable 

strength t-way techniques are documented throughout the 
literature in this domain. 

However, combinatorial explosion in a combinatorial 
testing strategy such as a t-way is a problem. Moreover, while 
it is not feasible to generate the entire combination of variables 
in this case, it is necessary that a CA of minimum size be 
generated. Generally, the minimum size of a CA is an 
unspecified priori. Therefore, it is advisable to generate as 
much CA as possible with several test cases within an 
acceptable amount of time. Various strategies have been found 
in the literature to produce the test suite size with uniform and 
variable strength interaction. Accordingly, to assess such a 
strategy, three features are required, namely; 1) the array size 
of the test suites that denote the effectiveness, 2) speed of the 
strategy, which refers to performance, and 3) portability of the 
strategy to support adequate high interaction strength. Different 
approaches have been adopted using numerous strategies, such 
as; Artificial Intelligence (AI) based and Pure Computational-
based approaches [4]. These strategies are based on pure 
computational-based approaches which are characterized by 
their high performance but having worst efficiency, for 
instance; In-Parameter-Order-General (IPOG-D) [5] and 
Intelligent Test Case Handler (ITCH) [6]. While ITCH 
generates test suites of small array sizes, the IPOG D strategy, 
on the other hand, has a fast-paced approach. Previous studies 
have suggested that when a small interaction strength is 
considered (i.e. t ≤ 3), it can cover most flaws in a typical 
software system [7-12]. Subsequent research studies although, 
have proposed the need to support the higher strength 
interaction, particularly for complex systems [2, 4, 13-15]. 

The appropriate solution to address the problems associated 
with the computation of the minimal test suite is by employing 
a search-based software engineering (SBSE) technique [16-19]. 
By drawing inspiration from the SBSE technique, various 
strategies have already been suggested towards the problem of 
uniform and variable strength interaction (e.g. Simulated 
Annealing (SA) [9-11, 20, 21], Genetic Algorithm (GA) [12, 
21-27], Practice Swarm Optimization (PSO) [7, 28-30], Ant 
Colony Algorithm (ACA) [8, 12], Harmony Search Algorithm 
(HS) [4, 31, 32], Cuckoo Search (CS) [3, 33, 34], and the Bat 
Algorithm (BA) [35-39]). Even though relevant strategies have 
been found to be useful based on AI, they are noted in the 
literature as being slow due to costly computations [3, 4, 7]. 
Another challenge encountered for some AI-based strategies 
that are considered to be slow is support for small interaction 
strengths (i.e. t ≤ 4) for generating test suites. Therefore, in this 
paper, the ABC algorithm is proposed as an efficient and 
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acceptable strategy, known as the Artificial Bee Colony 
Strategy (ABCVS) continuous to our previous research [40, 41] 
for uniform and variable strength interaction t-way minimal test 
suite production. It is anticipated that ABCVS will address this 
problem. In fact, experimental results have revealed that the 
proposed ABCVS is able to support higher interaction strengths 
up to t = 6 compared to other Artificial Intelligence (AI)-based 
strategies. Furthermore, ABCVS it can compete against these 
other strategies in the majority of the case studies examined in 
the literature regarding efficiency (test suite generation) and 
performance (speed) and against other AI-based strategies 
having higher interaction strengths. 

The remainder of this paper is structured accordingly. 
Section II presents the background to this study, (i.e. CA and 
MCA concepts) which is followed by Section III which surveys 
„state of the art‟ testing strategies in this area. Section IV 
provides an overview of an ABC which is then followed by 
Section V describing the proposed strategy, consisting of two 
parts: (1) construction of the covering matrix, and (2) the 
proposed ABCVS. Section VI illustrates the tuning of the 
ABCVS parameters. Section VII evaluates the ABCVS by 
conducting several benchmark experiments in terms of 
effciency and performance alongside with statistical analysis 
evaluation by using Wilcoxon signed-rank test in Section VIII. 
Section IX discusses the advantages, limitations and threats to 
the validity of the approach, which followed by Section X 
providing overall conclusions to the study and presenting 
recommendations for future work. 

II. COVERING ARRAY WITH PROBLEM DEFINITION MODEL 

The strategy of a t-way testing is one of the most 
minimization criteria used regarding the number of test cases 
list. The t-way testing is a combinatorial approach, and “t” is 
indicates the interaction strength [12], and one of the input 
parameters. For example, assume that the (SUT) behavior is 
represented by user input then the external and internal events 
or the modes of the system parameters are controlled by 
separate parameters (P). In this case, each separate value Vi has 
a parameter, Xi. These Vi are selected from a fixed set of 
values, consisting of value members. Each p-tuple…(X1, X2, 
…,Xp) shows a test case where Xi ∈ Vi and 1 ≤ i ≤ P [29]. 

Using a practical software example, let us consider a web 
configurable software system. This system is consists of five-
components, namely; a device, a processor, the operating 
system (OS), browser, and a display. Fig. 1 illustrates their 
relationships. This system has employed as a simple illustration 
of the main idea in t-way testing regarding variable strength, 
and uniform strength. Each component of this system is known 
as a separate parameter, and each parameter has one or more 
values. Table I displays the parameters of the system and their 
values. In this example, the number of parameters is five, 
consisting of 3-parameters with 2-values and 2-parameters with 
2-values. 

To produce different software settings of the system, the 
software should be tested to identify any existing defects. In 
this case, a test case can be used to determine particular settings 
of the software. The total number of test cases are called the 
test suite, where the test suite must identify existing defects. 
For instance, assuming device 1 (Phone) is not able to use OS 2 

(Windows). Therefore, the system will fail because the 
operating system (OS) is Windows based and the device 
parameter is the phone. Therefore, to detect faults, using 2-way 
schema (Phone,-, Windows,-,-) at least one occurrence time 
must be covered by the generated test suite. 

To obtain „perfect‟ software that performs with no defects, 
it is important to test all software components to cover all 
possible parameters. In this example, 72 test cases (i.e. 2 × 2 × 
3 × 3 × 2) are required to cover all cases. Nowadays, software-
testing costs are rising due to the evolution and complexity of 
the software and an increasing the number of parameters and 
software levels. Since the failure of a limited number of 
parameters is mainly caused by the interaction of the 
parameters [12], it is not efficient to produce a comprehensive 
test case. Therefore, to solve this problem, a particular 
technique should be used such as a t-way testing approach as 
an alternative to a more comprehensive test, where 2 ≤ t ≤ p. In 
addition, it is worth noting that the "t" value denotes that the 
final test suite consists of all possible t-way combinations as an 
alternative to the p-way. However, it cannot identify the 
interactions that are responsible for the software failure caused 
if the "t" value is low. 

All possible interaction combinations of the parameters are 
covered by the combinatorial test, called the t-way CA for the 
test that generates the test suite. In addition, the "t" value 
defines the covering depth as well as the strength, and it is 
considered an important factor that must be determined by the 
tester. Overall, mathematically both the t-way approach and 
CA have a direct relationship. Therefore, to define the t-way 
approach, the following concept is used where CA is an array 
size N × p, where N contains test cases, consisting of two 
features: 

Each column i contains some members of set Vi, |Vi| = Vi. 
The rows of each sub-array of size N × t, cover all 
combinations |Vk1| × |Vk2| ×…×|Vkt | of t at least once [29]; 
and if v1 = v2 =…== vp =v, then all possible cases are obtained 
as given in Eq. (1) 

FullCoverage = ( 
 
) x vt             (1) 

The CA is denoted by CA (N; t, p, v1, v2, …..,vp), and if v1 
= v2 =…= v

p
= v, then it is denoted by CA (N; t, p, v) or CA (N; 

t, v
p
) [29]. In some research references, if vi is different, it is 

called a Mixed Covering Array (MCA) [38, 42-44]. 

In the earlier section, it was mentioned that the possible 
number of test cases of a web configurable software system 
was 72. In this case, 2-way (pairwise interaction) is used where 
the total number of test cases has been reduced to nine as 
shown in Table II, which displays all possible combinations for 
available parameters. For example, both the parameters, device 
and the OS, have six (i.e. 2 × 3) different 2-way cases including 
(Pc, -, Android , -, -), (Pc, -, IOS, -, -), (Phone, -, Android , -, -), 
(Phone, -, IOS, -, -), (Phone, -, Windows, -, -) and (Pc, -, 
Windows, -, -), (see Table II). 

The interactions between the parameters are important 
given that most software is unstable, due to some of these 
interactions having less impact. Some others interactions are 
more likely related to system failure. In this case, CA along 
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with the variable strength is used effectively to determine the 
various interactions. Various covering strengths exist in this 
structure between the various sets of parameters. The VS 
Covering Array (VSCA) is denoted by VSCA (N; t, p, v, {C}) 
where {C}, is consists of one or more CA (t′, p′, v) and p' is a 
subset of p. A web configurable software system example is 
next shown to understand VSCA. In the web configurable 
software assumes that all parameter combinations require 2-
way and a device, processor and OS that requires 3-way 

interaction. In this case, the configuration system is indicated as 
VSCA (N; 2, 2

3
3

2
, CA (3, 2

2
3

1
)). Table III displays the 

complete test suite to cover this configuration. Three more test 
cases as shown in Table III, are added to Table II in order to 
construct VSCA (12; 2, 2

3
3

2
, CA (3, 2

2
3

1
)). For this reason, 

using VSCA not only covers all 2-way interactions of complete 
parameters, but also covers all 3-way interactions of the 
specified parameters. 

 

Fig. 1. A Web Configurable Software System.. 

TABLE I. A WEB CONFIGURABLE SOFTWARE SYSTEM 

Parameters 

Device Processor OS Browser Display 

PC   (0) Dual core (0) Android   (0) Firefox  (0) 720 x 1280 (0) 

Phone (1) Multi core (1) IOS       (1) Chrome (1) 1024 x 768 (1) 

  Windows  (2) Safari   (2)  

TABLE II. TEST SUITE FOR CA (N; 2, 23
 32) 

NO Device Processor OS Browser Display 

1 PC   (0) Dual core  (0) IOS     (1) Firefox  (0) 720 x 1280 (0) 

2 Phone (1) Multi core (1) Android (0) Firefox  (0) 1024 x 768 (1) 

3 Phone (1) Multi core (1) Windows (2) Chrome (1) 720 x 1280 (0) 

4 PC   (0) Dual core  (0) Windows (2) Safari   (2) 1024 x 768 (1) 

5 PC   (0) Dual core  (0) Android (0) Chrome (1) 1024 x 768 (1) 

6 Phone (1) Multi core (1) IOS     (1) Safari   (2) 1024 x 768 (1) 

7 PC   (0) Multi core (1) Android (0) Safari   (2) 720 x 1280 (0) 

8 Phone (1) Dual core  (0) Windows (2) Firefox  (0) 1024 x 768 (1) 

9 Phone (1) Dual core  (0) IOS     (1) Chrome (1) 1024 x 768 (1) 

TABLE III. TEST SUITE FOR VSCA (N; 2, 23
 32, CA (N; 3, 22

 31)) 

NO Device Processor OS Browser Display 

1 PC   (0) Dual core (0) IOS     (1) Firefox  (0) 800 x 1280 (0) 

2 Phone (1) Multi core (1) Android (0) Firefox  (0) 1024 x 768 (1) 

3 Phone (1) Multi core (1) Windows (2) Chrome (1) 800 x 1280 (0) 

4 PC  (0) Dual core (0) Windows (2) Safari  (2) 1024 x 768 (1) 

5 PC  (0) Dual core (0) Android (0) Chrome (1) 1024 x 768 (1) 

6 Phone (1) Multi core (1) IOS   (1) Safari  (2) 1024 x 768 (1) 

7 PC   (0) Multi core (1) Android (0) Safari  (2) 800 x 1280 (0) 

8 Phone (1) Dual core (0) Windows (2) Firefox  (0) 1024 x 768 (1) 

9 Phone (1) Dual core (0) IOS     (1) Chrome (1) 1024 x 768 (1) 

10 PC   (0) Dual core (0) Android (0) Firefox  (0) 1024 x 768 (1) 

11 PC   (0) Multi core (1) IOS   (1) Chrome (1) 800 x 1280 (0) 

12 Phone (1) Dual core (0) Windows (2) Firefox  (0) 800 x 1280 (0) 
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III. RELATED WOR K 

Throughout  Over the last few decades, there have been 
many studies in the literature that grouped into four main sets 
to solve the CA problem [45]: (A) mathematic methods, (B) 
greedy algorithms, (C) heuristic search algorithms, and (D) 
random methods. 

A. Mathematic Methods 

The mathematician researcher uses mathematic methods 
derived from the extensions of mathematical functions like the 
Orthogonal Array (OA). To generate CA for optimal 
mathematics, it is only available for specific configurations (i.e. 
the parameters and values are required to be uniform) [12]. 
Notably, there are several strategies designed based on this 
approach such as TConfig [46] and Combinatorial Test Service 
(CTS) [47] strategies for the generalisation of an OA. 
However, a major problem exists for the OA (i.e. as the 
solution is only available for small configurations because of 
the restriction). 

B. Greedy Algorithms 

Most greedy algorithm (GA) solutions initially begin to 
generate all possible combinations (i.e. solutions) based on the 
input variables; then, generate one test at a time until all 
uncovered combinations are covered. A greedy algorithm is 
different in this case compared to the other strategies for 
generating test cases. In order to produce a test case using 
greedy algorithms [3], there are two main approaches; (1) One-
test-at-a-time (one-line-at-time) and (2) One parameter-at-a-
time. 

In each iteration, the one-test-at-a-time (OTAT) approach 
adds a line (test case) to the test suite. The strategies that 
adopted the one-test-at-time approach are; Pairwise 
Independent Combinatorial Testing (PICT) [48], Automatic 
Efficient Test Generator (AETG) [49], Deterministic Density 
Algorithm (DDA) [50, 51], Test Vector Generator (TVG) [52, 
53], Classification-Tree action-Tree Editor eXtended Logics 
(CTE-XL) [54, 55], Jenny [56], ITCH [6], GTWay [2] and 
Density algorithm, which is part of the DDA algorithm 
(extension) that authorised the DDA to support the variable 
strength CA. In this case, all the mentioned strategies belong to 
pure computational-based strategies. 

The AETG was the first type of strategy using the OTAT 
approach to generate the test suite. AETG attempts to select a 
number of test case candidates in every single cycle covering 
most of the interactions and adds the selected test case to the 
final test suite in a „greedy‟ fashion. Another greedy strategy 
was used for many years, where mAETG [9] and mAETG-sat 
[57] were extended to support the constraints. PICT [48] helps 
in the generation of all interactions and randomly chooses the 
required test cases by using the OTAT approach. Because of its 
random attitude, this strategy tends to offer a non-optimal test 
size. In addition, PICT has been able to generate test suite sizes 
up to t > 6. 

As a variant of the AETG, TVG [52] produced the best 
results based on the three algorithms, namely; Random, Plus-
one, and T-reduced sets. However, given the limited literature 
available, the details relating to the use of each algorithm 
remains indistinct. Nevertheless, based on our experience 

relative to the implementation of TVG, T-reduce usually 
generates the most optimal outcome, unlike the other related 
algorithms. In fact, TVG supported the interaction strength 
(i.e., t < 10) to produce the test suite. 

Another strategy showing good results regarding efficiency 
for most configuration systems, as well as having good speed 
using the OTAT approach, is the Jenny strategy [56]. This 
strategy initially produces the test suite in order to cover one-
way interaction only and was then further developed to extend 
the test suite to cover every 2-way interaction. This process, 
pending all t-way interactions, tends to be covered. The major 
competitor of Jenny is the Intelligent Test Case Handler, 
known as ITCH [6] which depends entirely on an exhaustive 
search algorithm for the producers of the interaction test suite. 
However, it is considered to be one of the slowest strategies 
compared to the other computational strategies regarding its 
efficiency to produce good results for some configuration 
systems. CTE_XL [54, 55] is another strategy based on the 
Classification-Tree Method (CTM) that utilises the OTAT 
approach called Classification-Tree Editor eXtended Logics 
(CTE_XL). The fundamental idea behind this strategy is based 
on several features that produce test suites by receiving the 
input data which is then divided into the two subsets being 
entirely different, and then gathering these subsets to produce 
the test case which is then is added to the final test suite. 
However, the CTE-XL strategy underpins low interaction 
strength for producing the test suites (i.e., t ≤ 3). The most 
reliable strategy in the computational technique that uses three 
algorithms for producing the test suite is GTWay [2]. In this 
strategy, the utilised algorithms are the t-way pair generation, 
the parser algorithm, as well as the backtracking algorithm. In 
the first instance, the parser algorithm helps to ensure that the 
system configuration parameters are guided in order to be 
utilised by the algorithm of the t-way pair generation. Then, the 
algorithm of the t-way pair generation helps in the generation 
of the required t-way parameter interaction based on a 
symbolic representation that is defined based on the parser 
algorithm. Finally, the backtracking algorithm needs to 
iteratively go through the t-way pair sets to add up the values 
of the t-way parameter's interactions for the generation of a 
complete test t-way suite. Although, addressing the strength of 
the high interaction in this instance is necessary (i.e. t ≤ 12). 

Compared to the OTAT approach, the OPAT approach is 
where the algorithm begins initially by choosing two 
parameters. Then, the test suite is horizontally extended by 
adding the rows one-by-one until the interaction parameters 
have been covered, starting with a vertical extension to choose 
more parameters, of which the process continues until the end. 
One of the strategies that utilised the OPAT approach is IPO. 
Other strategies based on the IPO include; IPOG [58], IPOG-D 
[5], IPOG-F [59], IPO-s [60], and ParaOrder [61]. However, 
ParaOrder and IPOG strategies can support a variable strength-
covering array. 

C. Heuristic Search Algorithm 

Nowadays, significant attention has been concentrated on 
the Heuristic search (HS) or Artificial Intelligence (AI) 
algorithms as part of the research interest in SBSE to solve 
combinatorial interaction problems. HS is a potent technique to 
produce the minimum array size for the test suite, although it is 
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slow. Some of the most important heuristic search algorithms 
include SA [9-11, 20, 21], GA [11, 12, 22-27, 62], ACA [8, 
12], PSO [7, 28-30], Cuckoo Search [3, 33, 34], Tabu Search 
(TS) [11, 63] and Harmony Search (HS) [4, 31, 32]. Initially, 
most algorithms were implemented in order to produce 
pairwise interaction (2-way), as by Stardom [8] such as; SA, 
GA and TS. The literature also shows that these strategies 
produce a weak result regarding efficiency given their complex 
structure. However, later, SA [9], GA and ACA [12] were 
extended to support the interaction strength (3-way). 
Nevertheless, the efficiency of SA is much better compared to 
TS and GA, and the efficiency of TS is better compared to GA. 

In addition, SA, GA and TS are „grand‟ strategies that 
support and only produce a test suite in CA. The results of the 
SA strategy have indicated that it is stronger compared to both, 
GA and ACA. Furthermore, both SA [10] and ACA [8] 
algorithms were extended to support the variable strength 
interaction up to (i.e. 3-way), where ACA is called, Ant 
Colony System (ACS). Searching the large space using SA to 
find the best test case utilised the Binary Search Algorithm 
(BSA). Meanwhile, ACA tried to find the best path (i.e. where 
every path represents a test case) until selecting the best path. 
In this case, the best path was selected based on the calculated 
weight. In GA, it begins randomly by selecting the test case 
after initialising the population, where each test case 
represented one chromosome. Then, through a fitness function, 
the chromosome‟s weight is calculated, after changing the 
functions (mutation and crossover) and at the end of the 
process, the best test case (i.e. best chromosome) is added to 
the final test suite. All these procedures continue until the 
required coverage is met. Another strategy that supports CA in 
by generating the test suites based on the PSO algorithm and 
fuzzy techniques called Fuzzy Self-Adaptive PSO (FSAPSO) 
[29]. FSAPSO is better compared to CS and DPSO regarding 
efficiency, but the performance is weak due to the Fuzzy 
computations. However, in this case, the strategy supported the 
interaction strength up to t = 4 to produce the final test suite. 

In addition to SA and ACA [12], other strategies also are 
based on the GA algorithm with less modification in the 
structure which produces a good result regarding efficiency. 
These strategies are PWiesGen [25], PWiesGenPM [22], tuned 
Genetic (GS) [62] and Genetic Algorithm for Pairwise Test 
Sets (GAPTS) [26]. Notably, PWiesGenPM is better compared 
to GAPTS and GS is stronger than PWiesGenPM, GAPTS and 
PWiesGen. In order to address the variable strength problem, 
PWiesGen was extended [23] [to overcome this problem] with 
interaction strength (i.e. t = 6). This strategy is called 
PWiesGen-VSCA. 

According to the literature, the first HS or AI that supports 
the interaction strength (i.e. t = 6) is the PSTG [7] strategy 
based on the PSO algorithm. Further, this strategy shows good 
performance, but weak efficiency for the strength less than t = 3 
against the available strategies found in the literature. 
Calculating the weight to select the best test case to be stored 
needs big data by using a new approach. Accordingly, this 
strategy was extended to support the variable strength called 
VS-PSTG. Another strategy like PSTG that produces the test 
suite up to (i.e. t = 6) is the CS strategy [3], which is precisely 

like PSTG but is faster by using the utilised Cuckoo algorithm 
to reduce the search space. 

One of the most efficient strategies used to produce strong 
results and also supports strengths (i.e. t = 15) is HSS [4] 
which is based on the Harmony Search Algorithm. Either this 
is where the algorithm imitates the musicians behavior, which 
endeavors to compose enthralling music from random 
sampling or from improvisations (that is, adjusting a tune from 
their memory). In this strategy, it adds the test case in each 
iteration to the test suite and then goes on until the required 
coverage is met. Another efficient strategy used to produce a 
strong result, but having less support compared to HSS 
regarding strengths (i.e. t = 6), is HHH [63]. This strategy is 
characterised by using High-Level Hyper-Heuristic (HHH) as 
the first strategy [based on literature], where it uses four 
algorithms (i.e. meta-heuristic algorithm) instead of one. The 
four algorithms are; Teaching-Learning based Optimization 
(TLBO), PSO, Global Neighborhood Algorithm (GNA) and 
the Cuckoo Search algorithm. This strategy employs Tabu 
Search as the high-level search, then selects one of the four 
algorithms in each step, and depends highly on three explicit 
operators, on the basis of improvement, diversification, and 
intensification to adaptively choose the best meta-heuristic at 
any point in time to produce test cases. 

The test suite is also produced using the PSO family [28] 
according to the following strategies; DPSO, DMS-PSO, 
APSO, TVAC, CLPSO and CPSO. As any AI algorithm has 
disadvantages and advantages due to randomisation, PSO as 
one of the algorithms also has inherent weaknesses regarding 
efficiency, which is the velocity function. To address this 
problem, DPSO was used to produce a good result by 
generating the best solution. This strategy supports the 
interaction strength of more than 6, but the published result 
[28] is up to 4. 

D. Random Methods 

This method is an ad hoc approach where a random test 
case is selected by utilising input distribution [45]. Section 3.2 
mentioned that TVG utilised three methods to test case 
generation. One of these methods is a random method. 

IV. OVERVIEW OF ARTIFICIAL BEE COLONY 

The ABC algorithm is designed to trigger the honeybee 
colony foraging manner. A quintessential honeybee swarm 
comprised of three basic constituents e.g. source of food / 
employed foragers/failed recruits (onlookers and scout bees) 
[64]. The employed bees linked to a specific food source. They 
transmit important information such as (location, navigation 
and the profitability) of the food source and convey the data 
with the rest of the standby bees at the hive. The onlooker bees 
are responsible for food source discovery utilizing the 
information provided by employed bees. The scout bees 
assigned to random hunt the new food source. It is presumed 
that, the employed bees who are lacking of food source 
transformed into scout bees and begin a new search for the 
food source. It is inferred that the number of food source 
equates to the number of employed bees in the colony. In 
conclusion, the solution to the optimization problem is 
represented by the food source stand; meanwhile, the quality 
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(fitness) of the mentioned solution coincides with the quantity 
of food source [65]. 

ABC initiated a random population distribution of SN 
solutions (food source positions) in the search space, where SN 
signify the size of employed or onlooker bees. Each solution Xi 

(i = 1, 2, …, SN) will essentially be a D-dimensional vector 
provided that the number of optimization parameters to be D. 
All solutions generated at this stage can be obtained from Eq. 
(2). 

    =        + rand(0,1)(        -       )           (2) 

Here, Xmin and Xmax are respectively the lower and upper 
boundary parameters for solution xi in dimension j (j = 1, 2 … 
D), and rand [0,1] is a scaling factor representing a random 
number between [0,1]. The D-dimensional solutions (food 
source positions) generated in the initialization step (C = 0) are 
subject to repeated cycles (C = 1, 2 …, MCN), until a 
termination criterion is satisfied. One ABC cycle required both 
implementation of global and local probabilistic 
search/selection. Every cycle demands various task 
performance by various bee types as illustrated in the flowchart 
(Fig. 2). The operations are initially independent and can be 
justified in distinct manner as below for clearer vision of the 
ABC methodology. 

1) Employed bee step: After the employed bees convey the 

information to onlooker bees post evaluation of their sources 

fitness (solutions). Each employed bee agitated the old solution 

(Xij) in its memory to create a potential solution using the Eq 

(3) below: 

Vij = Xi, j + rand [-1, 1] (X ij –X kj)            (3) 

 

Fig. 2. The ABC Algorithm Flowchart. 

Here, K{1, 2, …, D} and j{1, 2, …, SN} (k s i) are 
randomly chosen indexes, and rand [-1,+1] is a random number 
between [1,1], which works as a scaling factor.  Evidently, the 

perturbation on solution is inversely proportional to optimum 
solution approached in the search space. The employed bee 
will also evaluate the fitness of the new (perturbed) solution 
and according to greedy-selection scheme, supposing the 
fitness value is better, it will replace the old one from 
employed bee memory. 

2) Onlooker bee step: The duty of onlooker bee it to search 

for food source (solution), in reference to the association of 

probability value and food source Pi. The calculation of Pi is as 

the expression below in Eq. 4: 

Pi= 
    

∑     
  
   

              (4) 

The fitness value of certain solution is signified by fit and 
solution number is referred to the subscript index. By 
comparing Pi against a randomly picked number ranging 
between [0, 1], the probabilistic selection is applied. The 
selection will be only be accepted if the random number 
generated is less than or equal to Pi. The approval of 
probabilistic selection will determine the authorization of an 
onlooker bee assignment to a given solution. Normally, the 
calculation of fitness value of solutions in problems 
minimization is carried as the following in Eq. 5: 

     {
      

 

    
                        

    |  |                    
            (5) 

The objective function for solution i is signified by fi. 
Assuming the selected food source matches with Pi probability, 
with Eq. (3) the onlooker bee will select a better food source 
(solution) in the area of the previous one in her memory. 
Suppose the fitness value of the solution is better, the onlooker 
bee will auto update the latest solution in her mind, 
disregarding the old one, which is akin to employed bees. 

3) Scout bee step: The scout bees are assigned to search 

random food source in order to discover better solution for the 

global optimization problem. The scout bees are different from 

employed/onlooker bees as they are not committed to old 

solution in order to create trial solution. They obtained their 

samples from a broad set of D dimensional vectors, in 

condition it is still within the search space zone. In ABC, the 

solution will be disregard if the (non-global) solution cannot be 

improvised post a pre-evaluated cycle‟s number. This will 

affect the assigned employed bee and transformed it to scout 

bee with limited scout type behavior. The limit also known as 

the value of this pre-evaluated cycle numbers is a crucial 

control factor of this algorithm. The limit is expressed as 

below. 

Limit = c.ne .D 

Where, Ne signify the number of unemployed bees, while c 
is constant coefficient with a recommended value of 0.5 or 1. 
ABC application minimum requirement is one scout bee 
implementation. Scout-type operations hypothetical searches in 
the completely D-dimensional space provide exceptional 
effectiveness to the ABC method in searching the best global 
solution. Scout bees are independent when it comes to global 
optimum solution discovery in comparison to other bee types. 
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Both (employed/onlooker) concurrently check on their local 
candidate solutions for the global best. Thus, it is impossible 
for ABC to be trapped in local optima [64]. 

V. PROPOSED STRATEGY 

In this study, to fulfil the optimal test suite, a new strategy 
is proposed. The proposed strategy uses ABC algorithm as the 
backbone algorithm to generate the test suites. Generally, the 
ABCVS strategy undergoes three phases during the 
construction of the uniform and variable t-way test suite 
generation using; (1) ABCVS input analysis algorithm, (2) 
ABCVS interaction generation algorithm and (3) generating 
the test suite using ABC algorithm as shown in Fig. 3. In 
Section 5.1, it discusses how to set up the input for the next 
phase and describes the generating of the interaction tuples by 
using the interaction generation algorithm. The ABCVS test 
suite construction is described in Section 5.2. 

 

Fig. 3. ABCVS Strategy Design. 

A. Input Analysis & Interaction Generation Element 

Algorithm 

This section illustrates how the strategy receiving the CA, 
MCA and VSCA (inputs) and generation of the interaction 
parameter (P) combinations, compute and store the interaction 
element for each of the parameters to be used later for the test 
case coverage evaluation; based on the values (v) and the 
specified interaction strengths (t). To clarify the input analysis 
and the interaction generation elements, Fig. 4 shows a small 
VSCA configuration as an example illustrated by using a 
flowchart. 

The value interaction elements of each parameter are then 
constructed based on the parameter interactions. As shown in 
the previous example (N; 2, 2

3 
3

1
, {CA (3, 2

3
)}), the main 

configuration has four parameters, where the first three 
parameters have two values (0 and 1), and the fourth parameter 
has three values (0, 1, and 2) with interaction strength tm = 2. 
The sub-configuration has three parameters, each having two 
values (0 and 1) with interaction strength ts = 3. As illustrated 
in Fig. 4, the generation approach for the main configuration 

(tm = 2) has six possible combinations of the interaction's 
parameters. For example, the possibility of the interaction 
elements for combinations (0 B2 0 B4) is 2 ×3 for both the 
second and fourth parameters, and the possibility of the 
interaction elements for combinations (B1 0 B3 0) is 2 ×2 
between the first and third parameters. In order to check the 
availability of the parameters, the algorithm scans the binary 
digit of the combination, where each value of the other 
parameters is included in the interaction element. Regards to 
the rest of the values (i.e., replaced with “X”) indicates “don‟t 
care” is the excluded value in the interaction element. The 
interaction elements of the sub-configuration were produced 
similarly to that as depicted in Fig. 4. Generating the 
interaction elements for each test case continues until creating 
the final test suite. This method is illustrated in the next 
section. 

 

Fig. 4. An Illustration Example for the ABCVS Strategy. 

B. The Test Suite Generation Algorithm 

According to Fig. 3 that showed the responsible algorithm 
for the parameter combination generator, and the interaction 
elements combination generator based on the interaction 
strength, this will generate the possible interaction elements. In 
this strategy, a unique answer is produced in each step of the 
algorithm, which has no effect on the next test case selection. 
Selecting a test case is the most challenging problem in test 
suite generation, to achieve the test objective with a minimum 
number of test cases. In ABCVS, each procedure in this 
algorithm generates the best solution, which does not affect the 
next test case selection. For example, at every stage, the first of 
each bee (employed and onlooker) is randomly valued by the 
scout bee to the number of food source (which represents a test 
case) within a particular area. Following the valuation, the 
quality of food source is called the fitness value (coverage or 
weight) which is calculated based on the fitness function, and 
the results are presented to the employed bees. The employed 
bees optimise the solutions (food source position), calculate 
their qualities again, and present the results to the onlooker 
bees. The onlooker bees calculate the probability of selecting 
the solutions. Then, these values are normalised, and the food 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

266 | P a g e  

www.ijacsa.thesai.org 

source with higher quality (fitness) are greedily selected, and 
the proposed solutions are optimised again by the random 
values and the values of neighbors. The quality of the proposed 
solutions based on the fitness function is again specified. The 
onlooker bees investigate the solutions and select the best 
solution for storing. If it is an obsolete solution, the scout bee 
generates a new one. Otherwise, if the algorithm is finished, 
the final solution is registered as the output of the first stage, if 
not the algorithm should repeat. For instance, in Fig. 5, the test 
case is selected based on the maximum fitness (coverage or 
weight). The test case (1000) has the maximum weight of 
coverage, which is seven. Therefore, this test case (1000) adds 
to the final test suite by the test suite generation algorithm. 
Regarding the test case (1001) that does not reach the 
maximum coverage of fitness, the algorithm updates the 
population (food source) search space randomly to obtain the 
best fitness. 

 

Fig. 5. An Illustration Example for Selection Test Case based on the 

Maximum Coverage. 

VI. TUNING PARAMETER SETTING OF ABCVS 

There are three important control parameters in the 
proposed ABCVS strategy. These control parameters are the 
colony size number (employed bee and onlooker bee 

(population size)) equal to the number of food source, the value 
of Limit and the maximum cycle number (MCN). Growing the 
population size improves the outcome regarding both the 
generation time and the array size. In ABCVS, generating the 
final test suite plays a critical role based on the employed and 
onlooker phase. It is worth mentioning that these two phases 
are different in determining the value of configurations. In 
other words, both of t, p and v affect the number of iterations 
for the employed and onlooker phase. 

An experiment were conducted on CA (N; 2, 5
7
) with a 

variable number of the bee to determine this value. As shown 
in Fig. 6 conducted, the best value of this configuration for the 
number of bees is 1 (i.e. food source = population /2) when the 
number of cycles (70) is a test suite of size 38 test cases, and 
when the number of bees is 2, the number of cycles (100) is 37. 
Increasing the value of bees up to 3 and 4, when the number of 
cycles is (100) and (90), respectively, the algorithm achieves a 
test case of size 36 test cases. In these experiments, the Limit is 
kept constant = 100. Therefore, the value increasing does not 
affect the size, only increasing in the generation time. In Fig. 6, 
different colours that depend on the number of cycles show the 
size of the test cases. 

Fig. 7 illustrates the effects of the colony size (population 
size) on the array size in the same configuration CA (N; 2, 5

7
), 

and shows the best average test suite size for CA (N; 2, 5
7
). 

The population of size is variable from 1 to 10, and 20 to 100, 
when the number of cycles also is variable from 10 to 100 and 
Limit = 100 is considered. Regarding the test suite array size 
analysis, Meta-heuristic is a non-deterministic algorithm based 
on randomisation. Therefore, this analysis has two values. 
First, the best value as illustrated in Fig. 6, and the second 
value is the average of five independent runs. The best average 
is shown in Fig. 7 for the configuration CA (N; 2, 5

7
), where 

the best value for this configuration is 36 test cases. 

The analysis, in this case, is aimed at determining the 
suitable value for the colony size (population size) that depends 
on changing the values of p, t and v of the configuration. Each 
configuration then determines the suitable experiments. 
Therefore, the best average value is selected when the 
population size is 50, and the maximum number of cycles is 
80. Note that this value is related to the configurations in the 
tables of this paper. 

 

Fig. 6. The Best Test Suite Size with Variant Number of Bee for CA (N; 2, 57). 
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Fig. 7. The Best Average Test Suite Size with Variant Number of Bee for CA (N; 2, 57). 

VII. EVALUATION 

In this section, there are two parts in the evaluation of the 
test suite generation strategies; (1) the efficiency evaluation 
(i.e. test suite size) and (2) the performance evaluation (i.e. the 
time of test suite generation) [62]. The test suite size and the 
interaction strength are not affected by the operating system 
and hardware but depend on the steps of the algorithm's 
running. Different strategies are selected in different tables 
based on the criterion; Tables IV-VIII are divided into two 
categories. In the first category, the available strategies that can 
be implemented in our system are included regarding 
efficiency; ABCVS is compared with these strategies. The 
second category contains unavailable strategies as discussed 
regarding efficiency and performance by other researchers. The 
comparison of these strategies has been conducted based on 
efficiency and performance. Therefore, it implements some of 
the AI strategies since many are unavailable in the same 
conditions of the proposed strategy (i.e. hardware and 
software). Regarding the Tables IV-VIII of configurations, the 
mentioned strategy's values are available, and used the same 
value as that published in the papers; otherwise, implementing 
the strategies on the system is used to obtain the result. 

The characteristics of the hardware system for conducting 
the experiments of the proposed strategy consisted of a 
Windows 7 (OS) desktop computer with 3.40 GHz Xeon (R) 
CPU E3 and 8GB RAM. The Java language JDK 1.8. was used 
to code and implement the ABCVS. In this paper, the best 
outcome in the tables is shown in bold and in dark cells. Also, 
“NA” (Not Available) means not publishing, and “NS” (Not 
Supported) means does not support the corresponding 
configuration. 

A. Evaluation of the Efficiency 

In Table IV, the array size evaluation is divided into five 
parts; the interaction strength 2 ≤ t ≤ 6 and parameter 3 ≤ p ≤12 
and value and V = 3 for configuration CA (N; t, p, v). The 
outcome of IPOD-D and IPOG are adopted from the Advanced 
Combinatorial Testing System (ACTS) [66]. These strategies 
do not normally generate good results as well as for PICT, 
TConfig and Jenny. Whereas, IPOG-D, IPOG and TConfig 

support generation of the interaction strength up to t = 6. As 
shown in Table VII, other AI-based strategies are studied. The 
results of CS and PSTG are unavailable and are obtained from 
the papers. CS and PSTG generate similar results. The 
strongest strategy in terms of producing the best result is 
DPSO, where it showed results for t ≤ 4 obtained from [24], for 
each configuration of 30 separate runs. Regarding the weak 
performance of DPSO (i.e. speed), it is impossible to 
implement each configuration of 30 runs because in CA (2512; 
6, 3

12
) 23,620 s are required, thus will take more than 7 days. 

Other results are available from [67]. The result for t > 4 is 
obtained with 3 runs only. CS another AI-based strategy has 
generated a good result. In this case, the obtained result for t > 
4 is adopted in 3 runs only because of the low performance of 
this strategy. To be fair, the ABCVS strategy is adopted in 5 
runs for t > 4, and 20 runs for the value t ≤ 4. 

The values in Tables V, VI and VII, are adopted from the 
corresponding paper [7]. Regarding the configuration system 
VSCA (N; 2, 3

15
, {C}) in Table V, where the PICT and 

WHITCH strategy produces undesirable results, these 
strategies have the capability to generate a test suite to t = 6. 
However, WHITCH produced better results. Another 
computational-based strategy is ParaOrder that had a better 
result compared to PICT and WHITCH up to t = 3 but does not 
support in generating a test suite for t ≥ 4. As shown in this 
table, AI-based strategies are considered the strongest 
strategies. The strongest strategies that generate the best results 
are SA and ACS when the strength is 3. However, these 
strategies are not able to produce a test suite of more than 3. 
Regarding the strategies such as PwiseGen-VSCA, ABCVS, 
GS and PSTG, these are better than the other strategies in 
terms of support strength of more than 3 and less than 6. IPOG 
and GS have the support strength more than 6. 

Table VI shows the configuration VSCA (N; 3, 3
15

, {C}), 
where PSTG, GS and ABCVS strategies generate good results 
for strength up to t = 6, but IPOG and GS produce a better test 
suite for strength more than 6. However, ACS and SA are not 
able to generate a result due to not having support strength of 
more than 3. Also, the results for Density and ParaOrder are 
not available. 
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Regarding the configuration system VSCA (N, 2, 4
3
 5

3
 6

2
, 

{C}) in Table VII, the results of PwiseGen-VSCA and GS 
strategies are not available as well as for the ParaOrder and 
Density strategies for most subsets ({C}), but not all. 
Furthermore, WHITCH and PICT have support strength up to 

6, but these strategies do not generate a good result. ABCVS, 
TVG and PSTG strategies have the capability to generate better 
results for strength t = 6, and ACS and SA produced a better 
result for strength t = 3. 

TABLE IV. A TEST SUITE SIZE FOR CA (N; T, 3P) WITH 2 ≤ T ≤ 11 AND 3 ≤ P ≤ 12 

t P 

Pure computation strategies AI-based strategies 

Jenny 

Best 

TConfig 

Best 

PICT 

Best 

IPOG-D 

Best 

IPOG 

Best 

DPSO 

Best 

PSTG 

Best 

CS 

Best 

GS 

Best 

ABCVS 

Best 

ABCVS 

Avg. 

2 

3 9 10 10 15 9 9 9 9 9 9 9.95 

4 13 10 13 15 9 9 9 9 9 9 10.70 

5 14 14 13 15 15 11 12 11 11 11 12.75 

6 15 15 14 15 15 14 13 13 13 13 14.75 

7 16 15 16 15 15 14 15 14 14 15 15.50 

8 17 17 16 15 15 15 15 15 15 15 15.90 

9 18 17 17 15 15 15 17 16 15 16 17.25 

10 19 17 18 21 15 16 17 17 16 17 17.70 

11 17 20 18 21 17 17 17 18 16 17 18.45 

12 19 20 19 21 21 16 18 18 16 18 19.25 

3 

4 34 32 34 27 32 27 27 28 27 27 33.50 

5 40 40 43 45 41 41 39 38 38 38 41.45 

6 51 48 48 45 46 33 45 43 43 44 46.85 

7 51 55 51 50 55 48 50 48 49 49 51.90 

8 58 58 59 50 56 52 54 53 54 54 55.85 

9 62 64 63 71 63 56 58 58 58 58 59.80 

10 65 68 65 71 66 59 62 62 61 62 64.25 

11 65 72 70 76 70 63 64 66 63 66 68.15 

12 68 77 72 76 73 65 67 70 67 70 72.10 

4 

5 109 97 100 162 97 81 96 94 90 98 103.65 

6 140 141 142 162 141 131 133 132 129 135 138.75 

7 169 166 168 226 167 150 155 154 153 157 161.45 

8 187 190 189 226 192 171 175 173 173 179 182.05 

9 206 213 211 260 210 187 195 195 194 197 200.95 

10 221 235 231 278 233 206 210 211 209 215 217.90 

11 236 258 249 332 251 221 222 229 223 234 236.50 

12 252 272 269 332 272 237 244 253 236 251 254.20 

5 

6 348 305 310 386 305 244 312 304 301 274 317.70 

7 458 477 452 678 466 438 441 434 432 442 449.95 

8 548 583 555 756 575 517 515 515 515 530 534.20 

9 633 684 637 1043 667 591 598 590 594 609 613.50 

10 714 773 735 1118 761 667 667 682 672 688 690.60 

11 791 858 822 1372 851 735 747 778 741 762 765.50 

12 850 938 900 1449 929 802 809 880 806 814 817.71 

6 

7 1089 921 1015 1201 921 729 977 973 963 944 984.35 

8 1466 1515 1455 1763 1493 1409 1402 1401 1399 1424 1438.6 

9 1840 1931 1818 2526 1889 1682 1684 1689 1681 1756 1767.0 

10 2160 >day 2165 2834 2262 1972 1980 2027 1980 2055 2060.1 

11 2459 >day 2496 3886 2607 2250 2255 2298 2258 2261 2269.2 

12 2757 >day 2815 4087 3649 2512 2528 2638 2558 2571 2576.5 
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TABLE V. TEST SUITE SIZE FOR VSCA (N, 2, 315, {C}) 

{C} 

Pure computation strategies AI-based strategies 

WHITCH 

Best 

IPOG 

Best 

ParaOrder 

Best 

Density 

Best 

TVG 

Best 

PICT 

Best 

SA 

Best 

ACS 

Best 

PSTG 

Best 

GS 

Best 

PwiseGen 

Best 

ABCVS 

Best 
ABCVSAvg. 

Ø 31 21 33 21 22 35 16 19 19 19 16 20 21.3 

CA (3, 33) 48 27 27 28 27 81 27 27 27 28 27 27 27.85 

CA (3, 34) 59 39 27 32 35 105 27 27 30 29 27 32 35.1 

CA (3, 35) 62 39 45 40 41 131 33 38 38 38 33 41 42.9 

CA (4, 34) 103 81 NA NA 81 245 NA NA 81 81 81 81 81.2 

CA (4, 35) 118 122 NA NA 103 301 NA NA 97 92 91 90* 100.35 

CA (4, 37) 189 181 NA NA 168 505 NA NA 158 155 158 154* 160.2 

CA (5, 35) 261 243 NA NA 243 730 NA NA 243 243 243 243 243.1 

CA (5, 37) 481 581 NA NA 462 1356 NA NA 441 441 441 446 449.2 

CA (6, 36) 745 729 NA NA 729 2187 NA NA 729 729 729 729 729 

CA (6, 37) 1050 967 NA NA 1028 3045 NA NA 966 960 NA 956 961.1 

CA (3, 34) 

CA (3, 35)  
CA (3, 36) 

114 51 44 46 53 1376 34 40 45 NA NA 82 85.1 

CA (3, 36) 61 53 49 46 48 146 34 45 45 46 40 45 46.7 

CA (3, 37) 68 58 54 53 54 154 41 48 49 50 47 50 51.85 

CA (3, 39) 94 65 62 60 62 177 50 57 57 57 57 58 60.1 

CA (3, 15) 132 NS 82 70 81 83 67 76 74 75 74 81 83.2 

TABLE VI. TEST SUITE SIZE FOR VSCA (N, 3, 315, {C}) 

{C} 

Pure computation strategies AI-based strategies 

WHITCH 

Best 

IPOG 

Best 

ParaOrder 

Best 

Density 

Best 

TVG 

Best 

PICT 

Best 

SA 

Best 

ACS 

Best 

PSTG 

Best 

GS 

Best 

PwiseGen 

Best 

ABCVS 

Best 

ABVCS 

Avg. 

Ø 75 82 NA NA 84 83 NS NS 75 74 NA 81 83.25 

CA(4, 34) 129 87 NA NA 93 1507 NS NS 91 88 NA 93 96.1 

CA(5, 35) 273 243 NA NA 244 5366 NS NS 243 243 NA 243 246.2 

CA(6, 36) 759 729 NA NA 729 12,609 NS NS 729 729 NA 729 729 

CA(4, 35) 151 119 NA NA 118 1793 NS NS 114 111 NA 115 118.6 

CA(5, 36) 387 337 NA NA 323 5387 NS NS 314 308 NA 316 329.15 

CA(6, 37) 1441 1215 NA NA 1018 16,792 NS NS 1002 959 NA 949* 956.6 

CA(4, 37) 219 183 NA NA 168 2781 NS NS 159 158 NA 157* 161.9 

CA(4, 39) 289 227 NA NA 214 3095 NS NS 195 194 NA 196 199.9 

CA(4, 11) 354 259 NA NA 256 2824 NS NS 226 226 NA 333 237.0 

CA(4, 15) 498 498 NA NA 327 NA NS NS 284 282 NA 308 441 

CA(5, 37) 481 713 NA NA 471 7475 NS NS 437 437 NA 439 448.7 

CA(5, 38) 620 714 NA NA 556 8690 NS NS 516 516 NA 527 535.65 

CA(6, 38) 1513 2108 NA NA 1479 22,833 NS NS 1396 1397 NA 1424 1436 

CA(6, 39) 1964 2124 NA NA 1840 26,729 NS NS 1690 1687 NA 1752 1763 
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TABLE VII. TEST SUITE SIZE FOR VSCA (N, 2, 43
 53

 62, {C}) 

{C} 

Pure computation strategies AI-based strategies 

WHITCH 
Best 

IPOG 
Best 

ParaOrder 
Best 

Density 
Best 

TVG 
Best 

PICT 
Best 

SA 
Best 

ACS 
Best 

PSTG 
Best 

GS 
Best 

PwiseGen 
Best 

ABCVS 
Best 

ABCVS 
Avg. 

Ø 48 43 49 41 44 43 36 41 42 NA NA 44 44 

CA (3, 43) 97 83 64 64 67 384 64 64 64 NA NA 64 64 

CA (3, 43 52) 164 147 141 131 132 781 100 104 124 NA NA 128 128 

CA (3, 53) 145 136 126 125 125 750 125 125 125 NA NA 125 125 

CA (4, 43 51) 354 329 NA NA 320 1920 NS NS 320 NA NA 320 320 

CA (5, 43 52) 1639 1602 NA NA 1600 9600 NS NS 1600 NA NA 1600 1600 

CA (3, 43) CA (3, 53) 194 136 129 125 125 8000 125 125 125 NA NA 125 125 

CA (4, 43 51) CA (4, 52 

62) 
1220 900 NA NA 900 288,000 NS NS 900 NA NA 900 900 

CA (3, 43) CA (4, 53 61) 819 750 NA NA 750 48,000 NS NS 750 NA NA 750 750 

CA (3, 43) CA (5, 53 62) 4569 4500 NA NA 4500 288,000 NS NS 4500 NA NA 4500 4500 

CA (4, 43 52) 510 512 NA NA 496 2874 NS NS 472 NA NA 463* 463 

CA (5, 43 53) 2520 2763 NA NA 2592 15,048 NS NS 2430 NA NA 2403* 2403 

CA (3, 43 53 61) 254 215 247 207 237 1266 171 201 206 NA NA 213 213 

CA (3, 51 62) 188 180 180 180 180 900 180 180 180 NA NA 180 180 

CA (3, 43 53 62) 312 NS 307 256 302 261 214 255 260 NA NA 266 266 

TABLE VIII. TEST SUITE SIZE AND TIME FOR CA (N; T, 7, 37) WITH 2 ≤ T ≤ 7 

t Pure computation strategies AI-based strategies 

 
Jenny 
N/Time 

TConfig 
N/Time 

PICT 
N/Time 

IPOG-D 
N/Time 

IPOG 
N/Time 

DPSO 
N/Time 

HSS 
N/Time 

PSO 
N/Time 

CS 
N/Time 

GS 
N/Time 

ABCVS 
N/Time 

2 16/0.04 15/0.08 16/0.01 18/0.001 15/0.001 14-Mar 14/0.92 15/2.2 15/0.28 14/0.22 14/2.1 

3 51/0.09 55/0.43 51/0.04 50/0.001 55/0.001 48/23 50/4.02 50/8.2 50/3.1 49/0.78 49/23.07 

4 169/0.3 166/8.24 168/0.09 226/0.001 167/0.001 150/156 154/23.1 157/33.2 156/6.2 153/3.01 157/148.7 

5 458/0.72 477/72.96 452/0.7 678/0.062 466/0.001 438/191 438/70.8 439/113 436/19.1 432/8.85 439/457.9 

6 1087/1.10 921/425.52 1015/1.20 1201/0.062 921/0.001 729/147 926/107.8 981/382 973/31 963/16.98 862/343.5 

TABLE IX. TEST SUITE SIZE AND TIME FOR CA (N; 3, 3P) WITH 4 ≤ P ≤ 20 

P Pure computation strategies AI-based strategies 

 
Jenny 

N/Time 

TConfig 

N/Time 

PICT 

N/Time 

IPOG-D 

N/Time 

IPOG 

N/Time 

DPSO 

N/Time 

HSS 

N/Time 

PSO 

N/Time 

CS 

N/Time 

GS 

N/Time 

ABCVS 

N/Time 

4 34/0.01 32/0.07 34/0.04 27/0.001 32/0.001 27-Feb 30/1.9 28/4.2 27/1.30 27/0.40 31/1.1 

5 40/0.03 40/0.10 43/0.09 45/0.001 41/0.001 41/7 39/2.7 39/6.1 38/2.09 38/0.63 40/3.2 

6 51/0.09 48/0.31 48/0.13 45/0.001 46/0.001 33/10 44/3.2 45/7.5 45./2.63 43/0.73 45/9.6 

7 51/0.07 55/0.43 51/0.23 50/0.001 55/0.001 48/23 50/4.02 50/8.2 50/3.12 49/0.78 49/24.7 

8 58/0.07 58/1.23 59/0.36 50/0.001 56/0.001 52/36 54/4.8 54/9.3 55/4.04 54/0.86 55/55.3 

9 62/0.08 64/1.72 63/0.57 71/0.001 63/0.001 56/55 59/6.01 58/10.5 60/4.69 58/1.11 59/117.8 

10 65/0.10 68/2.84 65/0.64 71/0.001 66/0.001 59/81 62/7.3 62/11.3 64/5.60 61/1.24 63/248.2 

11 65/0.12 72/3.93 70/0.70 76/0.001 70/0.001 63/115 66/9.6 64/12.8 66/7.12 63/1.28 67/534.4 

12 68/0.18 77/5.24 72/0.79 76/0.001 73/0.001 65/157 67/11.5 67/13.6 70/8.41 67/1.53 71/702.7 
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TABLE X. TEST SUITE SIZE AND TIME FOR CA (N; 3, V7) WITH 2 ≤ V ≤ 6 

v Pure computation strategies AI-based strategies 

 
Jenny 
N/Time 

TConfig 
N/Time 

PICT 
N/Time 

IPOG-D 
N/Time 

IPOG 
N/Time 

DPSO 
N/Time 

HSS 
N/Time 

PSO 
N/Time 

CS 
N/Time 

GS 
N/Time 

ABCVS 
N/Time 

2 14/0.04 16/0.03 15/0.09 14/0.001 16/0.001 15-Jun 12/0.9 12/1.7 13/0.82 12/0.19 12/3.9 

3 51/0.09 55/0.43 51/0.19 50/0.001 55/0.001 48/24 50/4.02 50/8.2 50/2.1 50/0.78 49/23.3 

4 124/0.12 112/2.57 124/0.53 112/0.001 124/0.001 112/54 121/5.9 118/21.7 119/6.6 117/1.83 119/97.1 

5 236/0.61 239/03.18 241/0.78 252/0.001 237/0.001 216/172 233/18.5 226/43.2 233/14.4 231/3.63 230/368.6 

6 400/1.00 423/13.15 413/1.00 470/0.001 420/0.001 365/188 411/31.3 420/88.6 403/18.2 397/6.48 394/1076.2 

B. Evaluation of the Performance 

In Table VIII, the configuration CA (N; t,3
7
) for 2 ≤t ≤6 is 

used in terms of array size and time. TConfig strategy speed 
relies on t, where by increasing the t time will increase 
exponentially. IPOG-D and IPOG are fastest computational-
based strategies, where the test suite generation time almost 
near to zero that indicates the high performance. ABCVS and 
DPSO performance are very slowly. PICT, Jenny and GS are 
faster than ABCVS, but these strategies are not able to generate 
the final test suite in a less than day. Therefore, the proposed 
strategy it's better in terms of performance than PICT, Jenny 
and TConfig. The result of the proposed strategy shows the 
generation time of a test suite does not really rely on 
increasing t. 

Table IX displays the results in terms of array size and time 
of the strategies. The configuration CA (N; 3, 3

P
) is used to 

evaluate the variable of p on time generation. The growth of p 
has shown an impact on the proposed strategy in terms of time 
generation, but has less impact on TConfig performance. 

The last evaluation in terms of time generation, the 
configuration CA (N; 3, 7, v) for 2 ≤ v ≤ 10 is used in Table X. 
In this evaluation will test the impact of increasing the values 
on time generation. IPOG and IPOG-D are the fastest strategies 
in terms of the performance and DPSO is strongest on terms of 
array size. ABCVS generates close results to DPSO and GS. 

VIII. STATISTICALLY EVALUATION 

In order to evaluate the strategy regarding array size (i.e. 
effectiveness), a statistical method is another way to assess the 
significance of strategy. In this case, the Wilcoxon signed-rank 
test is used between ABCVS and each strategy in the 
experimental tables 95% confidence level (i.e. α =0.05). The 
reason for adopting this method is that the Wilcoxon signed-
rank test takes into account the difference between two sets. To 
study the difference of the two sets, this test is ideal. In other 
words, this test is measured from a subject group and can be 
rated. 

Due to the multiple comparisons, we need to control the 
error rate. Bonferroni-Holm correction was adopted to 
adjusting α value (i.e. in other words, based on Holm‟s 
sequentially rejective step down procedure [26]) depending on 
the first stored p-value (Asymp. Sig. (2-tailed)) in scaling in 
ascending order. Therefore, α Holm is adjusted based on: 

α Holm =
  

     
 

Note: Where M indicates the overall number of paired 
comparison and i indicates the test number. 

The test is executed using a software tool called SPSS, 
where if the value is less than α Holm of the Asymp. Sig. (2-
tailed), it indicates a significant difference between the two 
sets. There are four values to evaluate ABCVS; Ranks 
ABCVS>, ABCVS<, and ABCVS= are used. In other words, 
the results of the proposed strategy are greater, smaller or equal 
to the other existing strategies. Two values have a Statistical 
Test part; Asymp. Sig. (2-tailed) and Z. The value of Asymp. 
Sig. (2-tailed) indicates the significant difference between the 
two sets and that the value does not exceed α Holm. Regarding 
the value Z, it is out of the scope of this paper (i.e. not 
important). The strategies with N/A and N/S results are 
considered incomplete and ignored samples, as there is no 
available result for the specified test configuration. 

Tables XI–XIV present a statistical test for the Tables IV–
VII and Table XI presents the result of Table IV for the 
Wilcoxon test. ABCVS shows there is a significant difference 
with other strategies in column Asymp. Sig. (2-tailed), except 
for CS, which has a significant difference from ABCVS. 

Table XII presents the test results of Table V. IPOG, 
ParaOrder, Density, TVG, GS, SA, ACS and PwiseGenVSCA 
produce a test suite for strength less than 3 for t > 3 and the 
results are considered “missing”. For this reason, the IPOG, 
ParaOrder, Density, TVG, PSTG and GS results are better than 
ABCVS. Whereas, ABCVS performs better than WHITCH, 
PICT, SA, ACS and PwiseGen-VSCA in this table. 

Table XIII presents the test results of Table VI, where 
ABCVS excelled compared to WHITCH and GS strategies. 
Table XIV presents the test results of Table VII. TVG and 
PSTG are shown to have a significant difference compared to 
ABCVS. However, ABCVS excelled with the WHITCH, and 
PICT strategies. 

IX. DISCUSSION 

AI-based strategies are characterised by producing a strong 
result, although, not without having a complex structure and 
repetition of which the complex structure of the strategy is 
inversely correlated with the strategy‟s strength. For instance, 
ACO, GA and SA can produce a test suite with t <= 3. While 
CS and PSTG reduce complexity by changing the structure and 
raising the performance speed to support strengths up to t = 6. 
Notably, GS supports strengths up to t = 15. 
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IPOG, PICT and Jenny are computational based strategies 
having the capability to produce a test suite for t > 6 like AI-
based strategies. However, computational strategies do not 
produce good results but instead, do have good performance. 
Therefore, it is impossible to obtain a strategy that can support 
high interaction strength with perfect performance and 
efficiency. The ABCVS indicates that its efficiency regarding 
generating a test suite with t = 6 competes well compared to 
the other existing strategies. Further, ABCVS is better as 
compared to computational ones and can compete with AI-
based strategies regarding performance and efficiency. 

Although, ABCVS like any other strategy have limitations; 
for example, its contribution towards supporting variable 
strengths interaction. The ABCVS efficiency for strengths (i.e. t 
≤ 3) is slightly lower compared to others. Given the limited 
literature in this field, many of these strategies are not available 
publicly and therefore, in this study, the configurations reported 
and available in publications have been used. Therefore, further 
experiments need to be conducted in order to obtain a precise 
evaluation of the proposed strategy. 

TABLE XI. WILCOXON SIGNED RANK SUM TEST FOR TABLE IV. 

Pairs 
Ranks Test statistics 

Conclusion 
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦   

ABCVS- Jenny 2 36 2 -5.199269 0.00000020 0.00625000 Reject 

ABCVS- PICT 0 40 0 -5.522230 0.00000003 0.00714286 Reject 

ABCVS- IPOG-D 3 34 3 -5.107580 0.00000032 0.00833333 Reject 

ABCVS- IPOG 4 31 5 -4.662525 0.00000300 0.01000000 Reject 

ABCVS- DPSO 34 2 4 -4.999589 0.00000057 0.01250000 Reject 

ABCVS- PSTG 22 5 13 -3.236855 0.00120900 0.01666667 Reject 

ABCVS- CS 20 8 12 -1.071752 0.28383200 0.02500000 Retain 

ABCVS- GS 31 2 7 -3.966042 0.00007300 0.05000000 Reject 

TABLE XII. TWILCOXON SIGNED RANK SUM TEST FOR TABLE V. 

Pairs 
Ranks Test statistics  

Conclusion 
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦   

ABCVS- WHITCH 0 16 0 -3.518549 0.000434 0.01250000 Reject  

ABCVS- TVG 1 9 6 -1.888148 0.059006 0.01666667 Retain 

ABCVS- PICT 0 16 0 -3.516196 0.000438 0.02500000 Reject 

ABCVS- PSTG 8 3 5 -0.757616 0.448681 0.05000000 Retain 

TABLE XIII. WILCOXON SIGNED RANK SUM TEST FOR TABLE VI. 

Pairs 
Ranks Test statistics  

Conclusion 
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦   

ABCVS- WHITCH 1 14 0 -3.353003 0.000799 0.01000000 Reject 

ABCVS- IPOG 2 11 2 -2.480941 0.013104 0.01250000 Retain 

ABCVS- TVG 1 12 2 -2.341884 0.019187 0.01666667 Retain 

ABCVS- PSTG 11 2 2 -2.103645 0.035409 0.02500000 Retain 

ABCVS- GS 11 2 2 2.551605 0.010723 0.05000000 Reject 

TABLE XIV. WILCOXON SIGNED RANK SUM TEST FOR TABLE VII. 

Pairs 
Ranks Test statistics  

Conclusion 
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦   

ABCVS- WHITCH 0 15 0 -3.410523 0.000648 0.01250000 Reject 

ABCVS- TVG 0 6 9 -2.201398 0.027708 0.01666667 Retain 

ABCVS- PICT 2 13 0 -3.237382 0.001206 0.02500000 Reject 

ABCVS- PSTG 4 2 9 -0.104828 0.916512 0.05000000 Retain 
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X. CONCLUSION 

This paper proposes an efficient strategy called ABCVS, 
based on the ABC algorithm for both uniform and variable 
CAs. Supporting variable strength is the main contribution of 
ABCVS. In addition to the supporting variable strength, 
ABCVS can generate a test suite up to t = 6 and can produce a 
good result with suitable performance. To study the impact of 
parameters like population size or a number of cycles, different 
experiments have been conducted. The suitable tuning 
parameters of the proposed ABCVS strategy results in better 
ABCVS, regarding higher interaction, performance and 
efficiency. Furthermore, different experiments have been 
conducted on different configurations to compare ABCVS with 
existing strategies, where ABCVS shows it can compete 
against the other strategies regarding both efficiency and 
performance. As part of our future work, we want to study 
other metaheuristic approaches to hybrid these with ABC to 
increase efficiency. This hybridisation should be performed in 
a way that does not decrease performance and can increase the 
support for test suite generation for t > 6. 
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