
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

259 | P a g e

www.ijacsa.thesai.org

ABCVS: An Artificial Bee Colony for Generating

Variable T-Way Test Sets

Ammar K Alazzawi
1
, Helmi Md Rais

2
, Shuib Basri

3

Department of Computer and Information Sciences, Faculty of Science and Information Technology

Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia

Abstract—To achieve acceptable quality and performance of

any software product, it is crucial to assess various software

components in the application. There exist various software-

testing techniques such as combinatorial testing and covering

array. However, problems such as t-way combinatorial explosion

is still challenging in any combinatorial testing strategy, as it

takes into consideration the entire combinations of input

variables. Therefore, to overcome this problem, several

optimizations and metaheuristic strategies have been suggested.

One of the most effective optimization algorithms based

techniques is the Artificial Bee Colony (ABC) algorithm. This

paper presents t-way generation strategy for both a uniform and

variable strength test suite by applying the ABC strategy

(ABCVS) to reduce the size of the test suite and to subsequently

enhance the test suite generation interaction. To assess both the

effectiveness and performance of the presented ABCVS, several

experiments were conducted applying various sets of

benchmarks. The results revealed that the proposed ABCVS

outweigh the existing based strategies and demonstrated wider

interaction between components as opposed to AI-search based

and computational based strategies. The results also revealed

higher prospect of ABCVS in the aspect of its effectiveness and

performance as observed in the majority of case studies.

Keywords—T-way testing; variable-strength interaction;

combinatorial testing; covering array; test suite generation;

artificial bee colony algorithm

I. INTRODUCTION

For investigate acceptable quality and performance for any
software product, it is important to assess the various software
components in the application. Software testing is afforded
with many techniques and tools, divided into two major
categories; Black box and White box testing. The inner
components of the system under test (SUT) in performing
white-box testing, are considered during the generation of the
test case, while the input variables and how they interact as a
significant function in black-box testing, occurs during test
suite production [1]. Due to the complexity of the most
software systems, therefore, all-inclusive testing taking the
entire configurations and interactions into consideration is not
feasible due to computational constraints as well as the need for
sampling strategies [2]. From several of the techniques
available for black box software, both combinatorial testing
(CT) in addition to covering array (CA) are suitable approaches
used for testing purposes. In fact, some studies of t-way
interaction testing have indicated this form of testing to be
effective in identifying nearly all of the flaws in a typical
software system [3]. Notably, various uniform and variable

strength t-way techniques are documented throughout the
literature in this domain.

However, combinatorial explosion in a combinatorial
testing strategy such as a t-way is a problem. Moreover, while
it is not feasible to generate the entire combination of variables
in this case, it is necessary that a CA of minimum size be
generated. Generally, the minimum size of a CA is an
unspecified priori. Therefore, it is advisable to generate as
much CA as possible with several test cases within an
acceptable amount of time. Various strategies have been found
in the literature to produce the test suite size with uniform and
variable strength interaction. Accordingly, to assess such a
strategy, three features are required, namely; 1) the array size
of the test suites that denote the effectiveness, 2) speed of the
strategy, which refers to performance, and 3) portability of the
strategy to support adequate high interaction strength. Different
approaches have been adopted using numerous strategies, such
as; Artificial Intelligence (AI) based and Pure Computational-
based approaches [4]. These strategies are based on pure
computational-based approaches which are characterized by
their high performance but having worst efficiency, for
instance; In-Parameter-Order-General (IPOG-D) [5] and
Intelligent Test Case Handler (ITCH) [6]. While ITCH
generates test suites of small array sizes, the IPOG D strategy,
on the other hand, has a fast-paced approach. Previous studies
have suggested that when a small interaction strength is
considered (i.e. t ≤ 3), it can cover most flaws in a typical
software system [7-12]. Subsequent research studies although,
have proposed the need to support the higher strength
interaction, particularly for complex systems [2, 4, 13-15].

The appropriate solution to address the problems associated
with the computation of the minimal test suite is by employing
a search-based software engineering (SBSE) technique [16-19].
By drawing inspiration from the SBSE technique, various
strategies have already been suggested towards the problem of
uniform and variable strength interaction (e.g. Simulated
Annealing (SA) [9-11, 20, 21], Genetic Algorithm (GA) [12,
21-27], Practice Swarm Optimization (PSO) [7, 28-30], Ant
Colony Algorithm (ACA) [8, 12], Harmony Search Algorithm
(HS) [4, 31, 32], Cuckoo Search (CS) [3, 33, 34], and the Bat
Algorithm (BA) [35-39]). Even though relevant strategies have
been found to be useful based on AI, they are noted in the
literature as being slow due to costly computations [3, 4, 7].
Another challenge encountered for some AI-based strategies
that are considered to be slow is support for small interaction
strengths (i.e. t ≤ 4) for generating test suites. Therefore, in this
paper, the ABC algorithm is proposed as an efficient and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

260 | P a g e

www.ijacsa.thesai.org

acceptable strategy, known as the Artificial Bee Colony
Strategy (ABCVS) continuous to our previous research [40, 41]
for uniform and variable strength interaction t-way minimal test
suite production. It is anticipated that ABCVS will address this
problem. In fact, experimental results have revealed that the
proposed ABCVS is able to support higher interaction strengths
up to t = 6 compared to other Artificial Intelligence (AI)-based
strategies. Furthermore, ABCVS it can compete against these
other strategies in the majority of the case studies examined in
the literature regarding efficiency (test suite generation) and
performance (speed) and against other AI-based strategies
having higher interaction strengths.

The remainder of this paper is structured accordingly.
Section II presents the background to this study, (i.e. CA and
MCA concepts) which is followed by Section III which surveys
„state of the art‟ testing strategies in this area. Section IV
provides an overview of an ABC which is then followed by
Section V describing the proposed strategy, consisting of two
parts: (1) construction of the covering matrix, and (2) the
proposed ABCVS. Section VI illustrates the tuning of the
ABCVS parameters. Section VII evaluates the ABCVS by
conducting several benchmark experiments in terms of
effciency and performance alongside with statistical analysis
evaluation by using Wilcoxon signed-rank test in Section VIII.
Section IX discusses the advantages, limitations and threats to
the validity of the approach, which followed by Section X
providing overall conclusions to the study and presenting
recommendations for future work.

II. COVERING ARRAY WITH PROBLEM DEFINITION MODEL

The strategy of a t-way testing is one of the most
minimization criteria used regarding the number of test cases
list. The t-way testing is a combinatorial approach, and “t” is
indicates the interaction strength [12], and one of the input
parameters. For example, assume that the (SUT) behavior is
represented by user input then the external and internal events
or the modes of the system parameters are controlled by
separate parameters (P). In this case, each separate value Vi has
a parameter, Xi. These Vi are selected from a fixed set of
values, consisting of value members. Each p-tuple…(X1, X2,
…,Xp) shows a test case where Xi ∈ Vi and 1 ≤ i ≤ P [29].

Using a practical software example, let us consider a web
configurable software system. This system is consists of five-
components, namely; a device, a processor, the operating
system (OS), browser, and a display. Fig. 1 illustrates their
relationships. This system has employed as a simple illustration
of the main idea in t-way testing regarding variable strength,
and uniform strength. Each component of this system is known
as a separate parameter, and each parameter has one or more
values. Table I displays the parameters of the system and their
values. In this example, the number of parameters is five,
consisting of 3-parameters with 2-values and 2-parameters with
2-values.

To produce different software settings of the system, the
software should be tested to identify any existing defects. In
this case, a test case can be used to determine particular settings
of the software. The total number of test cases are called the
test suite, where the test suite must identify existing defects.
For instance, assuming device 1 (Phone) is not able to use OS 2

(Windows). Therefore, the system will fail because the
operating system (OS) is Windows based and the device
parameter is the phone. Therefore, to detect faults, using 2-way
schema (Phone,-, Windows,-,-) at least one occurrence time
must be covered by the generated test suite.

To obtain „perfect‟ software that performs with no defects,
it is important to test all software components to cover all
possible parameters. In this example, 72 test cases (i.e. 2 × 2 ×
3 × 3 × 2) are required to cover all cases. Nowadays, software-
testing costs are rising due to the evolution and complexity of
the software and an increasing the number of parameters and
software levels. Since the failure of a limited number of
parameters is mainly caused by the interaction of the
parameters [12], it is not efficient to produce a comprehensive
test case. Therefore, to solve this problem, a particular
technique should be used such as a t-way testing approach as
an alternative to a more comprehensive test, where 2 ≤ t ≤ p. In
addition, it is worth noting that the "t" value denotes that the
final test suite consists of all possible t-way combinations as an
alternative to the p-way. However, it cannot identify the
interactions that are responsible for the software failure caused
if the "t" value is low.

All possible interaction combinations of the parameters are
covered by the combinatorial test, called the t-way CA for the
test that generates the test suite. In addition, the "t" value
defines the covering depth as well as the strength, and it is
considered an important factor that must be determined by the
tester. Overall, mathematically both the t-way approach and
CA have a direct relationship. Therefore, to define the t-way
approach, the following concept is used where CA is an array
size N × p, where N contains test cases, consisting of two
features:

Each column i contains some members of set Vi, |Vi| = Vi.
The rows of each sub-array of size N × t, cover all
combinations |Vk1| × |Vk2| ×…×|Vkt | of t at least once [29];
and if v1 = v2 =…== vp =v, then all possible cases are obtained
as given in Eq. (1)

FullCoverage = (

) x vt (1)

The CA is denoted by CA (N; t, p, v1, v2, …..,vp), and if v1
= v2 =…= v

p
= v, then it is denoted by CA (N; t, p, v) or CA (N;

t, v
p
) [29]. In some research references, if vi is different, it is

called a Mixed Covering Array (MCA) [38, 42-44].

In the earlier section, it was mentioned that the possible
number of test cases of a web configurable software system
was 72. In this case, 2-way (pairwise interaction) is used where
the total number of test cases has been reduced to nine as
shown in Table II, which displays all possible combinations for
available parameters. For example, both the parameters, device
and the OS, have six (i.e. 2 × 3) different 2-way cases including
(Pc, -, Android , -, -), (Pc, -, IOS, -, -), (Phone, -, Android , -, -),
(Phone, -, IOS, -, -), (Phone, -, Windows, -, -) and (Pc, -,
Windows, -, -), (see Table II).

The interactions between the parameters are important
given that most software is unstable, due to some of these
interactions having less impact. Some others interactions are
more likely related to system failure. In this case, CA along

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

261 | P a g e

www.ijacsa.thesai.org

with the variable strength is used effectively to determine the
various interactions. Various covering strengths exist in this
structure between the various sets of parameters. The VS
Covering Array (VSCA) is denoted by VSCA (N; t, p, v, {C})
where {C}, is consists of one or more CA (t′, p′, v) and p' is a
subset of p. A web configurable software system example is
next shown to understand VSCA. In the web configurable
software assumes that all parameter combinations require 2-
way and a device, processor and OS that requires 3-way

interaction. In this case, the configuration system is indicated as
VSCA (N; 2, 2

3
3

2
, CA (3, 2

2
3

1
)). Table III displays the

complete test suite to cover this configuration. Three more test
cases as shown in Table III, are added to Table II in order to
construct VSCA (12; 2, 2

3
3

2
, CA (3, 2

2
3

1
)). For this reason,

using VSCA not only covers all 2-way interactions of complete
parameters, but also covers all 3-way interactions of the
specified parameters.

Fig. 1. A Web Configurable Software System..

TABLE I. A WEB CONFIGURABLE SOFTWARE SYSTEM

Parameters

Device Processor OS Browser Display

PC (0) Dual core (0) Android (0) Firefox (0) 720 x 1280 (0)

Phone (1) Multi core (1) IOS (1) Chrome (1) 1024 x 768 (1)

 Windows (2) Safari (2)

TABLE II. TEST SUITE FOR CA (N; 2, 23
 32)

NO Device Processor OS Browser Display

1 PC (0) Dual core (0) IOS (1) Firefox (0) 720 x 1280 (0)

2 Phone (1) Multi core (1) Android (0) Firefox (0) 1024 x 768 (1)

3 Phone (1) Multi core (1) Windows (2) Chrome (1) 720 x 1280 (0)

4 PC (0) Dual core (0) Windows (2) Safari (2) 1024 x 768 (1)

5 PC (0) Dual core (0) Android (0) Chrome (1) 1024 x 768 (1)

6 Phone (1) Multi core (1) IOS (1) Safari (2) 1024 x 768 (1)

7 PC (0) Multi core (1) Android (0) Safari (2) 720 x 1280 (0)

8 Phone (1) Dual core (0) Windows (2) Firefox (0) 1024 x 768 (1)

9 Phone (1) Dual core (0) IOS (1) Chrome (1) 1024 x 768 (1)

TABLE III. TEST SUITE FOR VSCA (N; 2, 23
 32, CA (N; 3, 22

 31))

NO Device Processor OS Browser Display

1 PC (0) Dual core (0) IOS (1) Firefox (0) 800 x 1280 (0)

2 Phone (1) Multi core (1) Android (0) Firefox (0) 1024 x 768 (1)

3 Phone (1) Multi core (1) Windows (2) Chrome (1) 800 x 1280 (0)

4 PC (0) Dual core (0) Windows (2) Safari (2) 1024 x 768 (1)

5 PC (0) Dual core (0) Android (0) Chrome (1) 1024 x 768 (1)

6 Phone (1) Multi core (1) IOS (1) Safari (2) 1024 x 768 (1)

7 PC (0) Multi core (1) Android (0) Safari (2) 800 x 1280 (0)

8 Phone (1) Dual core (0) Windows (2) Firefox (0) 1024 x 768 (1)

9 Phone (1) Dual core (0) IOS (1) Chrome (1) 1024 x 768 (1)

10 PC (0) Dual core (0) Android (0) Firefox (0) 1024 x 768 (1)

11 PC (0) Multi core (1) IOS (1) Chrome (1) 800 x 1280 (0)

12 Phone (1) Dual core (0) Windows (2) Firefox (0) 800 x 1280 (0)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

262 | P a g e

www.ijacsa.thesai.org

III. RELATED WOR K

Throughout Over the last few decades, there have been
many studies in the literature that grouped into four main sets
to solve the CA problem [45]: (A) mathematic methods, (B)
greedy algorithms, (C) heuristic search algorithms, and (D)
random methods.

A. Mathematic Methods

The mathematician researcher uses mathematic methods
derived from the extensions of mathematical functions like the
Orthogonal Array (OA). To generate CA for optimal
mathematics, it is only available for specific configurations (i.e.
the parameters and values are required to be uniform) [12].
Notably, there are several strategies designed based on this
approach such as TConfig [46] and Combinatorial Test Service
(CTS) [47] strategies for the generalisation of an OA.
However, a major problem exists for the OA (i.e. as the
solution is only available for small configurations because of
the restriction).

B. Greedy Algorithms

Most greedy algorithm (GA) solutions initially begin to
generate all possible combinations (i.e. solutions) based on the
input variables; then, generate one test at a time until all
uncovered combinations are covered. A greedy algorithm is
different in this case compared to the other strategies for
generating test cases. In order to produce a test case using
greedy algorithms [3], there are two main approaches; (1) One-
test-at-a-time (one-line-at-time) and (2) One parameter-at-a-
time.

In each iteration, the one-test-at-a-time (OTAT) approach
adds a line (test case) to the test suite. The strategies that
adopted the one-test-at-time approach are; Pairwise
Independent Combinatorial Testing (PICT) [48], Automatic
Efficient Test Generator (AETG) [49], Deterministic Density
Algorithm (DDA) [50, 51], Test Vector Generator (TVG) [52,
53], Classification-Tree action-Tree Editor eXtended Logics
(CTE-XL) [54, 55], Jenny [56], ITCH [6], GTWay [2] and
Density algorithm, which is part of the DDA algorithm
(extension) that authorised the DDA to support the variable
strength CA. In this case, all the mentioned strategies belong to
pure computational-based strategies.

The AETG was the first type of strategy using the OTAT
approach to generate the test suite. AETG attempts to select a
number of test case candidates in every single cycle covering
most of the interactions and adds the selected test case to the
final test suite in a „greedy‟ fashion. Another greedy strategy
was used for many years, where mAETG [9] and mAETG-sat
[57] were extended to support the constraints. PICT [48] helps
in the generation of all interactions and randomly chooses the
required test cases by using the OTAT approach. Because of its
random attitude, this strategy tends to offer a non-optimal test
size. In addition, PICT has been able to generate test suite sizes
up to t > 6.

As a variant of the AETG, TVG [52] produced the best
results based on the three algorithms, namely; Random, Plus-
one, and T-reduced sets. However, given the limited literature
available, the details relating to the use of each algorithm
remains indistinct. Nevertheless, based on our experience

relative to the implementation of TVG, T-reduce usually
generates the most optimal outcome, unlike the other related
algorithms. In fact, TVG supported the interaction strength
(i.e., t < 10) to produce the test suite.

Another strategy showing good results regarding efficiency
for most configuration systems, as well as having good speed
using the OTAT approach, is the Jenny strategy [56]. This
strategy initially produces the test suite in order to cover one-
way interaction only and was then further developed to extend
the test suite to cover every 2-way interaction. This process,
pending all t-way interactions, tends to be covered. The major
competitor of Jenny is the Intelligent Test Case Handler,
known as ITCH [6] which depends entirely on an exhaustive
search algorithm for the producers of the interaction test suite.
However, it is considered to be one of the slowest strategies
compared to the other computational strategies regarding its
efficiency to produce good results for some configuration
systems. CTE_XL [54, 55] is another strategy based on the
Classification-Tree Method (CTM) that utilises the OTAT
approach called Classification-Tree Editor eXtended Logics
(CTE_XL). The fundamental idea behind this strategy is based
on several features that produce test suites by receiving the
input data which is then divided into the two subsets being
entirely different, and then gathering these subsets to produce
the test case which is then is added to the final test suite.
However, the CTE-XL strategy underpins low interaction
strength for producing the test suites (i.e., t ≤ 3). The most
reliable strategy in the computational technique that uses three
algorithms for producing the test suite is GTWay [2]. In this
strategy, the utilised algorithms are the t-way pair generation,
the parser algorithm, as well as the backtracking algorithm. In
the first instance, the parser algorithm helps to ensure that the
system configuration parameters are guided in order to be
utilised by the algorithm of the t-way pair generation. Then, the
algorithm of the t-way pair generation helps in the generation
of the required t-way parameter interaction based on a
symbolic representation that is defined based on the parser
algorithm. Finally, the backtracking algorithm needs to
iteratively go through the t-way pair sets to add up the values
of the t-way parameter's interactions for the generation of a
complete test t-way suite. Although, addressing the strength of
the high interaction in this instance is necessary (i.e. t ≤ 12).

Compared to the OTAT approach, the OPAT approach is
where the algorithm begins initially by choosing two
parameters. Then, the test suite is horizontally extended by
adding the rows one-by-one until the interaction parameters
have been covered, starting with a vertical extension to choose
more parameters, of which the process continues until the end.
One of the strategies that utilised the OPAT approach is IPO.
Other strategies based on the IPO include; IPOG [58], IPOG-D
[5], IPOG-F [59], IPO-s [60], and ParaOrder [61]. However,
ParaOrder and IPOG strategies can support a variable strength-
covering array.

C. Heuristic Search Algorithm

Nowadays, significant attention has been concentrated on
the Heuristic search (HS) or Artificial Intelligence (AI)
algorithms as part of the research interest in SBSE to solve
combinatorial interaction problems. HS is a potent technique to
produce the minimum array size for the test suite, although it is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

263 | P a g e

www.ijacsa.thesai.org

slow. Some of the most important heuristic search algorithms
include SA [9-11, 20, 21], GA [11, 12, 22-27, 62], ACA [8,
12], PSO [7, 28-30], Cuckoo Search [3, 33, 34], Tabu Search
(TS) [11, 63] and Harmony Search (HS) [4, 31, 32]. Initially,
most algorithms were implemented in order to produce
pairwise interaction (2-way), as by Stardom [8] such as; SA,
GA and TS. The literature also shows that these strategies
produce a weak result regarding efficiency given their complex
structure. However, later, SA [9], GA and ACA [12] were
extended to support the interaction strength (3-way).
Nevertheless, the efficiency of SA is much better compared to
TS and GA, and the efficiency of TS is better compared to GA.

In addition, SA, GA and TS are „grand‟ strategies that
support and only produce a test suite in CA. The results of the
SA strategy have indicated that it is stronger compared to both,
GA and ACA. Furthermore, both SA [10] and ACA [8]
algorithms were extended to support the variable strength
interaction up to (i.e. 3-way), where ACA is called, Ant
Colony System (ACS). Searching the large space using SA to
find the best test case utilised the Binary Search Algorithm
(BSA). Meanwhile, ACA tried to find the best path (i.e. where
every path represents a test case) until selecting the best path.
In this case, the best path was selected based on the calculated
weight. In GA, it begins randomly by selecting the test case
after initialising the population, where each test case
represented one chromosome. Then, through a fitness function,
the chromosome‟s weight is calculated, after changing the
functions (mutation and crossover) and at the end of the
process, the best test case (i.e. best chromosome) is added to
the final test suite. All these procedures continue until the
required coverage is met. Another strategy that supports CA in
by generating the test suites based on the PSO algorithm and
fuzzy techniques called Fuzzy Self-Adaptive PSO (FSAPSO)
[29]. FSAPSO is better compared to CS and DPSO regarding
efficiency, but the performance is weak due to the Fuzzy
computations. However, in this case, the strategy supported the
interaction strength up to t = 4 to produce the final test suite.

In addition to SA and ACA [12], other strategies also are
based on the GA algorithm with less modification in the
structure which produces a good result regarding efficiency.
These strategies are PWiesGen [25], PWiesGenPM [22], tuned
Genetic (GS) [62] and Genetic Algorithm for Pairwise Test
Sets (GAPTS) [26]. Notably, PWiesGenPM is better compared
to GAPTS and GS is stronger than PWiesGenPM, GAPTS and
PWiesGen. In order to address the variable strength problem,
PWiesGen was extended [23] [to overcome this problem] with
interaction strength (i.e. t = 6). This strategy is called
PWiesGen-VSCA.

According to the literature, the first HS or AI that supports
the interaction strength (i.e. t = 6) is the PSTG [7] strategy
based on the PSO algorithm. Further, this strategy shows good
performance, but weak efficiency for the strength less than t = 3
against the available strategies found in the literature.
Calculating the weight to select the best test case to be stored
needs big data by using a new approach. Accordingly, this
strategy was extended to support the variable strength called
VS-PSTG. Another strategy like PSTG that produces the test
suite up to (i.e. t = 6) is the CS strategy [3], which is precisely

like PSTG but is faster by using the utilised Cuckoo algorithm
to reduce the search space.

One of the most efficient strategies used to produce strong
results and also supports strengths (i.e. t = 15) is HSS [4]
which is based on the Harmony Search Algorithm. Either this
is where the algorithm imitates the musicians behavior, which
endeavors to compose enthralling music from random
sampling or from improvisations (that is, adjusting a tune from
their memory). In this strategy, it adds the test case in each
iteration to the test suite and then goes on until the required
coverage is met. Another efficient strategy used to produce a
strong result, but having less support compared to HSS
regarding strengths (i.e. t = 6), is HHH [63]. This strategy is
characterised by using High-Level Hyper-Heuristic (HHH) as
the first strategy [based on literature], where it uses four
algorithms (i.e. meta-heuristic algorithm) instead of one. The
four algorithms are; Teaching-Learning based Optimization
(TLBO), PSO, Global Neighborhood Algorithm (GNA) and
the Cuckoo Search algorithm. This strategy employs Tabu
Search as the high-level search, then selects one of the four
algorithms in each step, and depends highly on three explicit
operators, on the basis of improvement, diversification, and
intensification to adaptively choose the best meta-heuristic at
any point in time to produce test cases.

The test suite is also produced using the PSO family [28]
according to the following strategies; DPSO, DMS-PSO,
APSO, TVAC, CLPSO and CPSO. As any AI algorithm has
disadvantages and advantages due to randomisation, PSO as
one of the algorithms also has inherent weaknesses regarding
efficiency, which is the velocity function. To address this
problem, DPSO was used to produce a good result by
generating the best solution. This strategy supports the
interaction strength of more than 6, but the published result
[28] is up to 4.

D. Random Methods

This method is an ad hoc approach where a random test
case is selected by utilising input distribution [45]. Section 3.2
mentioned that TVG utilised three methods to test case
generation. One of these methods is a random method.

IV. OVERVIEW OF ARTIFICIAL BEE COLONY

The ABC algorithm is designed to trigger the honeybee
colony foraging manner. A quintessential honeybee swarm
comprised of three basic constituents e.g. source of food /
employed foragers/failed recruits (onlookers and scout bees)
[64]. The employed bees linked to a specific food source. They
transmit important information such as (location, navigation
and the profitability) of the food source and convey the data
with the rest of the standby bees at the hive. The onlooker bees
are responsible for food source discovery utilizing the
information provided by employed bees. The scout bees
assigned to random hunt the new food source. It is presumed
that, the employed bees who are lacking of food source
transformed into scout bees and begin a new search for the
food source. It is inferred that the number of food source
equates to the number of employed bees in the colony. In
conclusion, the solution to the optimization problem is
represented by the food source stand; meanwhile, the quality

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

264 | P a g e

www.ijacsa.thesai.org

(fitness) of the mentioned solution coincides with the quantity
of food source [65].

ABC initiated a random population distribution of SN
solutions (food source positions) in the search space, where SN
signify the size of employed or onlooker bees. Each solution Xi

(i = 1, 2, …, SN) will essentially be a D-dimensional vector
provided that the number of optimization parameters to be D.
All solutions generated at this stage can be obtained from Eq.
(2).

 = + rand(0,1)(-) (2)

Here, Xmin and Xmax are respectively the lower and upper
boundary parameters for solution xi in dimension j (j = 1, 2 …
D), and rand [0,1] is a scaling factor representing a random
number between [0,1]. The D-dimensional solutions (food
source positions) generated in the initialization step (C = 0) are
subject to repeated cycles (C = 1, 2 …, MCN), until a
termination criterion is satisfied. One ABC cycle required both
implementation of global and local probabilistic
search/selection. Every cycle demands various task
performance by various bee types as illustrated in the flowchart
(Fig. 2). The operations are initially independent and can be
justified in distinct manner as below for clearer vision of the
ABC methodology.

1) Employed bee step: After the employed bees convey the

information to onlooker bees post evaluation of their sources

fitness (solutions). Each employed bee agitated the old solution

(Xij) in its memory to create a potential solution using the Eq

(3) below:

Vij = Xi, j + rand [-1, 1] (X ij –X kj) (3)

Fig. 2. The ABC Algorithm Flowchart.

Here, K{1, 2, …, D} and j{1, 2, …, SN} (k s i) are
randomly chosen indexes, and rand [-1,+1] is a random number
between [1,1], which works as a scaling factor. Evidently, the

perturbation on solution is inversely proportional to optimum
solution approached in the search space. The employed bee
will also evaluate the fitness of the new (perturbed) solution
and according to greedy-selection scheme, supposing the
fitness value is better, it will replace the old one from
employed bee memory.

2) Onlooker bee step: The duty of onlooker bee it to search

for food source (solution), in reference to the association of

probability value and food source Pi. The calculation of Pi is as

the expression below in Eq. 4:

Pi=

∑

 (4)

The fitness value of certain solution is signified by fit and
solution number is referred to the subscript index. By
comparing Pi against a randomly picked number ranging
between [0, 1], the probabilistic selection is applied. The
selection will be only be accepted if the random number
generated is less than or equal to Pi. The approval of
probabilistic selection will determine the authorization of an
onlooker bee assignment to a given solution. Normally, the
calculation of fitness value of solutions in problems
minimization is carried as the following in Eq. 5:

 {

 | |
 (5)

The objective function for solution i is signified by fi.
Assuming the selected food source matches with Pi probability,
with Eq. (3) the onlooker bee will select a better food source
(solution) in the area of the previous one in her memory.
Suppose the fitness value of the solution is better, the onlooker
bee will auto update the latest solution in her mind,
disregarding the old one, which is akin to employed bees.

3) Scout bee step: The scout bees are assigned to search

random food source in order to discover better solution for the

global optimization problem. The scout bees are different from

employed/onlooker bees as they are not committed to old

solution in order to create trial solution. They obtained their

samples from a broad set of D dimensional vectors, in

condition it is still within the search space zone. In ABC, the

solution will be disregard if the (non-global) solution cannot be

improvised post a pre-evaluated cycle‟s number. This will

affect the assigned employed bee and transformed it to scout

bee with limited scout type behavior. The limit also known as

the value of this pre-evaluated cycle numbers is a crucial

control factor of this algorithm. The limit is expressed as

below.

Limit = c.ne .D

Where, Ne signify the number of unemployed bees, while c
is constant coefficient with a recommended value of 0.5 or 1.
ABC application minimum requirement is one scout bee
implementation. Scout-type operations hypothetical searches in
the completely D-dimensional space provide exceptional
effectiveness to the ABC method in searching the best global
solution. Scout bees are independent when it comes to global
optimum solution discovery in comparison to other bee types.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

265 | P a g e

www.ijacsa.thesai.org

Both (employed/onlooker) concurrently check on their local
candidate solutions for the global best. Thus, it is impossible
for ABC to be trapped in local optima [64].

V. PROPOSED STRATEGY

In this study, to fulfil the optimal test suite, a new strategy
is proposed. The proposed strategy uses ABC algorithm as the
backbone algorithm to generate the test suites. Generally, the
ABCVS strategy undergoes three phases during the
construction of the uniform and variable t-way test suite
generation using; (1) ABCVS input analysis algorithm, (2)
ABCVS interaction generation algorithm and (3) generating
the test suite using ABC algorithm as shown in Fig. 3. In
Section 5.1, it discusses how to set up the input for the next
phase and describes the generating of the interaction tuples by
using the interaction generation algorithm. The ABCVS test
suite construction is described in Section 5.2.

Fig. 3. ABCVS Strategy Design.

A. Input Analysis & Interaction Generation Element

Algorithm

This section illustrates how the strategy receiving the CA,
MCA and VSCA (inputs) and generation of the interaction
parameter (P) combinations, compute and store the interaction
element for each of the parameters to be used later for the test
case coverage evaluation; based on the values (v) and the
specified interaction strengths (t). To clarify the input analysis
and the interaction generation elements, Fig. 4 shows a small
VSCA configuration as an example illustrated by using a
flowchart.

The value interaction elements of each parameter are then
constructed based on the parameter interactions. As shown in
the previous example (N; 2, 2

3
3

1
, {CA (3, 2

3
)}), the main

configuration has four parameters, where the first three
parameters have two values (0 and 1), and the fourth parameter
has three values (0, 1, and 2) with interaction strength tm = 2.
The sub-configuration has three parameters, each having two
values (0 and 1) with interaction strength ts = 3. As illustrated
in Fig. 4, the generation approach for the main configuration

(tm = 2) has six possible combinations of the interaction's
parameters. For example, the possibility of the interaction
elements for combinations (0 B2 0 B4) is 2 ×3 for both the
second and fourth parameters, and the possibility of the
interaction elements for combinations (B1 0 B3 0) is 2 ×2
between the first and third parameters. In order to check the
availability of the parameters, the algorithm scans the binary
digit of the combination, where each value of the other
parameters is included in the interaction element. Regards to
the rest of the values (i.e., replaced with “X”) indicates “don‟t
care” is the excluded value in the interaction element. The
interaction elements of the sub-configuration were produced
similarly to that as depicted in Fig. 4. Generating the
interaction elements for each test case continues until creating
the final test suite. This method is illustrated in the next
section.

Fig. 4. An Illustration Example for the ABCVS Strategy.

B. The Test Suite Generation Algorithm

According to Fig. 3 that showed the responsible algorithm
for the parameter combination generator, and the interaction
elements combination generator based on the interaction
strength, this will generate the possible interaction elements. In
this strategy, a unique answer is produced in each step of the
algorithm, which has no effect on the next test case selection.
Selecting a test case is the most challenging problem in test
suite generation, to achieve the test objective with a minimum
number of test cases. In ABCVS, each procedure in this
algorithm generates the best solution, which does not affect the
next test case selection. For example, at every stage, the first of
each bee (employed and onlooker) is randomly valued by the
scout bee to the number of food source (which represents a test
case) within a particular area. Following the valuation, the
quality of food source is called the fitness value (coverage or
weight) which is calculated based on the fitness function, and
the results are presented to the employed bees. The employed
bees optimise the solutions (food source position), calculate
their qualities again, and present the results to the onlooker
bees. The onlooker bees calculate the probability of selecting
the solutions. Then, these values are normalised, and the food

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

266 | P a g e

www.ijacsa.thesai.org

source with higher quality (fitness) are greedily selected, and
the proposed solutions are optimised again by the random
values and the values of neighbors. The quality of the proposed
solutions based on the fitness function is again specified. The
onlooker bees investigate the solutions and select the best
solution for storing. If it is an obsolete solution, the scout bee
generates a new one. Otherwise, if the algorithm is finished,
the final solution is registered as the output of the first stage, if
not the algorithm should repeat. For instance, in Fig. 5, the test
case is selected based on the maximum fitness (coverage or
weight). The test case (1000) has the maximum weight of
coverage, which is seven. Therefore, this test case (1000) adds
to the final test suite by the test suite generation algorithm.
Regarding the test case (1001) that does not reach the
maximum coverage of fitness, the algorithm updates the
population (food source) search space randomly to obtain the
best fitness.

Fig. 5. An Illustration Example for Selection Test Case based on the

Maximum Coverage.

VI. TUNING PARAMETER SETTING OF ABCVS

There are three important control parameters in the
proposed ABCVS strategy. These control parameters are the
colony size number (employed bee and onlooker bee

(population size)) equal to the number of food source, the value
of Limit and the maximum cycle number (MCN). Growing the
population size improves the outcome regarding both the
generation time and the array size. In ABCVS, generating the
final test suite plays a critical role based on the employed and
onlooker phase. It is worth mentioning that these two phases
are different in determining the value of configurations. In
other words, both of t, p and v affect the number of iterations
for the employed and onlooker phase.

An experiment were conducted on CA (N; 2, 5
7
) with a

variable number of the bee to determine this value. As shown
in Fig. 6 conducted, the best value of this configuration for the
number of bees is 1 (i.e. food source = population /2) when the
number of cycles (70) is a test suite of size 38 test cases, and
when the number of bees is 2, the number of cycles (100) is 37.
Increasing the value of bees up to 3 and 4, when the number of
cycles is (100) and (90), respectively, the algorithm achieves a
test case of size 36 test cases. In these experiments, the Limit is
kept constant = 100. Therefore, the value increasing does not
affect the size, only increasing in the generation time. In Fig. 6,
different colours that depend on the number of cycles show the
size of the test cases.

Fig. 7 illustrates the effects of the colony size (population
size) on the array size in the same configuration CA (N; 2, 5

7
),

and shows the best average test suite size for CA (N; 2, 5
7
).

The population of size is variable from 1 to 10, and 20 to 100,
when the number of cycles also is variable from 10 to 100 and
Limit = 100 is considered. Regarding the test suite array size
analysis, Meta-heuristic is a non-deterministic algorithm based
on randomisation. Therefore, this analysis has two values.
First, the best value as illustrated in Fig. 6, and the second
value is the average of five independent runs. The best average
is shown in Fig. 7 for the configuration CA (N; 2, 5

7
), where

the best value for this configuration is 36 test cases.

The analysis, in this case, is aimed at determining the
suitable value for the colony size (population size) that depends
on changing the values of p, t and v of the configuration. Each
configuration then determines the suitable experiments.
Therefore, the best average value is selected when the
population size is 50, and the maximum number of cycles is
80. Note that this value is related to the configurations in the
tables of this paper.

Fig. 6. The Best Test Suite Size with Variant Number of Bee for CA (N; 2, 57).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

267 | P a g e

www.ijacsa.thesai.org

Fig. 7. The Best Average Test Suite Size with Variant Number of Bee for CA (N; 2, 57).

VII. EVALUATION

In this section, there are two parts in the evaluation of the
test suite generation strategies; (1) the efficiency evaluation
(i.e. test suite size) and (2) the performance evaluation (i.e. the
time of test suite generation) [62]. The test suite size and the
interaction strength are not affected by the operating system
and hardware but depend on the steps of the algorithm's
running. Different strategies are selected in different tables
based on the criterion; Tables IV-VIII are divided into two
categories. In the first category, the available strategies that can
be implemented in our system are included regarding
efficiency; ABCVS is compared with these strategies. The
second category contains unavailable strategies as discussed
regarding efficiency and performance by other researchers. The
comparison of these strategies has been conducted based on
efficiency and performance. Therefore, it implements some of
the AI strategies since many are unavailable in the same
conditions of the proposed strategy (i.e. hardware and
software). Regarding the Tables IV-VIII of configurations, the
mentioned strategy's values are available, and used the same
value as that published in the papers; otherwise, implementing
the strategies on the system is used to obtain the result.

The characteristics of the hardware system for conducting
the experiments of the proposed strategy consisted of a
Windows 7 (OS) desktop computer with 3.40 GHz Xeon (R)
CPU E3 and 8GB RAM. The Java language JDK 1.8. was used
to code and implement the ABCVS. In this paper, the best
outcome in the tables is shown in bold and in dark cells. Also,
“NA” (Not Available) means not publishing, and “NS” (Not
Supported) means does not support the corresponding
configuration.

A. Evaluation of the Efficiency

In Table IV, the array size evaluation is divided into five
parts; the interaction strength 2 ≤ t ≤ 6 and parameter 3 ≤ p ≤12
and value and V = 3 for configuration CA (N; t, p, v). The
outcome of IPOD-D and IPOG are adopted from the Advanced
Combinatorial Testing System (ACTS) [66]. These strategies
do not normally generate good results as well as for PICT,
TConfig and Jenny. Whereas, IPOG-D, IPOG and TConfig

support generation of the interaction strength up to t = 6. As
shown in Table VII, other AI-based strategies are studied. The
results of CS and PSTG are unavailable and are obtained from
the papers. CS and PSTG generate similar results. The
strongest strategy in terms of producing the best result is
DPSO, where it showed results for t ≤ 4 obtained from [24], for
each configuration of 30 separate runs. Regarding the weak
performance of DPSO (i.e. speed), it is impossible to
implement each configuration of 30 runs because in CA (2512;
6, 3

12
) 23,620 s are required, thus will take more than 7 days.

Other results are available from [67]. The result for t > 4 is
obtained with 3 runs only. CS another AI-based strategy has
generated a good result. In this case, the obtained result for t >
4 is adopted in 3 runs only because of the low performance of
this strategy. To be fair, the ABCVS strategy is adopted in 5
runs for t > 4, and 20 runs for the value t ≤ 4.

The values in Tables V, VI and VII, are adopted from the
corresponding paper [7]. Regarding the configuration system
VSCA (N; 2, 3

15
, {C}) in Table V, where the PICT and

WHITCH strategy produces undesirable results, these
strategies have the capability to generate a test suite to t = 6.
However, WHITCH produced better results. Another
computational-based strategy is ParaOrder that had a better
result compared to PICT and WHITCH up to t = 3 but does not
support in generating a test suite for t ≥ 4. As shown in this
table, AI-based strategies are considered the strongest
strategies. The strongest strategies that generate the best results
are SA and ACS when the strength is 3. However, these
strategies are not able to produce a test suite of more than 3.
Regarding the strategies such as PwiseGen-VSCA, ABCVS,
GS and PSTG, these are better than the other strategies in
terms of support strength of more than 3 and less than 6. IPOG
and GS have the support strength more than 6.

Table VI shows the configuration VSCA (N; 3, 3
15

, {C}),
where PSTG, GS and ABCVS strategies generate good results
for strength up to t = 6, but IPOG and GS produce a better test
suite for strength more than 6. However, ACS and SA are not
able to generate a result due to not having support strength of
more than 3. Also, the results for Density and ParaOrder are
not available.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

268 | P a g e

www.ijacsa.thesai.org

Regarding the configuration system VSCA (N, 2, 4
3
 5

3
 6

2
,

{C}) in Table VII, the results of PwiseGen-VSCA and GS
strategies are not available as well as for the ParaOrder and
Density strategies for most subsets ({C}), but not all.
Furthermore, WHITCH and PICT have support strength up to

6, but these strategies do not generate a good result. ABCVS,
TVG and PSTG strategies have the capability to generate better
results for strength t = 6, and ACS and SA produced a better
result for strength t = 3.

TABLE IV. A TEST SUITE SIZE FOR CA (N; T, 3P) WITH 2 ≤ T ≤ 11 AND 3 ≤ P ≤ 12

t P

Pure computation strategies AI-based strategies

Jenny

Best

TConfig

Best

PICT

Best

IPOG-D

Best

IPOG

Best

DPSO

Best

PSTG

Best

CS

Best

GS

Best

ABCVS

Best

ABCVS

Avg.

2

3 9 10 10 15 9 9 9 9 9 9 9.95

4 13 10 13 15 9 9 9 9 9 9 10.70

5 14 14 13 15 15 11 12 11 11 11 12.75

6 15 15 14 15 15 14 13 13 13 13 14.75

7 16 15 16 15 15 14 15 14 14 15 15.50

8 17 17 16 15 15 15 15 15 15 15 15.90

9 18 17 17 15 15 15 17 16 15 16 17.25

10 19 17 18 21 15 16 17 17 16 17 17.70

11 17 20 18 21 17 17 17 18 16 17 18.45

12 19 20 19 21 21 16 18 18 16 18 19.25

3

4 34 32 34 27 32 27 27 28 27 27 33.50

5 40 40 43 45 41 41 39 38 38 38 41.45

6 51 48 48 45 46 33 45 43 43 44 46.85

7 51 55 51 50 55 48 50 48 49 49 51.90

8 58 58 59 50 56 52 54 53 54 54 55.85

9 62 64 63 71 63 56 58 58 58 58 59.80

10 65 68 65 71 66 59 62 62 61 62 64.25

11 65 72 70 76 70 63 64 66 63 66 68.15

12 68 77 72 76 73 65 67 70 67 70 72.10

4

5 109 97 100 162 97 81 96 94 90 98 103.65

6 140 141 142 162 141 131 133 132 129 135 138.75

7 169 166 168 226 167 150 155 154 153 157 161.45

8 187 190 189 226 192 171 175 173 173 179 182.05

9 206 213 211 260 210 187 195 195 194 197 200.95

10 221 235 231 278 233 206 210 211 209 215 217.90

11 236 258 249 332 251 221 222 229 223 234 236.50

12 252 272 269 332 272 237 244 253 236 251 254.20

5

6 348 305 310 386 305 244 312 304 301 274 317.70

7 458 477 452 678 466 438 441 434 432 442 449.95

8 548 583 555 756 575 517 515 515 515 530 534.20

9 633 684 637 1043 667 591 598 590 594 609 613.50

10 714 773 735 1118 761 667 667 682 672 688 690.60

11 791 858 822 1372 851 735 747 778 741 762 765.50

12 850 938 900 1449 929 802 809 880 806 814 817.71

6

7 1089 921 1015 1201 921 729 977 973 963 944 984.35

8 1466 1515 1455 1763 1493 1409 1402 1401 1399 1424 1438.6

9 1840 1931 1818 2526 1889 1682 1684 1689 1681 1756 1767.0

10 2160 >day 2165 2834 2262 1972 1980 2027 1980 2055 2060.1

11 2459 >day 2496 3886 2607 2250 2255 2298 2258 2261 2269.2

12 2757 >day 2815 4087 3649 2512 2528 2638 2558 2571 2576.5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

269 | P a g e

www.ijacsa.thesai.org

TABLE V. TEST SUITE SIZE FOR VSCA (N, 2, 315, {C})

{C}

Pure computation strategies AI-based strategies

WHITCH

Best

IPOG

Best

ParaOrder

Best

Density

Best

TVG

Best

PICT

Best

SA

Best

ACS

Best

PSTG

Best

GS

Best

PwiseGen

Best

ABCVS

Best
ABCVSAvg.

Ø 31 21 33 21 22 35 16 19 19 19 16 20 21.3

CA (3, 33) 48 27 27 28 27 81 27 27 27 28 27 27 27.85

CA (3, 34) 59 39 27 32 35 105 27 27 30 29 27 32 35.1

CA (3, 35) 62 39 45 40 41 131 33 38 38 38 33 41 42.9

CA (4, 34) 103 81 NA NA 81 245 NA NA 81 81 81 81 81.2

CA (4, 35) 118 122 NA NA 103 301 NA NA 97 92 91 90* 100.35

CA (4, 37) 189 181 NA NA 168 505 NA NA 158 155 158 154* 160.2

CA (5, 35) 261 243 NA NA 243 730 NA NA 243 243 243 243 243.1

CA (5, 37) 481 581 NA NA 462 1356 NA NA 441 441 441 446 449.2

CA (6, 36) 745 729 NA NA 729 2187 NA NA 729 729 729 729 729

CA (6, 37) 1050 967 NA NA 1028 3045 NA NA 966 960 NA 956 961.1

CA (3, 34)

CA (3, 35)
CA (3, 36)

114 51 44 46 53 1376 34 40 45 NA NA 82 85.1

CA (3, 36) 61 53 49 46 48 146 34 45 45 46 40 45 46.7

CA (3, 37) 68 58 54 53 54 154 41 48 49 50 47 50 51.85

CA (3, 39) 94 65 62 60 62 177 50 57 57 57 57 58 60.1

CA (3, 15) 132 NS 82 70 81 83 67 76 74 75 74 81 83.2

TABLE VI. TEST SUITE SIZE FOR VSCA (N, 3, 315, {C})

{C}

Pure computation strategies AI-based strategies

WHITCH

Best

IPOG

Best

ParaOrder

Best

Density

Best

TVG

Best

PICT

Best

SA

Best

ACS

Best

PSTG

Best

GS

Best

PwiseGen

Best

ABCVS

Best

ABVCS

Avg.

Ø 75 82 NA NA 84 83 NS NS 75 74 NA 81 83.25

CA(4, 34) 129 87 NA NA 93 1507 NS NS 91 88 NA 93 96.1

CA(5, 35) 273 243 NA NA 244 5366 NS NS 243 243 NA 243 246.2

CA(6, 36) 759 729 NA NA 729 12,609 NS NS 729 729 NA 729 729

CA(4, 35) 151 119 NA NA 118 1793 NS NS 114 111 NA 115 118.6

CA(5, 36) 387 337 NA NA 323 5387 NS NS 314 308 NA 316 329.15

CA(6, 37) 1441 1215 NA NA 1018 16,792 NS NS 1002 959 NA 949* 956.6

CA(4, 37) 219 183 NA NA 168 2781 NS NS 159 158 NA 157* 161.9

CA(4, 39) 289 227 NA NA 214 3095 NS NS 195 194 NA 196 199.9

CA(4, 11) 354 259 NA NA 256 2824 NS NS 226 226 NA 333 237.0

CA(4, 15) 498 498 NA NA 327 NA NS NS 284 282 NA 308 441

CA(5, 37) 481 713 NA NA 471 7475 NS NS 437 437 NA 439 448.7

CA(5, 38) 620 714 NA NA 556 8690 NS NS 516 516 NA 527 535.65

CA(6, 38) 1513 2108 NA NA 1479 22,833 NS NS 1396 1397 NA 1424 1436

CA(6, 39) 1964 2124 NA NA 1840 26,729 NS NS 1690 1687 NA 1752 1763

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

270 | P a g e

www.ijacsa.thesai.org

TABLE VII. TEST SUITE SIZE FOR VSCA (N, 2, 43
 53

 62, {C})

{C}

Pure computation strategies AI-based strategies

WHITCH
Best

IPOG
Best

ParaOrder
Best

Density
Best

TVG
Best

PICT
Best

SA
Best

ACS
Best

PSTG
Best

GS
Best

PwiseGen
Best

ABCVS
Best

ABCVS
Avg.

Ø 48 43 49 41 44 43 36 41 42 NA NA 44 44

CA (3, 43) 97 83 64 64 67 384 64 64 64 NA NA 64 64

CA (3, 43 52) 164 147 141 131 132 781 100 104 124 NA NA 128 128

CA (3, 53) 145 136 126 125 125 750 125 125 125 NA NA 125 125

CA (4, 43 51) 354 329 NA NA 320 1920 NS NS 320 NA NA 320 320

CA (5, 43 52) 1639 1602 NA NA 1600 9600 NS NS 1600 NA NA 1600 1600

CA (3, 43) CA (3, 53) 194 136 129 125 125 8000 125 125 125 NA NA 125 125

CA (4, 43 51) CA (4, 52

62)
1220 900 NA NA 900 288,000 NS NS 900 NA NA 900 900

CA (3, 43) CA (4, 53 61) 819 750 NA NA 750 48,000 NS NS 750 NA NA 750 750

CA (3, 43) CA (5, 53 62) 4569 4500 NA NA 4500 288,000 NS NS 4500 NA NA 4500 4500

CA (4, 43 52) 510 512 NA NA 496 2874 NS NS 472 NA NA 463* 463

CA (5, 43 53) 2520 2763 NA NA 2592 15,048 NS NS 2430 NA NA 2403* 2403

CA (3, 43 53 61) 254 215 247 207 237 1266 171 201 206 NA NA 213 213

CA (3, 51 62) 188 180 180 180 180 900 180 180 180 NA NA 180 180

CA (3, 43 53 62) 312 NS 307 256 302 261 214 255 260 NA NA 266 266

TABLE VIII. TEST SUITE SIZE AND TIME FOR CA (N; T, 7, 37) WITH 2 ≤ T ≤ 7

t Pure computation strategies AI-based strategies

Jenny
N/Time

TConfig
N/Time

PICT
N/Time

IPOG-D
N/Time

IPOG
N/Time

DPSO
N/Time

HSS
N/Time

PSO
N/Time

CS
N/Time

GS
N/Time

ABCVS
N/Time

2 16/0.04 15/0.08 16/0.01 18/0.001 15/0.001 14-Mar 14/0.92 15/2.2 15/0.28 14/0.22 14/2.1

3 51/0.09 55/0.43 51/0.04 50/0.001 55/0.001 48/23 50/4.02 50/8.2 50/3.1 49/0.78 49/23.07

4 169/0.3 166/8.24 168/0.09 226/0.001 167/0.001 150/156 154/23.1 157/33.2 156/6.2 153/3.01 157/148.7

5 458/0.72 477/72.96 452/0.7 678/0.062 466/0.001 438/191 438/70.8 439/113 436/19.1 432/8.85 439/457.9

6 1087/1.10 921/425.52 1015/1.20 1201/0.062 921/0.001 729/147 926/107.8 981/382 973/31 963/16.98 862/343.5

TABLE IX. TEST SUITE SIZE AND TIME FOR CA (N; 3, 3P) WITH 4 ≤ P ≤ 20

P Pure computation strategies AI-based strategies

Jenny

N/Time

TConfig

N/Time

PICT

N/Time

IPOG-D

N/Time

IPOG

N/Time

DPSO

N/Time

HSS

N/Time

PSO

N/Time

CS

N/Time

GS

N/Time

ABCVS

N/Time

4 34/0.01 32/0.07 34/0.04 27/0.001 32/0.001 27-Feb 30/1.9 28/4.2 27/1.30 27/0.40 31/1.1

5 40/0.03 40/0.10 43/0.09 45/0.001 41/0.001 41/7 39/2.7 39/6.1 38/2.09 38/0.63 40/3.2

6 51/0.09 48/0.31 48/0.13 45/0.001 46/0.001 33/10 44/3.2 45/7.5 45./2.63 43/0.73 45/9.6

7 51/0.07 55/0.43 51/0.23 50/0.001 55/0.001 48/23 50/4.02 50/8.2 50/3.12 49/0.78 49/24.7

8 58/0.07 58/1.23 59/0.36 50/0.001 56/0.001 52/36 54/4.8 54/9.3 55/4.04 54/0.86 55/55.3

9 62/0.08 64/1.72 63/0.57 71/0.001 63/0.001 56/55 59/6.01 58/10.5 60/4.69 58/1.11 59/117.8

10 65/0.10 68/2.84 65/0.64 71/0.001 66/0.001 59/81 62/7.3 62/11.3 64/5.60 61/1.24 63/248.2

11 65/0.12 72/3.93 70/0.70 76/0.001 70/0.001 63/115 66/9.6 64/12.8 66/7.12 63/1.28 67/534.4

12 68/0.18 77/5.24 72/0.79 76/0.001 73/0.001 65/157 67/11.5 67/13.6 70/8.41 67/1.53 71/702.7

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

271 | P a g e

www.ijacsa.thesai.org

TABLE X. TEST SUITE SIZE AND TIME FOR CA (N; 3, V7) WITH 2 ≤ V ≤ 6

v Pure computation strategies AI-based strategies

Jenny
N/Time

TConfig
N/Time

PICT
N/Time

IPOG-D
N/Time

IPOG
N/Time

DPSO
N/Time

HSS
N/Time

PSO
N/Time

CS
N/Time

GS
N/Time

ABCVS
N/Time

2 14/0.04 16/0.03 15/0.09 14/0.001 16/0.001 15-Jun 12/0.9 12/1.7 13/0.82 12/0.19 12/3.9

3 51/0.09 55/0.43 51/0.19 50/0.001 55/0.001 48/24 50/4.02 50/8.2 50/2.1 50/0.78 49/23.3

4 124/0.12 112/2.57 124/0.53 112/0.001 124/0.001 112/54 121/5.9 118/21.7 119/6.6 117/1.83 119/97.1

5 236/0.61 239/03.18 241/0.78 252/0.001 237/0.001 216/172 233/18.5 226/43.2 233/14.4 231/3.63 230/368.6

6 400/1.00 423/13.15 413/1.00 470/0.001 420/0.001 365/188 411/31.3 420/88.6 403/18.2 397/6.48 394/1076.2

B. Evaluation of the Performance

In Table VIII, the configuration CA (N; t,3
7
) for 2 ≤t ≤6 is

used in terms of array size and time. TConfig strategy speed
relies on t, where by increasing the t time will increase
exponentially. IPOG-D and IPOG are fastest computational-
based strategies, where the test suite generation time almost
near to zero that indicates the high performance. ABCVS and
DPSO performance are very slowly. PICT, Jenny and GS are
faster than ABCVS, but these strategies are not able to generate
the final test suite in a less than day. Therefore, the proposed
strategy it's better in terms of performance than PICT, Jenny
and TConfig. The result of the proposed strategy shows the
generation time of a test suite does not really rely on
increasing t.

Table IX displays the results in terms of array size and time
of the strategies. The configuration CA (N; 3, 3

P
) is used to

evaluate the variable of p on time generation. The growth of p
has shown an impact on the proposed strategy in terms of time
generation, but has less impact on TConfig performance.

The last evaluation in terms of time generation, the
configuration CA (N; 3, 7, v) for 2 ≤ v ≤ 10 is used in Table X.
In this evaluation will test the impact of increasing the values
on time generation. IPOG and IPOG-D are the fastest strategies
in terms of the performance and DPSO is strongest on terms of
array size. ABCVS generates close results to DPSO and GS.

VIII. STATISTICALLY EVALUATION

In order to evaluate the strategy regarding array size (i.e.
effectiveness), a statistical method is another way to assess the
significance of strategy. In this case, the Wilcoxon signed-rank
test is used between ABCVS and each strategy in the
experimental tables 95% confidence level (i.e. α =0.05). The
reason for adopting this method is that the Wilcoxon signed-
rank test takes into account the difference between two sets. To
study the difference of the two sets, this test is ideal. In other
words, this test is measured from a subject group and can be
rated.

Due to the multiple comparisons, we need to control the
error rate. Bonferroni-Holm correction was adopted to
adjusting α value (i.e. in other words, based on Holm‟s
sequentially rejective step down procedure [26]) depending on
the first stored p-value (Asymp. Sig. (2-tailed)) in scaling in
ascending order. Therefore, α Holm is adjusted based on:

α Holm =

Note: Where M indicates the overall number of paired
comparison and i indicates the test number.

The test is executed using a software tool called SPSS,
where if the value is less than α Holm of the Asymp. Sig. (2-
tailed), it indicates a significant difference between the two
sets. There are four values to evaluate ABCVS; Ranks
ABCVS>, ABCVS<, and ABCVS= are used. In other words,
the results of the proposed strategy are greater, smaller or equal
to the other existing strategies. Two values have a Statistical
Test part; Asymp. Sig. (2-tailed) and Z. The value of Asymp.
Sig. (2-tailed) indicates the significant difference between the
two sets and that the value does not exceed α Holm. Regarding
the value Z, it is out of the scope of this paper (i.e. not
important). The strategies with N/A and N/S results are
considered incomplete and ignored samples, as there is no
available result for the specified test configuration.

Tables XI–XIV present a statistical test for the Tables IV–
VII and Table XI presents the result of Table IV for the
Wilcoxon test. ABCVS shows there is a significant difference
with other strategies in column Asymp. Sig. (2-tailed), except
for CS, which has a significant difference from ABCVS.

Table XII presents the test results of Table V. IPOG,
ParaOrder, Density, TVG, GS, SA, ACS and PwiseGenVSCA
produce a test suite for strength less than 3 for t > 3 and the
results are considered “missing”. For this reason, the IPOG,
ParaOrder, Density, TVG, PSTG and GS results are better than
ABCVS. Whereas, ABCVS performs better than WHITCH,
PICT, SA, ACS and PwiseGen-VSCA in this table.

Table XIII presents the test results of Table VI, where
ABCVS excelled compared to WHITCH and GS strategies.
Table XIV presents the test results of Table VII. TVG and
PSTG are shown to have a significant difference compared to
ABCVS. However, ABCVS excelled with the WHITCH, and
PICT strategies.

IX. DISCUSSION

AI-based strategies are characterised by producing a strong
result, although, not without having a complex structure and
repetition of which the complex structure of the strategy is
inversely correlated with the strategy‟s strength. For instance,
ACO, GA and SA can produce a test suite with t <= 3. While
CS and PSTG reduce complexity by changing the structure and
raising the performance speed to support strengths up to t = 6.
Notably, GS supports strengths up to t = 15.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

272 | P a g e

www.ijacsa.thesai.org

IPOG, PICT and Jenny are computational based strategies
having the capability to produce a test suite for t > 6 like AI-
based strategies. However, computational strategies do not
produce good results but instead, do have good performance.
Therefore, it is impossible to obtain a strategy that can support
high interaction strength with perfect performance and
efficiency. The ABCVS indicates that its efficiency regarding
generating a test suite with t = 6 competes well compared to
the other existing strategies. Further, ABCVS is better as
compared to computational ones and can compete with AI-
based strategies regarding performance and efficiency.

Although, ABCVS like any other strategy have limitations;
for example, its contribution towards supporting variable
strengths interaction. The ABCVS efficiency for strengths (i.e. t
≤ 3) is slightly lower compared to others. Given the limited
literature in this field, many of these strategies are not available
publicly and therefore, in this study, the configurations reported
and available in publications have been used. Therefore, further
experiments need to be conducted in order to obtain a precise
evaluation of the proposed strategy.

TABLE XI. WILCOXON SIGNED RANK SUM TEST FOR TABLE IV.

Pairs
Ranks Test statistics

Conclusion
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦

ABCVS- Jenny 2 36 2 -5.199269 0.00000020 0.00625000 Reject

ABCVS- PICT 0 40 0 -5.522230 0.00000003 0.00714286 Reject

ABCVS- IPOG-D 3 34 3 -5.107580 0.00000032 0.00833333 Reject

ABCVS- IPOG 4 31 5 -4.662525 0.00000300 0.01000000 Reject

ABCVS- DPSO 34 2 4 -4.999589 0.00000057 0.01250000 Reject

ABCVS- PSTG 22 5 13 -3.236855 0.00120900 0.01666667 Reject

ABCVS- CS 20 8 12 -1.071752 0.28383200 0.02500000 Retain

ABCVS- GS 31 2 7 -3.966042 0.00007300 0.05000000 Reject

TABLE XII. TWILCOXON SIGNED RANK SUM TEST FOR TABLE V.

Pairs
Ranks Test statistics

Conclusion
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦

ABCVS- WHITCH 0 16 0 -3.518549 0.000434 0.01250000 Reject

ABCVS- TVG 1 9 6 -1.888148 0.059006 0.01666667 Retain

ABCVS- PICT 0 16 0 -3.516196 0.000438 0.02500000 Reject

ABCVS- PSTG 8 3 5 -0.757616 0.448681 0.05000000 Retain

TABLE XIII. WILCOXON SIGNED RANK SUM TEST FOR TABLE VI.

Pairs
Ranks Test statistics

Conclusion
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦

ABCVS- WHITCH 1 14 0 -3.353003 0.000799 0.01000000 Reject

ABCVS- IPOG 2 11 2 -2.480941 0.013104 0.01250000 Retain

ABCVS- TVG 1 12 2 -2.341884 0.019187 0.01666667 Retain

ABCVS- PSTG 11 2 2 -2.103645 0.035409 0.02500000 Retain

ABCVS- GS 11 2 2 2.551605 0.010723 0.05000000 Reject

TABLE XIV. WILCOXON SIGNED RANK SUM TEST FOR TABLE VII.

Pairs
Ranks Test statistics

Conclusion
ABCVS > ABCVS < ABCVS = Z Asymp. Sig. (2-tailed) 𝛂 𝐡𝐨𝐥𝐦

ABCVS- WHITCH 0 15 0 -3.410523 0.000648 0.01250000 Reject

ABCVS- TVG 0 6 9 -2.201398 0.027708 0.01666667 Retain

ABCVS- PICT 2 13 0 -3.237382 0.001206 0.02500000 Reject

ABCVS- PSTG 4 2 9 -0.104828 0.916512 0.05000000 Retain

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

273 | P a g e

www.ijacsa.thesai.org

X. CONCLUSION

This paper proposes an efficient strategy called ABCVS,
based on the ABC algorithm for both uniform and variable
CAs. Supporting variable strength is the main contribution of
ABCVS. In addition to the supporting variable strength,
ABCVS can generate a test suite up to t = 6 and can produce a
good result with suitable performance. To study the impact of
parameters like population size or a number of cycles, different
experiments have been conducted. The suitable tuning
parameters of the proposed ABCVS strategy results in better
ABCVS, regarding higher interaction, performance and
efficiency. Furthermore, different experiments have been
conducted on different configurations to compare ABCVS with
existing strategies, where ABCVS shows it can compete
against the other strategies regarding both efficiency and
performance. As part of our future work, we want to study
other metaheuristic approaches to hybrid these with ABC to
increase efficiency. This hybridisation should be performed in
a way that does not decrease performance and can increase the
support for test suite generation for t > 6.

REFERENCES

[1] Kalaee, A. and V. Rafe, An optimal solution for test case generation
using ROBDD graph and PSO algorithm. Quality and Reliability
Engineering International, 2016. 32(7): p. 2263-2279.

[2] Zamli, K.Z., et al., Design and implementation of a t-way test data
generation strategy with automated execution tool support. Information
Sciences, 2011. 181(9): p. 1741-1758.

[3] Ahmed, B.S., T.S. Abdulsamad, and M.Y. Potrus, Achievement of
minimized combinatorial test suite for configuration-aware software
functional testing using the Cuckoo Search algorithm. Information and
Software Technology, 2015. 66: p. 13-29.

[4] Alsewari, A.R.A. and K.Z. Zamli, Design and implementation of a
harmony-search-based variable-strength t-way testing strategy with
constraints support. Information and Software Technology, 2012. 54(6):
p. 553-568.

[5] Lei, Y., et al., IPOG/IPOG‐D: efficient test generation for multi‐way
combinatorial testing. Software Testing, Verification and Reliability,
2008. 18(3): p. 125-148.

[6] Hartman, A., T. Klinger, and L. Raskin, IBM intelligent test case
handler. http://www.alphaworks.ibm.com/tech/whitch, 2016. 284(1): p.
149-156.

[7] Ahmed, B.S., K.Z. Zamli, and C.P. Lim, Application of particle swarm
optimization to uniform and variable strength covering array
construction. Applied Soft Computing, 2012. 12(4): p. 1330-1347.

[8] Chen, X., et al., Variable strength interaction testing with an ant colony
system approach, in Software Engineering Conference, 2009.
APSEC'09. Asia-Pacific. 2009, IEEE. p. 160-167.

[9] Cohen, M.B., Designing Test Suites for Software Interactions Testing.
2004, Designing Test Suites for Software Interactions Testing:
Department of Computer Science.

[10] Cohen, M.B., et al. A variable strength interaction testing of
components. in Computer Software and Applications Conference.
COMPSAC 2003. Proceedings. 27th Annual International. 2003. IEEE.

[11] Stardom, J., Metaheuristics and the search for covering and packing
arrays. 2001, Simon Fraser University.

[12] Shiba, T., T. Tsuchiya, and T. Kikuno. Using artificial life techniques to
generate test cases for combinatorial testing. in Computer Software and
Applications Conference, 2004. COMPSAC 2004. Proceedings of the
28th Annual International. 2004. IEEE.

[13] Kacker, R.N. and J.T. Jimenez, Tower of Covering Arrays. 2015.

[14] HOMAID, A.B., et al., Adapting the Elitism on the Greedy Algorithm
for Variable Strength Combinatorial Test Cases Generation. IET
Software, 2018.

[15] Homaid, A.A.B., et al., A Kidney Algorithm for Pairwise Test Suite
Generation. Advanced Science Letters, 2018. 24(10): p. 7284-7289.

[16] Afzal, W., R. Torkar, and R. Feldt, A systematic review of search-based
testing for non-functional system properties. Information and Software
Technology, 2009. 51(6): p. 957-976.

[17] Bryce, R.C. and C.J. Colbourn. One-test-at-a-time heuristic search for
interaction test suites. in Proceedings of the 9th annual conference on
Genetic and evolutionary computation. 2007. ACM.

[18] Maity, S. and A. Nayak. Improved test generation algorithms for pair-
wise testing. in Software Reliability Engineering, 2005. ISSRE 2005.
16th IEEE International Symposium on. 2005. IEEE.

[19] Yilmaz, C., M.B. Cohen, and A. Porter. Covering arrays for efficient
fault characterization in complex configuration spaces. in ACM
SIGSOFT Software Engineering Notes. 2004. ACM.

[20] Zamli, K.Z., M.H.M. Hassin, and B. Al-Kazemi. tReductSA–Test
Redundancy Reduction Strategy Based on Simulated Annealing. in
International Conference on Intelligent Software Methodologies, Tools,
and Techniques. 2014. Springer.

[21] Cohen, M.B., C.J. Colbourn, and A.C. Ling, Constructing strength three
covering arrays with augmented annealing. Discrete Mathematics, 2008.
308(13): p. 2709-2722.

[22] Sabharwal, S., et al., Construction of mixed covering arrays for pair-
wise testing using probabilistic approach in genetic algorithm. Arabian
Journal for Science and Engineering, 2016. 41(8): p. 2821-2835.

[23] Bansal, P., et al., Construction of variable strength covering array for
combinatorial testing using a greedy approach to genetic algorithm. e-
Informatica Software Engineering Journal, 2015. 9(1).

[24] Bansal, P., et al. An approach to test set generation for pair-wise testing
using genetic algorithms. in International Symposium on Search Based
Software Engineering. 2013. Springer.

[25] Flores, P. and Y. Cheon. PWiseGen: Generating test cases for pairwise
testing using genetic algorithms. in Computer Science and Automation
Engineering (CSAE), 2011 IEEE International Conference on. 2011.
IEEE.

[26] McCaffrey, J.D. An empirical study of pairwise test set generation using
a genetic algorithm. in the 2010 Seventh International Conference on
Information Technology: New Generations (ITNG). 2010. IEEE.

[27] Sthamer, H.-H., The automatic generation of software test data using
genetic algorithms. 1995, University of Glamorgan.

[28] Wu, H., et al., A discrete particle swarm optimization for covering array
generation. IEEE Transactions on Evolutionary Computation, 2015.
19(4): p. 575-591.

[29] Mahmoud, T. and B.S. Ahmed, An efficient strategy for covering array
construction with fuzzy logic-based adaptive swarm optimization for
software testing use. Expert Systems with Applications, 2015. 42(22): p.
8753-8765.

[30] Ahmed, B.S. and K.Z. Zamli, A variable strength interaction test suites
generation strategy using Particle Swarm Optimization. Journal of
Systems and Software, 2011. 84(12): p. 2171-2185.

[31] Zamli, K.Z., A.A. Al-Sewari, and M.H.M. Hassin, On Test Case
Generation Satisfying the MC/DC Criterion. International Journal of
Advances in Soft Computing & Its Applications, 2013. 5(3).

[32] AbdulRahman A. Alsewari, K.Z.Z., Interaction Test Data Generation
Using Harmony Search Algorithm. 2011.

[33] Nasser, A.B., et al., A cuckoo search based pairwise strategy for
combinatorial testing problem. Journal of Theoretical and Applied
Information Technology, 2015. 82(1): p. 154.

[34] Nasser, A.B., A.R.A. Alsewari, and K.Z. Zamli. Tuning of cuckoo
search based strategy For T-Way testing. in International Conference on
Electrical and Electronic Engineering. 2015.

[35] Alsariera, Y.A., A. Nasser, and K.Z. Zamli, Benchmarking of Bat-
inspired interaction testing strategy. International Journal of Computer
Science and Information Engineering (IJCSIE), 2016. 7: p. 71-79.

[36] Alsariera, Y.A. and K.Z. Zamli, A bat-inspired strategy for t-way
interaction testing. Advanced Science Letters, 2015. 21(7): p. 2281-
2284.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

274 | P a g e

www.ijacsa.thesai.org

[37] Alsariera, Y.A., M.A. Majid, and K.Z. Zamli, Adopting the bat-inspired
algorithm for interaction testing, in The 8th edition of annual conference
for software testing. 2015. p. 14.

[38] Alsariera, Y.A., M.A. Majid, and K.Z. Zamli, SPLBA: An interaction
strategy for testing software product lines using the Bat-inspired
algorithm, in 4th International Conference on Software Engineering and
Computer Systems (ICSECS). 2015, IEEE. p. 148-153.

[39] Alsariera, Y.A., M.A. Majid, and K.Z. Zamli, A bat-inspired Strategy
for Pairwise Testing. ARPN Journal of Engineering and Applied
Sciences, 2015. 10: p. 8500-8506.

[40] Alsewari, A.A., et al., ABC Algorithm for Combinatorial Testing
Problem. Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), 2017. 9(3-3): p. 85-88.

[41] Alazzawi, A.K., et al., Artificial Bee Colony Algorithm for Pairwise
Test Generation. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), 2017. 9(1-2): p. 103-108.

[42] Nasser, A.B., et al. Assessing optimization based strategies for t-way
test suite generation: the case for flower-based strategy. in Control
System, Computing and Engineering (ICCSCE), 2015 IEEE
International Conference on. 2015. IEEE.

[43] Nasser, A.B., et al. Sequence and sequence-less T-way test suite
generation strategy based on flower pollination algorithm. in Research
and Development (SCOReD), 2015 IEEE Student Conference on. 2015.
IEEE.

[44] Nasser, A., et al., Late acceptance hill climbing based strategy for
addressing constraints within combinatorial test data generation. 2014.

[45] Nie, C. and H. Leung, A survey of combinatorial testing. ACM
Computing Surveys (CSUR), 2011. 43(2): p. 11.

[46] Williams, A.W., Determination of test configurations for pair-wise
interaction coverage, in Testing of Communicating Systems. 2000,
Springer. p. 59-74.

[47] Hartman, A., Software and hardware testing using combinatorial
covering suites, in Graph theory, combinatorics and algorithms. 2005,
Springer. p. 237-266.

[48] Czerwonka, J. Pairwise testing in the real world: Practical extensions to
test-case scenarios. in Proceedings of 24th Pacific Northwest Software
Quality Conference, Citeseer. 2006.

[49] Cohen, D.M., et al., The AETG system: An approach to testing based on
combinatorial design. Software Engineering, IEEE Transactions on,
1997. 23(7): p. 437-444.

[50] Bryce, R.C. and C.J. Colbourn, A density‐based greedy algorithm for
higher strength covering arrays. Software Testing, Verification and
Reliability, 2009. 19(1): p. 37-53.

[51] Bryce, R.C. and C.J. Colbourn, The density algorithm for pairwise
interaction testing. Software Testing, Verification and Reliability, 2007.
17(3): p. 159-182.

[52] Arshem, J., TVG. http://sourceforge.net/projects/tvg,, 2010.

[53] Tung, Y.-W. and W.S. Aldiwan. Automating test case generation for the
new generation mission software system. in Aerospace Conference
Proceedings, 2000 IEEE. 2000. IEEE.

[54] Yu, Y., S.P. Ng, and E.Y. Chan. Generating, selecting and prioritizing
test cases from specifications with tool support. in Quality Software,
2003. Proceedings. Third International Conference on. 2003. IEEE.

[55] Lehmann, E. and J. Wegener, Test case design by means of the CTE XL,
in Proceedings of the 8th European International Conference on
Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen,
Denmark. 2000.

[56] Jenkins, Jenny. http://www.burtleburtle.net/bob/math/, 2003.

[57] Cohen, M.B., M.B. Dwyer, and J. Shi. Interaction testing of highly-
configurable systems in the presence of constraints. in Proceedings of
the 2007 international symposium on Software testing and analysis.
2007. ACM.

[58] Lei, Y., et al., IPOG: A general strategy for t-way software testing, in
Engineering of Computer-Based Systems, 2007. ECBS'07. 14th Annual
IEEE International Conference and Workshops on the. 2007, IEEE. p.
549-556.

[59] Forbes, M., et al., Refining the in-parameter-order strategy for
constructing covering arrays. Journal of Research of the National
Institute of Standards and Technology, 2008. 113(5): p. 287.

[60] Calvagna, A. and A. Gargantini. IPO-s: incremental generation of
combinatorial interaction test data based on symmetries of covering
arrays. in Software Testing, Verification and Validation Workshops,
2009. ICSTW'09. International Conference on. 2009. IEEE.

[61] Wang, Z., B. Xu, and C. Nie. Greedy heuristic algorithms to generate
variable strength combinatorial test suite. in Quality Software, 2008.
QSIC'08. The Eighth International Conference on. 2008. IEEE.

[62] Esfandyari, S. and V. Rafe, A tuned version of genetic algorithm for
efficient test suite generation in interactive t-way testing strategy.
Information and Software Technology, 2018. 94: p. 165-185.

[63] Zamli, K.Z., B.Y. Alkazemi, and G. Kendall, A Tabu Search hyper-
heuristic strategy for t-way test suite generation. Applied Soft
Computing, 2016. 44: p. 57-74.

[64] Karaboga, D., An idea based on honey bee swarm for numerical
optimization. 2005, Technical report-tr06, Erciyes university,
engineering faculty, computer engineering department.

[65] Karaboga, D. and B. Akay, A comparative study of artificial bee colony
algorithm. Applied mathematics and computation, 2009. 214(1): p. 108-
132.

[66] Kuhn, R. ACTS download page. [cited 2018 2018]; Available from:
http://csrc.nist.gov/groups/SNS/acts/download_tools.html

[67] Wu, H., et al. DPSO download page. [cited 2018 2018]; Available
from: https://github.com/waynedd/DPSO.

