
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

291 | P a g e

www.ijacsa.thesai.org

Performance Analysis of Security Mechanism for

Automotive Controller Area Network

Mabrouka Gmiden
1
, Mohamed Hedi Gmiden

2
, Hafedh Trabelsi

3

Computer and Embedded System Lab (CES), National Engineers

School of Sfax-Tunisia
1, 2, 3

Abstract—Connectivity of modern cars has led to security

issues. A number of contributions have proposed the use of

cryptographic algorithms in order to provide automotive

Controller Area Network (CAN) security. However, due to CAN

protocol characteristics, real time requirements within

cryptographic schemes are not guaranteed. In this work, effects

of implementing cryptographic approaches have been

investigated by proposing a performance analysis methodology of

cryptographic algorithm. Until get implanting the proposed

method in a real vehicle, a platform based on

STMicroelectronics’32F407 (STM32F407) microcontroller board

has been deployed to test the proposed methodology. The

experiments show that the implementation of a cryptographic

algorithm has an impact on clock cycles number and therefore,

on real-time performances.

Keywords—Automotive CAN security; cryptographic

algorithms; analysis methodology; real-time performances

I. INTRODUCTION

New vehicles are becoming more and more connected
machines. In fact, a modern car is able to communicate with
the outside via various interfaces like USB, MP3, Bluetooth,
etc. Furthermore, CAN protocol is today the most used in
automotive networks [1]. However, CAN bus cannot guarantee
security because of a lack of authenticity [2] [3]. Therefore,
CAN networks are vulnerable to cyber-attacks, which threats
in-vehicle subsystems even lives of passengers [4]. Then,
security problem is added to the automotive issues [5] [6].
Hence, it is crucial to find solutions that guarantee automotive
security.

In order to protect the safety of the system within a modern
car, many methods have been developed, such as cryptographic
protocols, Intrusion Detection Systems (IDSs), etc. Although,
several researches have been oriented towards IDSs, they have
been still not 100% robust, and they could not prevent all types
of attacks. To exceed limitations of detective measures, many
researches aim to adopt cryptographic strategies as they have
been improved, in internet networks, their efficiency in
thwarting attacks.

Applications in CAN network are characterized, unlike
traditional computer systems, by real- time constraints. That is
why data encryption or signature mechanisms should not
impact real-time performances. In the literature, although the
diversity of the proposed solutions, serious performance
measures are still limited.

In this paper a tool, that allows the analysis of real-time
performances resulting from the implementation of
cryptographic algorithms, is designed. The method is based on
the analysis of the time intervals of CAN frames.

The main contributions of this work are:

 A general literature review about CAN bus security
issues along with proposed solutions for this
accomplish.

 A practical methodology to secure CAN bus
communication based on analyzing and measuring of
real-time performances.

 An efficient experimental platform for analyzing,
implementing a securing CAN bus communication and
injecting spoofed message.

The rest of the paper is organized as follows. Section 2
provides the necessary background of the security issues and
related work. Next, the proposed method is described.
Section 4 presents the evaluation result of the proposed
method. Finally, Section 5 summarizes this work.

II. BACKGROUND

A. CAN Bus Security Issues

The objectives provided by a security system are called
security services which they are summarized as confidentiality,
authenticity, availability, integrity, and non-repudiation. CAN
bus cannot guarantee these properties since its characteristics:

 Broadcasted nature: a CAN message sent by a node will
be received by all nodes connected to the bus. So, an
attacker can connect to the network traffic and read data
frame easily. Then, the CAN bus cannot guarantee
confidentiality.

 CAN messages have not any authenticator fields. Thus,
an attacker connected to the bus could use the identifier
(ID) of any node to send a fake message.

 Arbitration scheme: a frame consists, mainly, as Fig. 1
shows, of: the ID, which represents the priority of the
message, Data Length Code (DLC), Data, and Cyclic
Redundancy Check (CRC). The identifier of the CAN
frame is unique. So, the CAN message with the highest
priority wins the arbitration and transmits the first.
Thus, any node can put the bus in a dominant state and
prevent others from sending messages resulting Denial
of Service (DoS) attacks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

292 | P a g e

www.ijacsa.thesai.org

 CAN protocol uses CRC to verify whether a message
has been modified. However, this latter cannot prevent
an attacker from modifying a legitimate message. In
fact, she could make a correct CRC for a forged
message.

 Possibility of repudiation: in CAN protocol, it is
impossible for a legitimate ECU to prove that it has sent
or received a given message.

 CAN message contain between 1 and 8 bytes. So, the
security protocol cannot transmit any extra
authenticated data inside the classic data field (Fig. 1).

 In automotive networks, the primary focus is on real-
time capabilities, which are needed to respond within a
given short time. So, predictability and reliability are
the dominating factors.

B. Requirements of CAN Bus Security Solutions

Since Electronic Control Units (ECUs) are very limited in
computing power and memory space, heavy cryptographic
functions are difficult to be performed by these calculators. So,
proposed solutions should be as lightweight as possible.
Moreover, almost CAN networks applications are hard-real
time. Therefore, embedded real time performances should not
be impacted by the implementation of security mechanisms.

In addition, the proposed mechanism should provide retro-
compatibility, i.e. be compatible with used technologies and
interoperability, i.e. external communications should not be
prevented by the security system. Furthermore, a CAN data
frames are easy to be eavesdropping by an attacker. Thus, a
method of encryption should be employed in order to provide
confidentiality. On otherwise, a Hash-based Message
Authentication Code (HMAC) must be generated and
transmitted along with CAN messages to guarantee
authentication of transmitted data,

C. Related Work

As a countermeasure against various types of vehicle
cyber-attacks, there have been two main groups of security
solutions: Intrusion Detection Systems and cryptographic
mechanisms

1) Intrusion detection: To defend attacks against in-vehicle

networks, many solutions based on IDS Systems have been

proposed.

Studnia et al. proposed an intrusion detection approach for
embedded automotive network [7]. The presented solution
based on the definition of a formal language. This proposal is
dedicated to generate a set of signature for attacks that aim to
detect. In [8], authors presented a novel intrusion detection
algorithm which aims to identify malicious CAN messages
injected by attackers. By against, an intrusion detection
algorithm, which is based on the analysis of time intervals of
messages, was proposed [9]. The algorithm did not require any
hardware modification, but it could not detect irregular
message in coming.

Fig. 1. CAN Format Frame.

2) Message authentication: Although, several researches

have been oriented towards IDS system, significant increase of

cryptographic schemes have been shown during last years.

Woo et al. in [10] proposed the use of HMAC and
Advanced Encryption Standard-128 (AES-128) for encryption.
The proposed protocol used 16 bits, in the extended ID field,
and the 16-bit CRC field for transmission of 32 bits code. The
implementation of the protocol kept the bus load under 50%;
hence it provided acceptable overhead. Nurnberger et al.
introduced VatiCAN which enabled sender and receiver ECUs
to exchange authenticated data using the Keccak algorithm
[11]. By contrast to other authentication mechanisms,
VatiCAN used individual keys per ECU. So, each calculator
should store the key of each ECU exchanges authenticated
messages with. In their protocol [12], Bulck et al inspired the
idea of VulCAN from the two protocols VatiCAN and Leia. In
VulCAN, each authenticated CAN identifier should be
associated with a symmetric 128- bit cryptographic key. As in
VatiCAN, VulCAN allowed multiple IDs to distribute the
same key. While valid ECUs use the key to compute a 64- bit
MAC, the value of counter (which prevents re- play attack)
increases. Like VatiCAN, authors addressed nonce
initialization challenge by the use of short-term session keys
and (re-)synchronized counters by a global Nonce Generator
(NG).

In [13] a method based on adapting traditional encryption
schemes was presented. The proposed system required that the
hardware modules installed on each ECU, which made the
implementation more difficult. The proposed method
differentiated itself from other competitive tools; by not only
supporting cryptography mechanism; but also allowing the
measure of real-time parameters. Also, in [14], authors used
the same platform to implement an IDS. The main contribution
in this paper is the design of a platform which allowed the
implementation of an IDS. So, the same tool is deployed in this
paper to measure real-time performances resulting from the
implementation of cryptographic mechanisms. The method is
based on the analysis of the time intervals of the CAN
message.

III. EVALUATION OF CRYPTOGRAPHIC ALGORITHMS

The system proposed in this paper, aims at analyze the
security requirements on CAN bus network after implementing
a cryptographic mechanism. This section is devoted to the
detailed presentation of the proposed system: subsection A
introduces the system model, subsection B gives phases of
methodology process and subsection C provides algorithms
process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

293 | P a g e

www.ijacsa.thesai.org

A. System Model

In this section, the system model, which is adopted for
implementing the proposed method, is introduced. As shown in
Fig. 2, the system model is composed of 2 CAN nodes
connected to a CAN bus to form a network.

Assume that Node 1 sends messages to Node 2 with ID
=0x1 every 2ms. Likewise, Node 2 send messages to Node 1
with ID =0x2 every 5ms.

B. Fundamental Idea

The Main problem, on the communication side, is the
overhead caused by the additional data in combination with
possible additional latency. Both are especially challenging
when dealing with short signals requiring real time operation
and low latencies. The goal of this work is to develop a system
which can be deployed for implanting a cryptographic
mechanism along with analyzing real-time performances and
injecting spoofed message. Therefore, a platform based on
STM32F4 board, is deployed. The proposed method enables to
determine effects of implementing security mechanism on
CAN bus performances.

The fundamental idea is to apply a cryptographic
mechanism on a given message in Node 1 and send it to Node
2. After the transmission of a message frame, performances of
the related algorithm is measured according to a method will
be detailed later.

C. Phases of Methodology Process

Since the proposed approach is designed to be implemented
in the standard version of CAN protocol, the transmission
process of CAN messages will be different from the classic
one. The whole transmission process is summarized in Fig. 2.

When the sender node receives a request from the receiver,
it encrypts data; divides it into segments. Then, it sends
segments via CAN bus. To guarantee confidentiality and
integrity of automotive data network, the encryption of
messages is required. The CAN message encryption phase is
insured by encryption mechanisms and MAC methods.

1) Fragmentation technique: As the maximum payload

length of CAN data field is only 8 bytes, the available space,

for appending a Message Authentication Code (MAC), is very

limited. Rather than appending a MAC in one CAN frame’s

data field, dividing data into segments is suggested; and, then,

each segment is transmitted.

2) CAN message transmission phase: The transmission of

CAN frame is carried out from the sender to the receiver

according to CAN protocol and via CAN bus.

3) CAN message reconstitution phase: Arrival messages

need to be reconstituted for obtaining the complete message.
4) CAN message decryption phase: The resulted message

is decrypted to obtain the original message.

5) Calculating clock cycle: The last step of the

methodology is to calculate the clock cycle needed to perform

a CAN data transmission.

IV. TEST AND EVALUATION

Testing the proposed method on a real car, with the same
requirements and conditions, is very difficult. For that, the
authors tried to establish a platform which can resemble same
conditions of automotive network. Subsection A details
different components of the system and results of experimental
tests are assessed in subsection B.

A. System Implementation

1) Experimental setup: In order to design the model

system, several solutions are possible (PIC microcontroller,

ARDUINO board, Raspberry PI board...). In this paper,

STM32F407 microcontroller board, with a 32 bit ARM

Cortex-M4 core clocked at 16 MHz and an adaptive real-time

accelerator is used
1
. The high-speed CAN transceiver MCP

2551 is used as a transceiver. In this work, the two nodes

connected with an oscillator clock of 16MHz. Node 1 ,which is

connected to the PC, is dedicated to send messages to Node 2

across the CAN bus. The setup is shown in Fig. 3.

2) Implementation: For the implementation of algorithms,

Keil Microcontroller Development Kit (MDK) 5 is adopted as

an integrated development environment (IDE) to program

STM32 in C language.

Fig. 2. Overall Process of Analyzing Methodology for a Secure CAN Bus

Communication.

1STM32F407VG, http://www.st.com/en/microcontrollers/stm32f407

vg.html, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

294 | P a g e

www.ijacsa.thesai.org

Fig. 3. Test Environment.

On otherwise, STM32CUBEMX is used to configure the
STM32 board.

To integrate security into the CAN bus network, authors
included the STM32 cryptographic library package (X- CUBE
CRYPTOLIB) in particular AES in CMAC mode
(AES_CMAC) and HMAC_SHA (Hash-based Message
Authentication Code (HMAC) à l’ aide de SHA).

3) Algorithms: In order to design a secure CAN network,

an encryption algorithm block or a hash function is added to

CAN network. This algorithm enables to encrypt data sent by

the sender and to decrypt data received by the receiver.

The following section focuses on AES_128_CMAC, AES
_256_CMAC, HMAC_SHA196 and HMAC_SHA256
algorithms. Due to the complexity in automotive architecture,
the implementation of these algorithms, as codes which can be
implemented in CAN nodes, is a challenge. For the
implementation of this approach, the same platform as well as
the same configuration steps as those indicated in [14].

a) AES_128_CMAC: AES_128_CMAC has a key with

128 bits and gives a message with 128 bits in output. Since the

CAN data message can contain 108 bits in totally, authors

chose to append MAC in the data field and truncate it to two

segments.

Assuming that node 1 require sending data D0, of 64 bits,
to node 2 via a secure CAN bus. In first example,
AES_128_CMAC algorithm is applied. The transmission
process of the encrypted message is summarized in Fig. 4.

Fig. 4. Transmission Process of a Secure Data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

295 | P a g e

www.ijacsa.thesai.org

The process of decrypt frames is summarized in Algorithm 1.

Step 1: Start.

Step 2: Initialization.

Step 3: Encrypt data using AES_CMAC_Encrypt.

Step 4: Check encryption operation by comparing the

encrypted payload by the expected text.

Step 5: Encryption is failed? Pass to Step7.

Step 6: Divide the encrypted payload in two segments.

Step 7: Send the two messages to node 2.

Step 8: End process.

When node 2 receives messages, it decrypted them as shown

in Algorithm 2.

Step 1: Start

Step 2: Receive messages.

Step 3: Concatenate the two messages.

Step 4: Decrypt data using AES_CMAC_Decrypt

Step 5: Check decryption operation by comparing the

obtained text by the expected text.

Step 6: Decryption is failed? Pass to Step 7 then Step 9. Else

pass to Step 8.

Step 7: Output "The operation was completed successfully".

Step 8: Output "The operation has failed”.

Step 9: End process.

b) Algorithm of HMAC_SHA256: As a second example,

we applied to the D0 a HMAC SHA256 block.

HMAC_SHA256 gives a message with 256 bits in output. In

this case, MAC was appended in the data field then truncated

to four segments.

The transmission of a secure message using
HMAC_SHA256 is summarized in Fig. 5.

Algorithm 3 shows the authentication of the data.

Step 1: Start.

Step 2: Initialization.

Step 3: Hashing data using HMAC_SHA256.

Step 4: Hashing is failed? Pass to Step7.

Step 5: Divide the hashed payload in four segments.

Step 6: Send the four messages to node 2.

Step 7: End process.

Fig. 5. Transmission Process of an Authantecated Data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

296 | P a g e

www.ijacsa.thesai.org

Algorithm 4 shows the verification of authentication using

HMAC_SHA256.

Step 1: Start

Step 2: Receive messages.

Step 3: Concatenate the four messages.

Step 4: Operate HMAC_SHA256

Step 5: Check hashing function by comparing the obtained

text by the expected text.

Step 6: Hashing is failed? Pass to Step7 then Step 9. Else pass

to Step 8.

Step 7: Output “Operation success”.

Step 8: Output “Operation fails”.

End process.

4) Clock cycle calculation: The tests were executed on

STMF4 which their CPU is running at 168MHz.

To determine the impact of using a cryptographic algorithm
in CAN bus communication, the number of clock cycles should
be calculated. At first, the number of cycles needed to perform
each process is defined as follows:

CyclesCAN = Init key cycle + Init message cycle +

Process block of data cycle * number of blocks (1)

So, the number of cycles required to transmit a CAN
message encrypted by AES_128_ CMAC is calculated as
follows:

CyclesCAN= Init key cycle + Init message cycle

+ Process block of data cycle * number of blocks (2)

+2*(min of CAN data transmission cycle)

The number of cycles required to transmit a CAN message
encrypted by HMAC_SHA256 is calculated as follows:

CyclesCAN = Cycle de Init_key + Cycle de Init_message

+cycle de block de donnée *(nombres de block) (3)

+4*(min de cycle de transmission de donnée CAN)

V. EVALUATION

The size of the code requested by each proposed algorithm
is presented in Table 1.

A. Comparison between AES-CMAC

Table 2 shows the number of clock cycles requested by
AES_CMAC.

Referring to Fig. 6, the performances of AES _CMACs
don’t much differ when the key size differs. It is because of the
change of cycle numbers taken by each algorithm.

TABLE I. CODE SIZE OF EACH ALGORITHM TO PROCESS A BLOCK OF

DATA

Algorithm Mode Code Size (Byte)
Constant Data Size

(Byte)

AES (128, 192, 256) CMAC 5 796 6 040

HMAC_SHA256 ,128 3485 6040

TABLE II. PERFORMANCE OF AES-CMAC ALGORITHMS

Algorithm Mode Operation
Init

key
Init

message
Data block

processing

AES_128_CMAC

Decryption 636 639 1628

Encryption 618 525 1628

AES_192_CMAC

Decryption 632 719 1859

Encryption 616 608 1859

AES_256_CMAC

Decryption 840 758 2141

Encryption 816 649 2141

The difference between the numbers of clock cycles, used
by the three algorithms, is relatively little. However,
AES_256_CMAC requires more clock cycles than
AES_128_CMAC and AES_192_CMAC; hence it is the
slowest one. On the other hand, AES_128_CMAC is the least
secure since it has the shortest key. However, this latter is
considered faster than the others. It takes the least number of
clock cycles; hence it has better performance than
AES_192_CMAC and AES_256_CMAC.

Therefore, the variation of key size affects the number of
clock cycles and subsequently the performances of algorithm.
On the one hand, the key of AES_256_CMAC is longer than
the key of AES_128_CMAC. Thus, AES_256 is more secure.
But the AES_ 256 is slower than AES_128.

B. Comparison between HMAC_SHA

Table 3 shows the number of clock cycles requested by
HMAC_SHA.

Referring to Fig. 7, the performances of HMAC_SHA
don’t much differ when the key size differs. It is because of the
change of cycle numbers taken by each algorithm. The
difference between the numbers of clock cycles, used by the
three algorithms, is relatively little. However, HMAC_SHA256
requires more clock cycles than HMAC_SHA224; hence it is
the slowest one. On the other hand, HMAC_SHA224 is the
least secure since it has the shortest key. However, this latter is
considered faster than HMAC_SHA256; hence it has better
performances. Therefore, the variation of key size affects the
number of clock cycles and subsequently the performances of
algorithm.

Fig. 6. Comparison between AES_CMAC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

297 | P a g e

www.ijacsa.thesai.org

Fig. 7. Comparison between HMAC_SHA.

TABLE III. PERFORMANCE OF HMAC_SHA ALGORITHMS

Algorithm Mod Init key Init message Finalization

HMAC_SHA224 4 708 3 352 11 340

HMAC_SHA256 4 789 3 352 11 403

C. Comparison between HMAC_SHA256 and

AES_256_CMAC

The comparison between number of clock cycles of
HMAC_SHA256 and AES_256_CMAC is shown in Fig. 8,
since they have the same key size. The difference between the
numbers of clock cycles, taken by the two algorithms, is not
large. However, the HMAC_SHA requires more of number of
clock cycles than the AES_CMAC; hence this latter is faster.
Therefore, AES_CMAC algorithm requires has better

performances than the HMAC_SHA.

As can be seen, the effectiveness of the algorithm for
providing security depends on the key length and the protocol
mode. These parameters can have an impact on the speed
execution of algorithm. In addition, the security mechanism
has an impact on system bus load and message latencies.

Fig. 8. Comparison between HMAC_SHA_256 and AES_256_CMAC.

VI. CONCLUSIONS

To defend against vehicle attacks, many approaches have
been proposed in the literature. However, the greater part did
not address real-time requirements in CAN bus
communication. In this paper, effects of implementing

cryptographic approaches have been investigated by proposing
a performance analysis methodology of cryptographic
algorithm. In this paper, after describing the fundamental idea,
a description of the proposed system was given. The advantage
of the presented method is that addresses safety and security of
CAN bus by calculating the performances of cryptographic
algorithm.

In this manuscript, it has been proved that the CAN
network has limitations and it will not be able to meet
requirements. Car manufacturers and researchers are invited to
turn their attention to the recent protocols such as: Ethernet and
VANET. In fact, despite being in progress, they will be very
efficient in the future. Future work can include these new
protocols to design a secure automotive network in the
presence of recent communication interfaces.

REFERENCES

[1] R.B.GMBH, Bosch Automotive Electrics and Automotive Electronics, 5
ed. Bosch Professional Automotive Information. Springer Vieweg,
2014.

[2] R. Currie, “Hacking the CAN Bus: Basic Manipulation of a Modern
Automobile Through CAN Bus Reverse Engineering”, The SANS
Institute, 2017.

[3] Introduction to the Controller Area Network (CAN), TEXAS
INTRUMENTS, Application Report, SLOA101B–August 2002–
Revised May 2016, 2016.

[4] K. Koscher, A. Czeskis, et al., Experimental Security Analysis of a
Modern Automobile, IEEE Symposium on Security and Privacy, 2010.

[5] S. Checkoway, D. McCoy, et al., Comprehensive experimental analyses
of automotive attack surfaces, Proc.20th USENIX Security, San
Francisco, CA, 2011.

[6] C. Miller and C. Valasek, Adventures in automotive networks and
control units. Last Accessed from http://illmatics. com/-car_ hacking.
pdf on, 2013. (Cite en pages 37, 38, 76 et 116).

[7] I. Studnia, E. Alata, et al., A language-based intrusion detection
approach for automotive embedded networks, The 21st IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC 2015),
Nov 2014, Zhangjiajie, China.

[8] M. J. Kang and J. W. Kang, “A novel intrusion detection method using
deep neural network for in-vehicle network security,” in 2016 IEEE
83rd Vehicular Technology Conference (VTC Spring), May 2016, pp.

[9] Song, H. M., Kim, H. R., & Kim, H. K. (2016). Intrusion detection
system based on the analysis of time intervals of CAN messages for in-
vehicle network. 2016 International Conference on Information
Networking (ICOIN). doi:10.1109/icoin.2016.7427089.

[10] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on the
Connected Car and Security Protocol for In-Vehicle CAN,” "In IEEE
Transactions On Intelligent Transportation Systems", 2014.

[11] S. N¨urnberger and C. Rossow, “– vatiCAN – vetted, authenticated CAN
bus,” in Cryptographic Hardware and Embedded Systems: 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[12] J.V. Bulck, VulCAN: Efficient Component Authentication and Software
Isolation for Automotive Control Networks, ACSAC’17, December
2017, San Juan, Puerto Rico, USA.

[13] P. Mundhenk, A. Paverd, et al., Security in Automotive Networks:
Lightweight Authentication and Authorization, ACM Trans. Design
Automation of Electronic Systems, vol. 22, no. 2, 2017.

[14] M. Gmiden, M.H. Gmiden,H. Trabelsi, An intrusion detection method
for securing in-vehicle CAN bus, Conference: Conference: 2016 17th
International Conference on Sciences and Techniques of Automatic
Control and Computer Engineering (STA), IEEE, 2016.

