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Abstract—Single image Dehazing has become a challenging
task for a variety of image processing and computer applications.
Many attempts have been devised to recover faded colors and
improve image contrast. Such methods, however, do not achieve
maximum restoration, as images are often subject to color
distortion. This paper proposes an efficient single image Dehazing
algorithm that offers satisfactory scene radiance restoration. The
proposed method stands on the estimation of two key indices;
image blur and atmospheric light that can be employed in the
Image Formation Model (IFM) to recover scene radiance of
the hazy image. More clearly, we propose an efficient depth
estimation method using image blur. Most existing algorithms
implement atmospheric light as a constant which often leads
to inaccurate estimations, we propose a new algorithm “A-
Estimate” based on blur and energy to estimate the atmospheric
light accurately, an adaptive transmission map also has been
proposed. Experimental results on real and synthesized hazy
images demonstrate an improved performance in the proposed
method when compared to existing state-of-the-art methods.

Keywords—Image dehazing; Image Formation Model (IFM);
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I. INTRODUCTION

Outdoor images are often degraded under bad weather
conditions (e.g., foggy or hazy) by the turbid medium (e.g.,
dust, mist or fumes, haze) in the atmosphere during the
propagation process. These images usually suffer from poor
visibility such as low contrast and blur, resulting from the
fact that the light is scattered and absorbed with distance
from the camera. Thus, most of the automatic systems (e.g.,
automatic monitoring system, outdoor recognition system and
smart transportation system) which depend on the definition
of the input images, such as those used in the surveillance
needs to understand and extract useful information, and detect
image features, fail to work correctly. Therefore, improving
haze removal techniques is an important task in computer
vision and its applications such as image classification and
aerial imagery.

Despite there are many proposed hazy image enhancement
techniques, which can be classified into two classes [1]: (1)
image enhancement based on processing techniques, and (2)
image restoration based on physical models, the Dehazing
performance still has some problems in term of image quality.
First, researchers use the traditional image processing tech-
niques to eliminate the haze from a single hazy image (such
as methods which stand on histogram processing [2], [3]),

but these techniques produce unacceptable restoration results
because the single hazy image can hardly give much useful
information. In [4], [5], [6], polarization-based methods were
proposed for Dehazing with multiple image degrees. After,
Narasimhan et al. [7], [8], [9] use multiple images of the
same scene with different weather conditions. However, these
techniques also do not perform well the restoration of the
single hazy image. Lately, under the hypothesis that the local
contrast of hazy images is much lower than that in haze-
free images, researchers use image depth information to deal
with the haze within a single image using the physical model.
In [10], Tan et al. propose a maximization of local contrast
approach using Markov Random Field (MRF) to remove
the haze, but Tan’s approach produces oversaturated images.
Also, Fattal [11] proposes an Independent Component Analysis
(ICA) based Dehazing approach. The problem posed by this
approach is the time-consuming, and it cannot recover well the
scene radiance of images with a dense haze.

To estimate the thickness of haze, He et al. [12] discover
the dark channel prior (DCP) and remove the haze using the
atmospheric scattering model, nevertheless, DCP method leads
to over saturated recovered scene radiance. Many algorithms
[1],[13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25] have introduced to surmount the weakness of
the (DCP)-based method. To overcome the problem of time-
consuming many attempts have been discovered, Gibson et al.
[14], He et al. [26] and Tarel et al. [20] propose to use guided-
image filtering instead of standard median filtering. Kratz and
Nishino [22] have adapted FMRF (Factorial Markov Random
Field) to enhance the Dehazing quality and give more accurate
scene radiance estimation. Qingsong et al. [27] propose a
simple Dehazing algorithm based on a linear model to restore
the scene depth. However, this algorithm is not efficient enough
especially for dense-haze images (see Fig. 1).

On the other hand, using machine learning-based tech-
niques (neural networks, Convolutional neural networks, deep
learning), Cai et al. [28], Ren et al. [29] and Song et al. [30]
propose image Dehazing models built with convolutional neu-
ral networks (CNNs) based deep architectures, which achieve
some wrong results in term of saturation, the naturalness of
restored image because of non-massive data in the learning
process, also in term of efficiency because of redundant
computations as Song et al. [30] mentions in his conclusion.

In this paper, we propose a novel haze removal algorithm
using image blur and atmospheric light to estimate the depth
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Fig. 1: Example of Quingsong’s result with a dense-haze image. Left: Input hazy image. Center: Quingsong’s result . Right: our
result.

Fig. 2: An overview of our dehazing method. Input hazy image. Restored transmission map. Dehazed image.

and transmission maps (An overview of our proposed method
is shown in Fig. 2). The main contributions in our work are:

• We are the first to propose a depth estimation using
image blur map estimation for haze removal methods.
Because larger scene depth causes object more blurry
for hazy images.

• We propose a new and efficient algorithm A −
Estimate to estimate the atmospheric light from the
most blurry region in the blur map, which is defined
by the local patch that has a minimum energy. Then,
the light A is selected as the maximum pixel intensity
in the patch defined.

• We propose an adaptive transmission map using the
distance between the observed intensity and the closest
scene point.

The rest of the paper is organized as follow: In Section
2, we review the atmospheric scattering model and the DCP
based dehazing method. In Section 3, we describe the proposed
method. Qualitative and quantitative experimental results using
both real and synthetic hazy images are reported in Section 4.
Finally, Section 5 summarizes this paper.

II. RELEVANT BACKGROUND

A. Atmospheric Scattering Model

In [31], McCartney proposes the atmospheric scattering
model to illustrate the formation model of a hazy image (Fig.
3). This model is widely used in computer vision and image
processing. Later, Narasimhan and Nayer in [8],[32],[33],
deduce the model so that it can be expressed as follows:

Ic(x) = Jc(x)t(x) +A(1− t(x)). (1)

t(x) = e−βd(x). (2)

Where Ic(x) is the observed intensity of hazy image at
pixel x, Jc is the scene radiance representing the haze-free
image, A is the atmospheric light or background light, and t(x)
is the transmission medium map that describes the portion of
the scene radiance that is not scattered or absorbed and reaches
the camera, β is the scattering coefficient of the atmosphere
which can be a constant in homogenous atmosphere condition
[32], and d is the the depth map of scene. Ic, Jc and A
all are represented in RGB color space. Since we have the
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Fig. 3: Hazy Image Formation Model.

input image Ic the problem of dehazing is the estimation
of the atmospheric light and the transmission map t(x), and
then restore the scene radiance Jc, using the atmospheric
scattering model Equation (1). According to the atmospheric
scattering model, the depth of the scene is the most important
information, after we can easily get the transmission map using
Equation (2), and restore the scene radiance.

B. Dark Channel Prior (DCP ) based Dehazing Method

To estimate A and t(x), the DCP has been proposed.
DCP based dehazing method serves to find the minimum
intensity in the hazy image through a small local patch [12].
We can get the DCP of a hazy image using the following
formula:

Irgbdcp(x) = min
y∈p(x)

[ min
c∈{r,g,b}

Ic(y)] (3)

Denoted p(x) is a local patch centered at pixel x. For a
hazy image, the value of dark channel often increases with
depth, which means that the closest scene point has a low
value of dark channel and the opposite for a far scene point.

Fig. 4: Example of restoring scene radiance of hazy image
using DCP based-Dehazing method

To calculate A, the top 0.1% brightest pixels in Icdark were
picked in [12], where P0.1% represents their positions in Icdark.
After, A is chosen as the pixel has the highest intensity in the
hazy image. The following formula is used to estimated A :

A = Ic(arg max
x∈P0.1%

∑
c∈{r,g,b}

Ic(x)) (4)

In the case of non-hazy images, the transmission t(x) = 1
according to Equation (1), so Ic = Jc. In addition, under the
assumption that for most of the pixels at least one of them has
a low intensity in one of color channels within a small local
patch p, the DCP of the scene radiance Jrgbdark generally equals
to 0 for haze-free images taken in outdoor scenes. However,
this assumption concerned just the outdoor terrestrial haze-
free images, and it is not true for pixels of sky area, where
nearby pixels also tend to be bright. Therefore it affirms in
[12] Equation (5) that for about 75% of the pixels in the dark
channels have zero values.

Jrgbdark(x) = min
y∈ω(x)

{ min
c∈{r,g,b}

Jc(y)} = 0 (5)

In order to get the transmission map t(x) both sides of
Equation (1) are divided by A, and applying the minimum
operator to it. Then we obtain:

min
y∈ω(x)

{min
c

Ic(y)

A
} = min

y∈ω(x)
{min

c

Jc(y)

A
tc(y)}+ 1− t(x)

(6)

Note that the estimated TM t(x) =

miny∈ω(x){minc t
c(y)}, and miny∈ω(x){minc

Jc(y)
A tc(y)} =

0. According to Equation (6) we have:

t(x) = 1− min
y∈ω(x)

{ min
c∈{r,g,b}

Ic(y)

A
} (7)

In the case of t(x) has negative intensities, it returns to
zero. The Equation (7) describes the general approach to
estimate TM t(x), and then use it to recover the scene radiance
Jc according to Equation (1). Fig. 4 shows the result of DCP
based-dehazing method.

III. PROPOSED IMAGE DEHAZING METHOD

We propose a new single image dehazing method based
on both image blur map and light scattering. This new method
ensures that both estimated A and depth map are more accurate
and can provide a well-restored scene radiance. First, we define
the most blurry region in the hazy image using image blur map
and energy information in a local patch (in our work patch size
= 20 × 20) using A − estimate algorithm after, we select A
as the maximum intensity in this patch. Then, based on the
A selected and the image blur map, the depth d and the TM
maps are estimated to recover the scene radiance. The flow
diagram in Fig. 5 shows the process of our proposed method.

A. Hazy Image Blur Map Estimation

Blur is the most common undesirable problem and one
of the factors that lead to quality degradation which hazy
images suffer from, which means that the estimation of the
amount of blur presented on a given hazy image can contribute
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Fig. 5: Diagram chart of our proposed method.

significantly to restore and enhance the visibility of hazy
images. To this end, in this section, we propose a blur map
estimation method presented in four steps as follows:

1) Blur map estimation: undoubtedly, that the spatial
Gaussian filter is one the most useful filters used to
estimate the amount of blur presented on an image
and many literature works show the effectiveness of
Gaussian filter to quantify and evaluate blur within
an image. According to [34], the image blur map can
be estimated as the difference between the original
image and the multi-scale Gaussian-filtered image.
We put Gω,σ as the hazy image filtered by a ω ×
ω Gaussian filter with variance σ. And then we can
estimate the blur map using the formula shown below
Equation (8):

Blr(x) =
1

n

n∑
i=1

|Iy −Gki,ki(x)| (8)

Where Iy is the Y channel of the YCbCr color space
of the input image, because it contains the most
important gray-scale information about the image,
ki = 2in+ 1, and n set to 3.

2) Detection of brightest pixels: To find the brightest
points within the blur map estimated we apply a
grayscale dilation morphological operation with the
structuring element SE.

Bd(x) = [Md(Blr(x))] (9)

3) Blur map reconstruction: It consists of filling holes

in the blur map obtained Br(x) to recover the set of
background pixels that cannot be reached by filling
in the background from the edge of the image using
a morphological reconstruction.

Br(x) = [Cr(Bd(x))] (10)

Where Cr is the hole filling morphological recon-
struction.

4) Finally, we use the guided filter to refine the blur map
result. Where Fg is the guided filter function.

Mblr(x) = Fg[Br(x)] (11)

B. Atmospheric Light Estimation

In most of the previous single image dehazing methods, the
atmospheric light A is estimated from the most haze-opaque
pixel, for example, the highest intensity pixel is used as a
value of atmospheric light in [10] [12] (Fig. 6, the red square).
However, the brightest pixel can be one of a white color object
within the scene which can lead to dim scene radiance. To
overcome the limitation of this method and because the haze
changes the tone or the saturation of the atmosphere with
distance from the viewpoint, some researchers [27] propose
to estimate the A from the farthest point in the scene, but in
some cases of outdoor hazy images also the farthest point can
be one of the white scene object like clouds in the sky (Fig.
6). In this case, the estimation of the A is not accurate enough.

To deal with this problem, we propose another method to
estimate the A which estimates the atmospheric light A from
the most blurry region detecting using the blur map mentioned
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Fig. 6: Position of atmospheric light in He’s, Zhu’s and our method respectively (red marks)

in the previous section. To find the most blurry region within
the blur map we propose to use energy information and then
estimate the atmospheric light we propose a new algorithm
A−Estimate, more details are explained below (see Fig. 6).

For hazy images, the restored scene radiance Jc varies
between inferior and superior bounds [0,1] which are derived
by putting A = 0 and A = 1 as:

max(
I(x)− 1 + t(x)

t(x)
, 0) ≤ J(x) ≤ min(

I(x)

t(x)
, 1) (12)

According to this equation Equation (12), restoring hazy
image with wrong estimated atmospheric light leads to unde-
sirable results, for more clarification: dim estimated A leads
to a vivid scene radiance, as an opposite result is obtained
when the estimated A is bright. For example, when we put
A = 0 then Jc = min( I(x)t(x) , 1) the recovered scene radiance
J(x) could be brighter than the observed intensity I(x). To
avoid this problem, DCP approach and color variance have
been adapted by Emberton et al. [35] to estimate A. However,
this proposition does not provide accurate results. Also, Peng
et al. in [34] propose to use image variance and blurriness
information in a candidate selection method to estimate the
light BL for underwater images. Nevertheless, this approach
is adopted for underwater images and does not work well with
hazy images. In contrast, we adopt the image blur and energy
information to estimate the A. We propose an A selection
method, which selects the most blurry region from the hazy
image using blur map and energy indices. First, to detect the
most blurry region, we use a patch-based method to calculate
the local energy through each patch within the blur map. In
our work we set patch-size = [21 × 21]. The patch that has
minimum energy represent the lucky region which contains the
value of A. Then, we take 0.1% brightest pixels founded in the
patch selected as an estimated A. The detail of the selection
algorithm is described in Algorithm 1.

C. Depth Estimation

Objects far from the camera are blurry more than those near
the camera, which means that the amount of blur in a given
hazy image increases with the distance from the camera. In

Algorithm 1 A− Estimate
1: Input: input image I, Blur map Pblr.

2: Output: Estimated A.

3: Function AL Estimate(I, Pblr)

4: A1 ← avgx[detect−most− blurry − region(I ,Pblr)];

5: A2 ← 1
|P0.1%|

∑
x∈P0.1%

I(x);

6: A ← A2;

7: return A;

8: End Function

9: Function detect−most− blurry − region(I, Pblr)

10: Igray ← rgb2ycbcr(I);

11: Igray ← Igray(:, :, 1);

12: Patch-size = [21,21];

13: Divide Pblr(x) to set of patches;

14: n = number of patches;

15: for k : 1 : n do

16: Calculate energy E of pixels within each patch

17: E = 1
N

∑
x (Pblr(x))

2;

18: Pick p with minimum energy E and largest blur;

19: end for

20: return I(position(patch));

21: End Function

contrast, we have that the depth of the image is defined by the
distance from the camera viewpoint to the farthest point in the
image, thus, the amount of blur in a given hazy image increases
with depth. Therefore, the estimation of depth is relative to
the blur estimation. In this section, we propose a scene depth
estimation based on image blur and light scattering as an initial
depth map. After, we propose a combination depth method to
get the final depth map.
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Fig. 7: Scene depth intensities distribution.

For the first method we use the image blur presented before
in Equation (11) to estimate the scene depth:

dB = 1− (Pblr) (13)

For the second method is the maximum intensity prior
based depth estimation (derived from DCP -based method
assumption) denoted dD, is defined as:

dD = 1− (dMax). (14)

where dmax defined by the following equation:

dMax = max
y∈ω(x)

{ max
c∈{r,g,b}

{IR(y), IG(y), IB(y)}} (15)

Where IR, IG, IB are the three channels Red, Green, and
Blue of the image I in RGB color space.

This estimation is a combination of two depth estimation
methods, which are sigmoidally combined to get the scene
depth of a hazy image. By combining Equation (14), and
Equation (15), we introduce an efficient scene depth estimation
method considering blur and light scattering, as follows:

dn(x) = α2[α1Fs(dD(x)]) + (1− α1)Fs(dB(x)) (16)

where FS is an intensity normalization function to normal-
ize the intensity range given as:

Fs =
I −min(I)

max(I)−min(I)
. (17)

Note that I is a two-dimensional image.

Where α1 = S(avg(A), 0.5) and α2 = S(avg(Ic), 0.1) are
defined by the logistic function mentioned in Equation (18):

F (x, y) =
1

1 + e−(x,y)
(18)

The final step, we refine and smooth the depth map
obtained dn using soft matting [36] or guided filter [26].
More clarification: when a hazy image has brighter A (For
example A >> 0.5), then dD is more efficient and faithful
to estimate the scene depth. The red, green, and blue lights
are more absorbed and scattered in far scene points. Therefore
when the hazy image has a moderate level of red, green, blue
global content (avg(Ic) >> 0.1), with the atmospheric light
is comparatively brilliant (avgc(A) >> 0.5), then dD alone
can represent well the scene depth well. In this case, α1 ≈ 1,
α2 ≈ 1, then dn(x) ≈ dD(x).

Finally, when the red, green and blue lights are very little in
the scene, means (avg(Is) << 0.1), then dD fails to represent
well the scene depth. So α1 ≈ 1, α2 ≈ 0, dn(x) ≈ dB(x),
signify that the blur map can estimate the scene depth well
when α1 ≈ 1, α2 ≈ 0 . In the other cases, the combination
of the two approaches is the good way to estimate the scene
depth.

D. Transmission Map Estimation TM

In the DCP-based methods, the transmission map TM
estimation is base on Equation (7). On the other side, the TM
estimation of hazy image using IFM is based on Equation (2)
which needs the estimation of the depth from the viewpoint to
each spot within the scene. In addition, the distance δ between
the camera and the nearest scene point must be defined. In
contrast, Peng et al. [34] introduce a metric-based distance
estimation to calculate δ according to Equation (19).

δ = 1− max
y,c∈{r,g,b}

|A− Ic|
max(Ak, 1−Ak)

(19)

Note that k = argmaxc∈{r,g,b}(maxx |Ac − Ic|) and
A is the estimated light. In the case of a small
maxy,c∈{r,g,b}

|A−Ic|
max(Ak,1−Ak)

, δ tends to be large. For that
reason they propose the final scene depth df which can be
estimated according to the following equation:

df = dsc × (dn(x)− δ) (20)

Note that dsc is defined as a transforming scale used to get
the real distance. However, this estimation is relative with air
light estimation and needs to an accurate estimated A and a
wrong estimation can leads to color saturation in the closest
parts. To this end, we propose to use the scene depth estimated
in the previous section as an easy way to estimate the distance
between the closest scene point and the camera, Fig. 7 for
more understanding:

According to Fig. 7 and the definition of image depth, we
have that the closest point of the scene is that has maximum
intensity within the depth map, instead of this, we propose to
estimate the distance between the observed intensity and the
pixel has a maximum intensity in the depth map I(x) in each
color channel c. We can calculate δ using the formula below:

δ = 1− max
c∈{r,g,b}

(dmax− Ic(x)) (21)
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Fig. 8: Examples of Hazy images, their depth maps, transmission maps and recovered scene radiance. Left: Input hazy image.
Center: Restored depth and transmission maps, respectively. Right: Dehazed image.

Where dmax is maximum intensity in the depth map.
Finally, to find the the scene depth D using distance δ we
use the following equation:

D = 1− sc(dn(x)− δ) (22)

Where sc is the scaling constant to transform the relative
distance to absolute distance, in our work we set sc=6 meters
(Fig. 8 the second column represents the final scene depth
estimated).

By contrast, using Equation (23) we can get the transmis-
sion map TM as:

t(x) = e−βD(x) (23)

Where β is regarded as constant in homogenous atmo-
sphere conditions. In this paper we set (β= 0.8). With the
parameters chosen in this paper, we can see that the proposed
method can properly restore the hazy image as Fig. 8. Finally,
we use Equation (1) to recover the scene radiance. In the next
section, we can show the effectiveness and robustness of the
proposed method, by discussing the experimental results.

IV. RESULTS AND DISCUSSION

In order to verify the effectiveness and reliability of the
proposed Dehazing method, we test it on a wide range of
hazy images (more than 500 real-world and synthetic hazy
images), and then compare the results with four state-of-the-
art methods, He et al. [12], Quingsong et al. [27], Berman et

al. [37] and Wang et al. [38]. Three ways of evaluation are
used to rate the performance of our proposed algorithm:

• Qualitative Evaluation on both Real-World and Syn-
thetic Hazy Images.

• Quantitative Evaluation on both Real-World and Syn-
thetic Hazy Images.

• Computational Time Complexity Comparison.

A. Qualitative Evaluation on both Real-World and Synthetic
Hazy Images

1) Qualitative Evaluation on Real-World Hazy Images:
Most of the existing dehazing algorithms, are able to effec-
tively remove haze and recover scene radiance of outdoor
hazy images, thereby rendering it difficult to visually rank and
compare them. In an attempt to facilitate such ranking, some
challenging images (containing regions of white and gray) are
selected for testing.

Fig. 9 illustrates the qualitative comparison of the previous
four Dehazing algorithms [12], [27], [37], and [38] on outdoor
hazy images. Fig. 9(a) highlights the hazy images chosen to
be recovered. Fig. 9(b-e) shows the Dehazed images using
the previous Dehazing methods [12], [27], [37], and [38],
respectively and Fig. 9(f) demonstrates the results of the
proposed method.

As shown in Fig. 9(b), the method proposed by the authors
was able to remove most of the haze and rendered well-
recovered scene objects. However, the achieved results have
led to the issue of over-enhancement, (for example, the top of
the mountain in the second image tends to be orange and for
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Fig. 9: Qualitative Comparison of Different Methods on Real-World Images. (a) the hazy images. (b) He et al.’s results. (c)
Quingsong et al.’s results. (d) Berman et al.’s results. (e) Wang et al.’s results. (f) Our results

the first image, the sky region is much darker than it should
be). This problem ensues from overestimating the transmission
medium. The results of the second method [27] are much better
visually (Fig. 9(c)). However, some parts of white objects are
distorted (for instance, the whiteness of the shirt in the first
image is darker). Moreover, for select regions in the second
image, some edges are not preserved well and become invisible
(see the green ground area), so we can deduce that this method
can not preserve well the edges. In contrast, Berman’s [37]
method (Fig. 9(d)) removes the haze gradually and recovers
the scene effectively . However, it suffers from the same issue
as Quingsong’s [27] method, some white regions are distorted
(the white shirt in the first image is darker). The local contrast
also seems saturated (as shown in the second image at the top
of the mountain). While that Wang’s [38] method performs
well in term of haze removal, but it shows a big distortion in
visibility and colors. Comparing the results of the four previous
methods [12], [27], [37], and [38], our proposed method shows
satisfactory results free from over-saturation, and can preserve
edges and whiteness of objects. As shown in Fig. 9(f), the sky
and clouds are clearly visible in the first image with details
of all objects being enhanced (particularly the mountain in the
third image).

2) Qualitative Evaluation on Synthetic Hazy Images: In
order to further evaluate the performance of the proposed
method, comparisons were made on synthesized hazy images

collected from the Middlebury dataset [39], [40], [41], with
their respective ground truth images. Fig. 10(a) shows the
synthesized hazy images, the results of compared methods are
given in 10(b-f), and the last column represents the ground
truth of the synthesized images. The haze-free images are
taken from the Middlebury stereo datasets [39], [40], [41].
By observing the images in Fig. 10, it is clear that the results
in Fig. 10(b) are far from the the ground truth images and
appear much darker (particularly the first image, the pig and
the face of the doll with red hair). Results of Fig. 10(c) show a
slight haziness of distant objects (particularly the distant toys,
the map in the background and the pink toy in the second
image). Berman’s method (Fig. 10(d)) shows results that seem
to be more similar to the ground truth images. However,
some inaccuracies and over-enhancement can be observed
(particularly the third image has a darker background). Wang et
al.’s method [38] also removes all the haze presented, however
color distortion is evident (particularly in the last image). By
comparison, the issue of over-saturation is absent and scene
radiance is recovered in our proposed method (Fig. 10(f)).

B. Quantitative Evaluation on both Real-World and Synthetic
Hazy Images

In the previous section, a qualitative comparison was pre-
sented to assess and rank the algorithms visually. This section
proceeds to quantitatively assess and rank the algorithms in
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Fig. 10: Qualitative Assessment of Different Methods on Synthetic Images. (a) The hazy images. (b) He et al.’s results. (c)
Quingsong et al.’s results. (d) Berman et al.’s results. (e) Wang et al.’s results. (f) Our results. (g) Ground truth.

terms of visibility enhancement, preservability of structural
information, naturalness of the image and haze removability,
using two categories of IQA(Image Quality Assessement):
(NR-(No reference)-IQA and FR(Full reference)-IQA.)

1) NR-IQA on both Real-World and Synthetic Hazy Images:
For NR-IQA, we adopt four widely used metrics e, r, FADE
and BRISQUE the most of them are designed for dehazing
quality assessment and correlate well with human perception
(e,r,FADE). The indicators e and r are proposed by Hautière et
al. in the well-known approach of blind contrast enhancement
assessment [44], where e measures the rate of new visible
edges, and r verifies the average visibility enhancement before
and after restoration. FADE is a haze removability assessment
which is proposed in [43]. BRISQUE Blind/Referenceless Im-
age Spatial Quality Evaluator, is an image quality assessment
tool for rating possible loss of the naturalness of an image
[42]. Generally, lower values of FADE and BRESQUE indicate
that the results are satisfactory (low FADE value indicates a
greater dehazing ability) while high values of which, are not
acceptable. By contrast, higher values of e and r imply better
visual improvement after Dehazing. Tables I-IV contain the
values of indicators (FADE, BRISQUE, e, and r respectively),
of the dehazing results of state-of-the-art methods and our
proposed method for both real-world and synthetic images (as
shown in 9 and 10).

From the values of the FADE indicator listed in Table
I, it is observed that our proposed method achieves the best
results with respect to haze removability for figures (Fig. 9(1-
3), Fig. 10(1,2)), and the second-best values for figures (Fig.
9(4,5)). From these results, we deduce that the efficiency and
performance of our proposed Dehazing method are proved, and
it outperforms the other state-of-the-art Dehazing methods.

In order to verify the naturalness of the restored hazy
images, BRESQUE scores are computed for all compared

dehazing methods (including ours). As shown in Table II and
according to BRESQUE values, our Dehazing results produce
the least-loss of naturalness for most of the images (9(1,2,4),
Fig. 10(1,2)). Thereby indicating that our method preserves
the naturalness of images after restoration. It also achieves the
second-best score for Fig. 9(3). By contrast, our method fails to
preserve the naturalness in the nighttime hazy image (Fig. 9(5))
while He et al. method [12] achieves the best score BRESQUE.
In accordance with Table III, our results attain the highest value
for only the image (Fig. 9(5)) that is a nighttime hazy image,
while it realizes the second highest results for the images (Fig.
9(1,2), Fig. 10(4)), and it ranks the third top for the images
(Fig. 9(3,4), Fig. 10(1)). It is known that the number of new
visible edges after restoration must be balanced to avoid noise
amplification, and our method represents this characteristic
well, as noise amplification is avoided . In contrast, the results
of Wang et al. [38] and Berman et al. [37] achieve the best
values of e for the images (Fig. 9(2), Fig. 10(1,4)) and (Fig.
9(1,4)), respectively. This is a result of the over-saturation and
over-enhancement of local contrast.

As mentioned previously, the indicator r verifies the av-
erage visibility enhancement after the restoration. Table IV
shows the r values of Dehazing results for all of the compared
methods (including our proposed). According to these results,
our proposed method outperforms state-of-the-art methods
for most of the images (Fig. 9(1,2,3), Fig. 10(1,4)), where
it achieves the best values of r, and second-best result for
the image (Fig. 9(4)). Despite the results of He et al. [12]
and Berman et al. [37] attain the second-best score of r for
the images (Fig. 9(5,3)), respectively, the over-enhancement
problem is obvious in their results.

As a recapitulation of result analysis, the power and the
performance of our proposed method to remove haze, enhance
the visibility, and preserve the naturalness of an image has thus
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TABLE I: FADE value of All the Compared Methods on Real-world and Synthetic Images (Fig. 9 and Fig. 10)

FADE He et al. [12] Quingsong et al. [27] Berman et al. [37] Wang et al. [38] Ours
Fig.9 Img-1 0.3437 0.5246 0.3269 0.5379 0.2724
Fig.9 Img-2 0.5602 0.7923 0.6490 0.4257 0.3065
Fig.9 Img-3 0.3500 0.2132 0.4908 0.3206 0.1992
Fig.9 Img-4 0.2372 0.4022 0.2023 0.2969 0.2344
Fig.9 Img-5 0.6570 0.2700 0.3079 0.4024 0.3670

Fig.10 Img-1 0.3182 0.4830 0.2938 0.2781 0.2582
Fig.10 Img-4 0.5218 0.4583 0.3762 0.3092 0.2871

TABLE II: BRESQUE Score of All the Compared Methods on Real-world and Synthetic Images (Fig. 9 and Fig. 10)

BRESQUE He et al. [12] Quingsong et al. [27] Berman et al. [37] Wang et al. [38] Ours
Fig.9 Img-1 37.11 32.52 35.08 27.98 24.07
Fig.9 Img-2 30.67 31.86 32.76 36.72 26,27
Fig.9 Img-3 33.40 34.54 30.58 34.68 30.89
Fig.9 Img-4 30.02 29.24 31.06 29.58 22.80
Fig.9 Img-5 29.58 30.08 30.90 35.88 37.83

Fig.10 Img-1 24.62 32.58 25.67 33.70 21.60
Fig.10 Img-4 27.81 22.32 20.98 30.27 19.68

TABLE III: e value of All the Compared Methods on Real-world and Synthetic Images (Fig. 9 and Fig. 10)

e He et al. [12] Quingsong et al. [27] Berman et al. [37] Wang et al. [38] Ours
Fig.9 Img-1 2.1796 2.0692 3.7521 2.4709 3.0691
Fig.9 Img-2 32.0827 30.0827 39.7003 46.9503 40.6098
Fig.9 Img-3 2.7869 1.5072 1.9806 2.7243 2.6570
Fig.9 Img-4 0.9524 0.7093 1.9260 0.3298 0.7608
Fig.9 Img-5 0.2517 0.3675 0.8072 1.2983 1.3027
Fig.10 Img-1 48.9072 37.8025 45.7053 50.7291 46.5079
Fig.10 Img-4 48.3713 47.9073 50.3208 53.8824 52.6470

TABLE IV: r value of All the Compared Methods on Real-world and Synthetic Images (Fig. 9 and Fig. 10)

r He et al. [12] Quingsong et al. [27] Berman et al. [37] Wang et al. [38] Ours
Fig.9 Img-1 3.7921 2.9571 3.4960 2.5043 5.2067
Fig.9 Img-2 3.1504 1.8586 3.2607 2.3179 3.9508
Fig.9 Img-3 2.7982 1.2974 1.9527 1.6052 3.9175
Fig.9 Img-4 1.7580 1.6873 2.7613 1.4570 2.0723
Fig.9 Img-5 2.0893 1.7989 1.9720 1.9052 1.7082

Fig.10 Img-1 1.8671 1.9340 2.1436 2.1703 2.3680
Fig.10 Img-4 1.9870 1.7629 1.8605 2.0712 3.1507

TABLE V: C-SSIM value of All the Compared Methods on Synthetic Images (Fig. 10)

C-SSIM He et al. [12] Quingsong et al. [27] Berman et al. [37] Wang et al. [38] Ours
Fig.10 Img-1 0.8095 0.7965 0.8502 0.7264 0.8973
Fig.10 Img-2 0.7320 0.7534 0.8363 0.8093 0.8209
Fig.10 Img-3 0.8711 0.8462 0.8219 0.7838 0.9185
Fig.10 Img-4 0.8217 0.8913 0.8641 0.8168 0.8874

been proved.

2) FR-IQA on Synthetic Hazy Images: For the FR-IQA
we select the color-based structural similarity index (C-SSIM)

proposed by Ahmed et al. in [45], which is an image quality
assessment metric designed for color images. In addition, it
is known to have high correlation with human evaluation.
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Fig. 11: Distribution of C-SSIM values of all the algorithms

TABLE VI: Computational time for Figures (Fig. 9 and Fig. 10) using different Dehazing methods

Computational time (s) He et al. [12] Quingsong et al. [27] Berman et al. [37] Wang et al. [38] Ours
Fig.9 Img-1 130.32 2.97 87.96 10.16 3.12
(768× 576)
Fig.9 Img-2 87.93 2.27 62.77 8.57 1.82
(511× 768)
Fig.9 Img-3 107.80 2.53 79.22 10.84 2.96
(768× 576)
Fig.9 Img-4 104.27 2.14 76.81 9.71 1.98
(768× 512)
Fig.9 Img-5 211.64 5.07 99.14 11.21 6.36

(4117× 2745)
Fig.10 Img-1 85.70 1.92 60.03 8.13 1.97
(695× 555)
Fig.10 Img-4 190.04 5.12 97.19 10.20 5.28

(2880× 1988)

The goal of which is to assess the ability of an algorithm
to preserve structural information. In order to implement the
C-SSIM experiments on synthetic hazy images presented in
Fig. 10, the ground truth images are adopted as the reference
images. The values of C-SSIM corresponding to the results of
all the compared Dehazing algorithms are listed in Table V
and distributed in Fig. 11. A high score of C-SSIM (close to
1) represents a high similarity between a result of Dehazing
method and its ground truth, The converse is true for low
values of C-SSIM.

As it can be seen from Table V, that our results are
ranked the best among other algorithms for (Fig. 10(1,3)),
and the second-best for the images (Fig. 10(2,4)). These
results prove that our proposed method can effectively preserve
the structural information for images after Dehazing. Despite
Berman et al. and Quingsong et al. achieve the best C-SSIM

for the images (Fig. 10(2,4)) respectively, the haze residual
is evident especially in Quingsong’s result Fig. 10(4). This is
confirmed by the FADE value in Table I. By contrast, Wang
et al’s. results achieve the lowest values of C-SSIM for the
majority of the images, and this indicates the loss of significant
structural information in most of the images.

C. Computational Time Complexity Comparison

undoubtedly that the time complexity also is an important
index to evaluate and rank the algorithms. Because of that,
we list the run times of each algorithm in Table VI. The
software used to implement and run our proposed algorithm
is MATLAB, using a MacBook with 1.2GHz Intel Core M
processor and 8 GB RAM. For a given hazy image of size
[N ×M ], the complexity of our proposed Dehazing algorithm
is O(N × M ). According to Table VI, the running time
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increases with respect to the size of the image. Also, Our
proposed method demonstrates a remarkable computational
time efficiency, and it is much faster than most of the other
methods. Quinsong et al.’s method also shows an efficient
computational time.

FAILURE CASE

As any Dehazing method based on the hazy model, our
proposed Dehazing method has a limitation. Based on the
experimental results presented in the section “Results and
Discussion”, we deduce that despite the good performance of
our method on a wide range number of synthetic and real-
world hazy images, our method performs poorly in case of
nighttime hazy images. Example of the failure case is shown
in Fig. 9(Img-5(f)), and this problem will be addressed in our
future work.

V. CONCLUSION

In this paper, we have proposed a novel single haze removal
method based on both image blur and atmospheric light
estimation. We propose to use blur and atmospheric light to
estimate the depth and transmission maps of hazy image for the
first time, instead of the DCP based Dehazing method. Where
we propose a new simple and powerful method to estimate
the blur presented on the hazy image, and a new algorithm
to estimate the atmospheric light based on blur and energy of
image. To demonstrate the satisfaction of restoration of this
proposed method we test it with real and synthesized hazy
images. A large number of hazy images are well recovered
using our proposed Dehazing method. Both subjective and
objective comparison results showed that the proposed method
can recover well the scene radiance of hazy image compared
with other IFM-based Dehazing methods.
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