
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

281 | P a g e

www.ijacsa.thesai.org

Visualizing Code Bad Smells

Maen Hammad
1
, Sabah Alsofriya

2

Department of Software Engineering, The Hashemite University

Zarqa, Jordan

Abstract—Software visualization is an effective way to

support human comprehension to large software systems. In

software maintenance, most of the time is spent on understanding

code in order to change it. This paper presents a visualization

approach to help maintainers to locate and understand code bad

smells. Software maintainers need to locate and understand these

bad smells in order to remove them via code refactoring. Object

oriented code elements are visualized as well as their bad smells

if they exist. The proposed visualization shows classes as building

and bad smell as letter avatars based on the initials of the names

of bad smells. These avatars are shown as warning signs on the

buildings. A framework is proposed to automatically analyze

code to identify bad smells and to generate the proposed

visualizations. The evaluation of the proposed visualizations

showed they reduce the comprehension time needed to

understand bad smells.

Keywords—Software visualization; program comprehension;

data modeling; bad smells

I. INTRODUCTION

Code bad smells are symptoms of poor design and
implementation choices [1]. These bad smells have negative
impact on the maintainability of the code. Badly written code is
hard to understand, test and change. As a result, the changes of
bugs increase. So, maintainers have to locate these smells in
the code in order to remove them. Code smells are removed by
a process called refactoring [1]. It is the process of rewriting
the code to improve its internal structure without changing its
external behavior.

The problem is how to identify these bad smells and
locating code elements affected by these smells. Most of bad
smells detecting tools reports results as formatted text.
Developers have to go back to the source code and check the
identified smell. They need to understand the cause of the
smell in order to remove it. Understanding the smell with its
causes in the code is essential to the refactoring process. The
research question that we are trying to address is; how to
represent or model code smells within its static code
environment?

Program comprehension is essential to software
maintenance activities. Most maintenance cost is spent on
understanding the current status of the code and the system in
general. Maintainers consume time and effort when interacting
with large scale projects in order to understand them.
Visualization is an effective way to ease the interaction process
with code and hence support comprehension tasks. Our
premise is that visualizing code smells with structural code
elements supports maintenance activities by reducing
comprehension time.

In this paper, we propose a visualization technique to
model bad smells as well as their locations in the structural
code environment. Classes are modeled as buildings. Each
building consists of a number of floors that match the number
of methods in the class. The number of class attributes, LOC
for each method and its parameters are also visualized in the
buildings. Bad smells are visualized as signs of letter avatars
on the buildings. Each bad smell is modeled by a different
avatar based on the initials of the smell’s name. A framework
is proposed to automatically analyze object oriented source
code and to generate the proposed visualizations.

This paper presents our early work towards realizing the
proposed framework as a complete visualization tool. We also
illustrate the proposed visualizations and we show how they
can be useful for program comprehension tasks. The main two
research contributions of this paper are:

 Easy to understand visualizations to locate and identify
bad smells in code.

 A framework to automatically analyze source code to
generate the proposed visualizations.

This paper is organized as follows. Section 2 summarizes
the main related research in the area. Section 3 presents the
proposed visualizations. The proposed framework is detailed in
Section 4. The evaluation of the proposed visualizations is
presented in Section 5 followed by our conclusions and future
work.

II. RELATED WORK

There are many researches in the software visualization
area that hard to cover in this paper. We focus on the most
related work to ours that can be categorized into visualizing
static code structure and visualizing bad smells.

A. Visualizing Static Code Structure

Ducasse and Lanza [2][3] presented a novel visualization
for classes named class blueprint. It visualizes the internal
structure of classes to support class understanding. A well-
known 3D visualization approach, that model software as
cities, is presented in [4][5][6]. The visualization maps the
information about the source code in meaningful ways related
to real cities. Another visualization approach for architecture
and metrics of software systems as 3D software cities is
presented in [7]. Panas et al. [8] proposes a 3D visualization
metaphor to model software production cost as real cities. A
reverse engineering environment called Rigi is presented in [9]
to analyze, interactively explore, summarize, and document
large projects. Marcus et al. [10] presented the sv3D
framework for software visualization. The visualization is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

282 | P a g e

www.ijacsa.thesai.org

focused on source code and testing levels. Langelier et al. [11]
proposed a visualization framework to supports and visualizes
quality analysis of large software systems. Fittkau et al. [12]
presented a live visualization approach to monitor traces for
large software landscapes. In [13], Fittkau et al. presented
ExplorViz to visualize the hierarchical abstractions of large
software. The goal is supporting programming comprehension
tasks. Merino et al. [14] introduced an interactive software
visualization tool called CityVR. The tool implements the city
metaphor technique using virtual reality to support
comprehension tasks.

B. Visualizing Code Smells

The focus of this discussion is on visualizing bad smells not
detecting them. Parnin and Goorg [15] presented visualizations
to inspect bad coding patterns to assist developer finding
relevant methods to inspect. Parnin et al. [16] proposed a
catalogue of visualizations to assist reviewers to identify bad
smells. They implemented a visualization tool called
NOSEPRINTS. Murphy-Hill and Black [17] presented a bad
smell detector called Stench Blossom. It detects and visualizes
bad smells using the ambient view. The smell is shown with
the source code. Mumtaz et al. [18] analyzed multivariate
software metrics that link two visualization techniques, Parallel
coordinates’ plots and RadViz, for detecting outliers that may
indicate for bad smells. Steinbeck [19] presented a
visualization technique that consists of several Treemaps as a
circle in order to integrate more bad smells visualizations.
Carneiro et al. [20] presented a multiple views for code
concern properties. These showed how these views support
code smell detection.

In Summary, most of the related works in this area
visualize either code elements or bad smells. We distinguished
by modeling both; code and bad smells in the code with
meaningful.

III. THE PROPOSED VISUALIZATIONS

The proposed visualization models classes as buildings
with the following characteristics:

 Each building consists of a number of floors equals to
the number of methods in the class. The first floor is
not counted. The doors of the building are shown in
this floor.

 The height of each floor represents the number of lines
of code (LOC) in that method.

 The number of windows in each floor equals to the
number of parameters for that method.

 The number of doors, shown in the first floor, of each
building equals to the number of the data fields in that
class.

The bad smells are visualized as red signs on the buildings
with letter avatars based on the initials with the following
characteristics:

 Each avatar represents one code bad smell.

 Method related bad smells appears as avatars in the
corresponding floor of that method.

 Class related bad smells appears as avatars on the roof
of the building for that class

For example, Fig. 1 shows the source code for two classes;
Phone and Customer from (from
https://elearning.industriallogic.com). Phone class has four
methods and one data field. The Customer class has one data
field and one method. The two classes are modeled and
visualized in Fig. 2. To illustrate the proposed visualizations,
we generated the visualizations using the SketchUp
(www.sketchup.com) tool. We used it to generate the
visualizations in this paper based on the descriptions that we
proposed.

The visualized building for the Phone class in Fig. 2 has
four floors that correspond to the four methods in the class. The
name of each method is shown in its corresponding floor. The
first floor is not counted. We consider it level zero. It is always
shown for all classes even if they have no methods. Buildings’
doors are shown in level zero with the name of the class. The
number of doors corresponds to the number of class’s
attributes. For the Phone class, one door is shown which
models the single attribute of the class; unformattedNumber.
The same applies for the visualized building for the Customer
class. The class has one method (getMobilePhoneNumber) and
one attribute (mobilePhone). It is modeled as a building with
one floor and one door. The height of the first floor is five units
with no windows. The floor models the
getMobilePhoneNumber method that has five LOC and zero
parameters.

The heights of all four floors are equal since all methods
have two LOCs. The first floor has one window which means
the first method has one parameter. Other methods have no
parameter modeled by zero windows.

Fig. 1. Phone and Customer Classes.

https://ieeexplore.ieee.org/author/37085746345
https://elearning.industriallogic.com/
http://www.sketchup.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

283 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Visualization of the Phone and Customer Classes in Fig. 1.

Data class smell results when a class has data with only
setters and getters. When a method is more interested in the
data of other class, this method suffers from the feature envy
smell. A method that has large number of parameter has a long
parameters smell. Finally, long method bad smell results when
the method has too many responsibilities and performs
different tasks. Shotgun surgery results when a small change
occur, many other changes have to be made in many classes
and methods. The avatars that model these five bad smells are
shown in Fig. 3. We tried to make the design of the avatars
reflects the meaning of each bad smell. We used the initials of
the bad smells names. The background is red to reflect the
warning status of the smell. The letter avatars was designed
using a tool from (http://google-avatar.herokuapp.com/)

Using initials has two main advantages. The first one is the
readability and clarity. They are easy to read and distinguished
among each other. This is essential in case large number of
buildings with many smells is visualized. The second
advantage is the supporting of adding more smells to be
visualized. Letter avatars are easy to design and visualize. So,
they support the extensibility of the approach to include more
smells.

Data Class Shotgun Surgery Feature Envy

Long Parameters Long Method

Fig. 3. The Proposed Avatars that used to Model the Bad Smells.

Method related avatars are visualized on the floors while
class related smells are placed on the roofs. In Fig. 2, the
Feature Envy avatar is shown on the floor that models the
getMobilePhoneNumber method in the customer class. This is
because this method is more interested in the data field of the
Phone class and hence has the Feature Envy smell.

Fig. 4 visualizes the code shown in Fig. 5. The code in
Fig. 5 shows a Java code example for a shotgun surgery smell
(from http://javaonfly.blogspot.com). The visualized building
shown in Fig. 4 models the class Account. It consists of four
floors and three doors. The number of windows in each floor
models the number of parameters for each method. The
shotgun surgery avatar is shown on the roof of the building.
The smell resulted from the account balance validation
condition in the methods. In case this validation is updated, all
methods have to be updated.

Fig. 6 shows two more visualizations examples for two
different classes. The data class smell avatar is shown on the
roof of the first building since it is a class related bad smell.
The avatars of long parameter and long method smells are
visualized on the second floor of the second building. This
building has a very tall floor with many windows. This floor
corresponds to the method that has the identified method
related bad smells. The two avatars of these two smells are
shown together.

Fig. 4. The Visualization of the Account Class Shown in Fig. 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

284 | P a g e

www.ijacsa.thesai.org

Fig. 5. A Class with Shotgun Surgery Bad Smell.

Fig. 6. Two Visualizations for two different Classes with Bad Smells.

It is important to mention that the floors of the building
may have different heights because the LOC of the class
methods are not necessarily equal. Also, the number of
windows in all floors varies because it is based on the number
of parameters for each method. The visualization of the LOC
and the number of parameters for methods helps in preventing
bad smells in advance. By browsing buildings, developers can
quickly locate methods with potential long methods and long
parameter smells. These methods have tall floors and many
windows. These methods need to be carefully changed to avoid
smells.

IV. PROPOSED FRAMEWORK

In this section, the proposed automated process for
generating the views is detailed. This automated process can be

realized by the proposed framework shown in Fig. 7. It shows
the block diagram for the main components of the proposed
framework. The process starts with the source code as an input
to the framework. Then, the code is analyzed to identify bad
smells. The same code is also parsed to extract the code
elements that will be visualized. The identified bad smells with
their locations in the extracted code elements are used to
generate the data model. In the next step, the generated data
model is used by a visualization tool to generate the proposed
visualizations. The following subsections detail the
components of the proposed framework.

A. Code Elements Extractor

This component is responsible for parsing the source code
and extracting the needed code elements. The input could be a
source file or a package of files. Each source file is transformed
to the XML representation srcML [21]. This representation
tags each code element with its syntactic information. The
srcML representation can be automatically generated by using
its tool that is available from (http://www.srcml.org/).

A set of XPath queries are applied on srcML to extract all
needed code elements. The first extracted elements are classes.
Then for each class all its methods and its data fields are
extracted. Finally, the attributes of each method are extracted.
Each extracted code element is given a unique label. The given
label indicates the location of the code element. For example,
the label of a data field in a specific class within a specific
package is written as; package (Name) .class (Name) .field
(Name). Another example, the label of a method with its
(LOC) value is written as: package (Name). class (Name).
method (Name). parameters (Names). LOC (number). All
extracted labels are sent to the Data Model Generator
component.

B. Bad Smell Identification

Code bad smells are identified using any specialized tool.
There are many tools in the literature that can be utilized. More
than one tool can be used in this component to identify a
variety of bad smells. JDeodorant [22][23] and JFly [24] are
our target tools to be used in this component. JDeodorant is an
Eclipse plug-in tool that identifies code smells with refactoring
suggestions. The bad smells identified by the tool are; Feature
Envy, Type Checking, Long Method, God Class and
Duplicated Code. JFly is also an Eclipse plug-in tool that
detects bad smells from code changes as well as static code.
The tool keeps track on code changes to identify nine bad
smells. The identified code smells are; Inappropriate Intimacy,
Data Class, Middle Man, Message Chain, Long Parameter,
Lazy Class, Brain Method, Speculative Generality and
Temporary Field.

The identified bad smells are forwarded to the Data Model
Generator. Each bad smell is tagged with unique label. Each
label represents the name of the bad smell and the location of
the affected code element. For Example, the identified feature
envy bad smell in a specific class within a specific package is
labeled with the following label; smell (FeatureEnvy). Package
(Name). class (Name). In case a long parameters code bad
smell is detected in one method, its label is written as follows;
smell (LongPara). Package (Name). class (Name). method
(Name). parameters (Names).

http://www.srcml.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

285 | P a g e

www.ijacsa.thesai.org

Fig. 7. The Proposed Framework for Generating the Proposed

Visualizations.

C. Data Model Generator

Two types of labels are sent to the Data Model Generator
component. The first type represents the extracted code
elements and the other type represents the identified bad smells
in code elements. The labels of code elements are used to
generate the data model of the buildings. Then, the labels of
bad smells are used to determine the avatars and their locations
on the building.

The data model is generated automatically and mainly
contains the following information:

 Locations and sizes of buildings that will be rendered
on the screen. The base size of the buildings varies
based on their numbers and the size of the screen.

 Specifications of buildings; the number of floors, the
height of each floor, the number of floor’s windows
and the number of doors.

 Specifications of the avatars; type, number and location
on the building.

The specifications are stored as data meta-model in a
flexible XML format. The goal is to ease the rendering process
using any visualization tool. For example, Fig. 8 shows a
snapshot from the XML representation for the specification of
one building. Each building has its own tag that corresponds to
a single class. Within the building, more information is stored
about its contents. This information includes the location on the
screen, number of doors and the specification of each floor.
Also, the avatar of the identified bad smell is stored as a tag. It
is important to note that the width of the building is determined
based on the number of class attributes. For example, a
building that models a class with ten attributes has longer
width to visualize ten adjacent doors than a building with only
one door.

D. Visualizations Generator

Finally, the proposed visualizations are ready to be
rendered. This component is responsible for rendering the
generated data model on the screen. A tool can be developed
using any programming language to draw the specifications
stored in the data model. A specialized visualization tool can
also be utilized to generate the visualizations.

<building>

 <location><x>200</x> <y>220</y>

 <width>50</width>

 </location>

 <doors> 1 </doors>
 <floors>

 <floor> <height> 25</height>

 <windows> 10 < /windows>
 <avatar>long method</avatar> </floor>

 <floor> <height> 3 </height>

 <windows> 0 < /windows>
 <avatar>NONE</avatar> </floor>

 </floors>

</building>

Fig. 8. A Snapshot for the XML Representation of One Building.

We are working on developing a visualization tool to
generate the views from the data model. The tool will be able
to generate 3D visualizations for buildings. Zooming,
localization and browsing are essential features that are under
consideration. Developers will have the ability to search and
locate a specific building that corresponds to a specific class.
Also, they will be able to zoom in or out the buildings. The
browsing feature helps developers to navigate through
buildings in 3D environment. These features help developers to
understand and handle large number of buildings that model
large scale systems with many classes.

V. EVALUATION

We need to evaluate the usefulness of the proposed
visualizations in supporting comprehension tasks. So, we
performed a controlled pilot experiment on software
engineering undergraduate students. The goal of the
experiment is to check how the proposed visualizations help in
quickly understand and locate bad smells in code. The steps of
the experiments were as follows:

1) Five java classes were carefully selected and

implemented to have intentionally bad smells. The five bad

smells that are under consideration in this paper where

distributed over the five classes.

2) The data model of the classes was generated to model

the classes based on the proposed visualizations.

3) The visualizations were generated using SketchUp and

based on the data model of the classes.

4) Four software engineering students who are familiar

with code bad smells were divided equally into two groups.

All students have very good GPA rating.

5) The first group was given the five classes with textual

report about the bad smells and their locations in these five

classes.

6) The second group was given the same five classes and

their visualizations with their bad smells.

7) Each student was asked to write down why the

dedicated bad smell has occurred.

8) The answers of the two grouped were compared and

the average completion time.

Table I shows the completion time in minutes for all four
students on the two groups. The average completion time for
the first group is 4.9 minutes. The first student needed five

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

286 | P a g e

www.ijacsa.thesai.org

minutes to complete the task while the second student needed
four minutes and 48 second (4.8 minutes). The second group,
who used the visualizations, achieved better average time
which is three minutes.

The comparison results between the two groups showed
also that both groups answered the questions correctly. But the
average completion time was different. The group who used
the visualizations completed the task with about 40% less
average time than the other group.

After completing the experiment, we also, asked the four
students if they find the visualizations useful in understanding
code smells. Three out the four students found it useful. The
fourth student found the design of the avatars is not useful in
modeling the bad smells.

TABLE I. THE COMPLETION TIME FOR THE SUBJECTS

Group Student
Time in
Minutes

Average

Without Visualizations
S1 5

4.9
S2 4.8

With Visualizations
S3 2.5

3
S4 3.5

VI. CONCLUSIONS AND FUTURE WORK

Software visualization support program comprehension
tasks for maintainers. Useful visualizations have been proposed
to help developers locate and identify bad smells. These
visualizations show object oriented code elements with the
types of identified bad smells in these code elements. A
framework is presented to automatically analyze source code
and generate the proposed visualizations. The framework is
automated and can be extended to include more smells and
visualize more code elements. The evaluation of the proposed
visualizations showed their positive impact on understanding
bad smells and their causes.

Our future work aims to completely implement the
framework and realize it as a plug-in tool in an IDE as Eclipse.
More avatars will be considered to cover more bad smells. We
are also working on visualizing more code elements as
relationships among classes, data types and methods
invocations.

REFERENCES

[1] M.Fowler, Refactoring improving the design of existing code .Addison-
Wesley, 1999.

[2] Ducasse, Stéphane, and Michele Lanza. "The class blueprint: visually
supporting the understanding of glasses." IEEE Transactions on
Software Engineering 31, no. 1 (2005): 75-90.

[3] Lanza, Michele, and Stéphane Ducasse. "A categorization of classes
based on the visualization of their internal structure: the class blueprint."
ACM SIGPLAN Notices 36, no. 11 (2001), pp. 300-311.

[4] Wettel, Richard, and Michele Lanza. "Visualizing software systems as
cities." In 2007 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pp. 92-99. 2007.

[5] Wettel, Richard, and Michele Lanza. "Codecity: 3d visualization of
large-scale software." In Companion of the 30th international conference
on Software engineering, pp. 921-922. 2008.

[6] Wettel, Richard, Michele Lanza, and Romain Robbes. "Software
systems as cities: A controlled experiment." In 2011 33rd International
Conference on Software Engineering (ICSE’11), pp. 551-560. 2011.

[7] Alam, Sazzadul, and Philippe Dugerdil. "Evospaces visualization tool:
Exploring software architecture in 3d." In 14th Working Conference on
Reverse Engineering (WCRE 2007), pp. 269-270. 2007.

[8] Panas, Thomas, Rebecca Berrigan, and John Grundy. "A 3d metaphor
for software production visualization." In Proceedings on Seventh
International Conference on Information Visualization (IV 2003), pp.
314-319. 2003.

[9] Kienle, Holger M., and Hausi A. Müller. "Rigi—An environment for
software reverse engineering, exploration, visualization, and
redocumentation." Science of Computer Programming 75, no. 4 (2010),
pp. 247-263.

[10] Marcus, Andrian, Louis Feng, and Jonathan I. Maletic. "3D
representations for software visualization." In Proceedings of the 2003
ACM symposium on Software visualization, p. 27. 2003.

[11] Langelier, Guillaume, Houari Sahraoui, and Pierre Poulin.
"Visualization-based analysis of quality for large-scale software
systems." In Proceedings of the 20th IEEE/ACM International
Conference on Automated software engineering (ASE’05), pp. 214-223,
2005.

[12] Fittkau, Florian, Jan Waller, Christian Wulf, and Wilhelm Hasselbring.
"Live trace visualization for comprehending large software landscapes:
The ExplorViz approach." In 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), pp. 1-4. 2013.

[13] Fittkau, Florian, Alexander Krause, and Wilhelm Hasselbring. "Software
landscape and application visualization for system comprehension with
ExplorViz." Information and software technology 87 (2017).pp. 259-
277.

[14] Merino, Leonel, Mohammad Ghafari, Craig Anslow, and Oscar
Nierstrasz. "CityVR: Gameful software visualization." In 2017 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), pp. 633-637, 2017.

[15] Parnin, Chris, and Carsten Görg. "Lightweight visualizations for
inspecting code smells." In Proceedings of the 2006 ACM symposium
on Software visualization, pp. 171-172, 2006.

[16] Parnin, Chris, Carsten Görg, and Ogechi Nnadi. "A catalogue of
lightweight visualizations to support code smell inspection." In
Proceedings of the 4th ACM symposium on Software visualization, pp.
77-86. 2008.

[17] Murphy-Hill, Emerson, and Andrew P. Black. "An interactive ambient
visualization for code smells." In Proceedings of the 5th international
symposium on Software visualization, pp. 5-14. 2010.

[18] H. Mumtaz, F. Beck and D. Weiskopf, "Detecting Bad Smells in
Software Systems with Linked Multivariate Visualizations," In 2018
IEEE Working Conference on Software Visualization (VISSOFT’18),
pp. 12-20, 2018.

[19] Steinbeck, Marcel. "An arc-based approach for visualization of code
smells." In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER’17), pp. 397-401.
2017.

[20] Carneiro, Glauco de F., Marcos Silva, Leandra Mara, Eduardo
Figueiredo, Claudio Sant'Anna, Alessandro Garcia, and Manoel
Mendonca. "Identifying code smells with multiple concern views." In
2010 Brazilian Symposium on Software Engineering, pp. 128-137,
2010.

[21] Collard, M. L. , Kagdi H. H., Maletic, J. I., “An XML-based lightweight
C++ fact extractor,” Proc. of 11th IEEE International Workshop on
Program Comprehension (IWPC'03), pp. 134-143, 2003.

[22] Fokaefs, Marios, Nikolaos Tsantalis, Eleni Stroulia, and Alexander
Chatzigeorgiou. "JDeodorant: identification and application of extract
class refactorings." In 2011 33rd International Conference on Software
Engineering (ICSE’11), pp. 1037-1039, 2011.

[23] Mazinanian, Davood, Nikolaos Tsantalis, Raphael Stein, and Zackary
Valenta. "JDeodorant: clone refactoring." In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-
C), pp. 613-616. 2016.

[24] Maen Hammad, Asma Labadi, “Automatic Detection of Bad Smells
from Code Changes”, International Review on Computers and Software,
Vol. 11, No. 11, pp. 1016-1027, 2016

