
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

300 | P a g e

www.ijacsa.thesai.org

Performance Analysis of Machine Learning

Techniques on Software Defect Prediction using

NASA Datasets

Ahmed Iqbal
1
, Shabib Aftab

2
, Umair Ali

3
, Zahid Nawaz

4
, Laraib Sana

5
, Munir Ahmad

6
, Arif Husen

7

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan
1, 2, 3, 4, 6, 7

Department of Computer Science, Lahore College for Women University, Lahore, Pakistan
5

Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Pakistan
7

Abstract—Defect prediction at early stages of software

development life cycle is a crucial activity of quality assurance

process and has been broadly studied in the last two decades. The

early prediction of defective modules in developing software can

help the development team to utilize the available resources

efficiently and effectively to deliver high quality software product

in limited time. Until now, many researchers have developed

defect prediction models by using machine learning and

statistical techniques. Machine learning approach is an effective

way to identify the defective modules, which works by extracting

the hidden patterns among software attributes. In this study,

several machine learning classification techniques are used to

predict the software defects in twelve widely used NASA datasets.

The classification techniques include: Naïve Bayes (NB), Multi-

Layer Perceptron (MLP). Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*),

One Rule (OneR), PART, Decision Tree (DT), and Random

Forest (RF). Performance of used classification techniques is

evaluated by using various measures such as: Precision, Recall,

F-Measure, Accuracy, MCC, and ROC Area. The detailed results

in this research can be used as a baseline for other researches so

that any claim regarding the improvement in prediction through

any new technique, model or framework can be compared and

verified.

Keywords—Software defect prediction; software metrics; data

mining; machine learning; classification; class imbalance

I. INTRODUCTION

Prediction of defective modules in an early stage of
software development is considered as one of most challenging
aspect of quality assurance activity [11]. The identification of
defects in an early stage is crucial as the cost of correcting
these defects increases exponentially in the later phases of
software development life cycle (SDLC). In software
engineering, testing and bug fixing is very expensive and
require huge amount of resources [12]. Predicting defective
modules in the developing software has been investigated by
many studies since the last two decades. An efficient software
defect identification technique depends upon various factors,
most importantly the extraction of software metrics from
historical data. Various software metrics are used to classify
the software instance/class/module as defective or non-
defective. [13-16]. Furthermore, many empirical studies have
also reflected that the subsets of software metrics can improve
the performance of classifiers [17]. The activity of software

defect prediction is necessary in order to enhance the
effectiveness of quality assurance process. It can help to
develop a qualitative product with limited amount of resources
in a limited time period. Machine learning techniques are
considered a promising way to predict the software defects in
an early stage of SDLC by detecting the hidden pattern in
historical software data. The purpose of this paper is to analyze
the performance of supervised machine learning techniques on
software defect prediction by using NASA datasets. Machine
learning techniques used in this research are: Naïve Bayes
(NB), Multi-Layer Perceptron (MLP). Radial Basis Function
(RBF), Support Vector Machine (SVM), K Nearest Neighbor
(KNN), kStar (K*), One Rule (OneR), PART, Decision Tree
(DT), and Random Forest (RF). Supervised machine learning
techniques need the pre-classified data (training data) for
training. During the training process these techniques make
rules to classify the unseen data (test data) [18-19], [20-23],
[26-27]. In this study, NASA‘s clean software defect datasets
are used for experiments, including: CM1, JM1, KC1, KC3,
MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5. This
research performs a detailed performance analysis of widely
used machine learning classification techniques by using the
70:30 proportion of training and test data. The benchmark
datasets are used in experiments so that any researcher can
compare these results with the results of his/her proposed
technique and claim the high accuracy which would be easy to
validate for all research community.

Further organization of this paper is as follows. Section II
discusses the related work. Section III describes about
materials and methods used for the experiments. Section IV
reflects the results and findings of the experiments. Section V
finally concludes this study.

II. RELATED WORK

Many researchers have used machine learning techniques
to predict the software defects at an early stage of software
development, some of the selected studies are discussed here.
Researchers in [1] compared six classification techniques by
using the data of 27 academic projects. Classification
techniques include: Principal Component Analysis (PCA),
Discriminant Analysis, Logistic Regression (LR), Holographic
Networks, Logical Classification, and Layered Neural
Networks model. Back propagation learning technique was
used to develop Neural Network. Performance was evaluated

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

301 | P a g e

www.ijacsa.thesai.org

by using Predictive Validity, Verification Cost,
Misclassification Rate, and Achieved Quality. According to
results, no model performed well in predicting the software
defects. Researchers in [2] used SVM for software defect
prediction by using four publicly available NASA datasets:
PC1, CM1, KC1 and KC3. The performance is compared with
eight machine learning and statistical techniques i.e. K-Nearest
Neighbours (KNN), Logistic Regression (LR), Multilayer
Perceptron (MLP), Decision Trees, Radial Basis Function
(RBF), Bayesian Belief Networks (BBN), Naïve Bayes, and
Random Forest (RF). Parameters generated from confusion
matrix were used for performance evaluation. The results
reflected that SVM performed better than some of the other
techniques. Researchers in [3] studied and explored the
significant software metrics to predict the software defects.
Significant metrics were identified through sensitive analysis
by ANN model which was trained using the historical data.
The identified metrics then used to develop separate Neural
Network models to predict the defective modules. The
performance was compared with the Gaussian kernel SVM.
JM1 dataset was used for experiment from NASA MDP
repository. The results reflected that SVM performed better
than ANN in binary defect classification. In [4], researchers
performed an experiment using three Cost-Sensitive Boosting
algorithms and Back-Propagation learning techniques. From
these three, two based on weight updating architectures and
one based on threshold value. Four NASA datasets were used
for experiment and performance was evaluated using
Normalized Expected Cost of Misclassification (NECM).
According to results, the threshold based Feed Forward Neural
Network performed better than other methods particularly for
object oriented software modules. Researchers in [5] compared
the statistical and machine learning techniques on software
defect prediction by using public domain datasets of AR1 and
AR6. The techniques included: Artificial Neural Networks,
Decision Trees, Cascade Correlation Network, Support Vector
Machines, Group Method of Data Handling Method, and Gene
Expression programming. Performance was evaluated by using
AUC values. Results reflected that Decision Tree achieved 0.8
and 0.9 AUC scores for AR1 and AR6 respectively which were
better than other used techniques. Researchers in [6] presented
a software defect prediction technique using Conventional
Radial Basis Function along with novel Adaptive Dimensional
Biogeography-based optimization model. For experiment, five
NASA datasets from PROMISE repository were used and the
results showed the higher accuracy of proposed technique as
compared to early used techniques. In [7], researchers
developed a GUI tool in MATLAB for software defect
prediction. The proposed tool was based on Bayesian
Regularization (BR) technique which reduced the software cost
by limiting the squared errors and weights. The performance of
used technique was compared with Levenberg Marquardt (LM)
Algorithm and according to results BR performed better.
Researchers in [8] compared Artificial Neural Network (ANN)
and Support Vector Machine (SVM) on software defect
prediction. For experiment, seven NASA datasets from
PROMISE repository were used. The performance was
evaluated in terms of Specificity, Recall, and Accuracy.
Results showed that SVM performed better. In [9], the
researchers proposed a GUI tool in MATLAB which used CK

(Chidamber and Kemerer) object-oriented metrics for software
defect prediction. For experiment, NASA datasets from
PROMISE repository were used and performance of
Levenberg-Marquardt (LM) algorithm is compared with
Polynomial Function-based Neural Network on software defect
prediction. According to results the proposed model performed
better than other techniques.

III. MATERIALS AND METHODS

This study analyzes the performance of various machine
learning classifiers on software defect prediction by using
NASA benchmark datasets. Each dataset includes several
features along with known output class. The output/target class
is one which is predicted on the basis of other available
attributes. The attribute which is predicted is known as
dependent attribute whereas other attributes which are used to
predict the dependent attribute are known as independent
attributes. The selected datasets for this study contains
dependent attribute which has values either ―Y‖ or ―N‖. ―Y‖
means the specific software instance or module has tendency to
be defective and ―N‖ means it is not defective. In this research,
total of 12 cleaned NASA datasets [26] are used in
experiments. The datasets includes CM1, JM1, KC1, KC3,
MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table I).
Each selected dataset represents a NASA‘s software system,
which includes different metrics, closely related to software
quality.

Two versions of clean datasets are provided by [26]: DS‘
(which included duplicated and inconsistent instances) and
DS‘‘ (which does not include duplicated and inconsistent
instances). These datasets were initially available at [27] but
removed later. We have taken these datasets from [28], where
backup of NASA datasets are stored. These cleaned datasets
are already used and discussed by [29-31]. Table II reflects the
cleaning criteria implemented by [26].

The experiments are performed in Weka [10], one of the
most popular data mining tools. This tool is developed in Java
language at the University of Waikato, New Zealand and
widely accepted due to its portability, General Public License
and ease of use.

TABLE I. NASA CLEANED DATASETS [26]

Dataset Attributes Modules Defective
Non-

Defective

Defective

(%)

CM1 38 327 42 285 12.8

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

KC3 40 194 36 158 18.5

MC1 39 1952 36 1916 1.8

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 38 679 55 624 8.1

PC2 37 722 16 706 2.2

PC3 38 1,053 130 923 12.3

PC4 38 1,270 176 1094 13.8

PC5 39 1694 458 1236 27.0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

302 | P a g e

www.ijacsa.thesai.org

TABLE II. CLEANING CRITERIA [26], [29]

Criterion
Data Quality

Category
Explanation

1. Identical cases
‗Instances that have identical values

for all metrics including class label‘.

2. Inconsistent cases

‗Instances that satisfy all conditions

of Case 1, but where class labels
differ‘.

3.
Cases with missing
values

‗Instances that contain one or more
missing observations‘.

4.

Cases with

conflicting feature

values

‗Instances that have 2 or more metric
values that violate some referential
integrity constraint. For example,
LOC TOTAL is less than
Commented LOC. However,
Commented LOC is a subset of LOC
TOTAL‘.

5.
Cases with
implausible values

‗Instances that violate some integrity

constraint. For example, value of

LOC=1.1‘

IV. RESULTS AND DISCUSSION

This section aims to analyze the performance of used
classification techniques. The performance is analyzed and
evaluated through various measures generated from confusion
matrix (shown in Fig. 1). A confusion matrix consists of the
following parameters:

True Positive (TP): Instances which are actually positive
and also classified as positive.

False Positive (FP): Instances which are actually negative
but classified as positive.

False Negative (FN): Instances which are actually positive
but classified as negative.

True Negative (TN): instances which are actually negative
and also classified as negative.

The classification techniques are evaluated through
following measures: Precision, Recall, F-measure, Accuracy,
MCC and ROC.

Precision is defined as the ratio of True Positive (TP)
modules with respect to total number of modules which are
classified as positive [2].

Precision
()

TP

TP FP


 (1)

Fig. 1. Confusion Matrix.

Recall is defined as the ratio of True Positive (TP) modules
with respect to the total number of modules that are actually
positive [2].

Re
()

TP
call

TP FN


 (2)

F-measure provides the average of Precision & Recall [2].

Precision * Recall * 2
F-measure

(Precision + Recall)


 (3)

Accuracy indicates that how much the prediction is
accurate [2], [32].

TP TN
Accuracy

TP TN FP FN




   (4)

Matthew's Correlation Coefficient (MCC) is defined as a
ratio of the observed and predicted binary classifications and
ranges from -1 to +1. The results closer to 1 depicts the good
prediction whereas closer to or below 0 indicates the bad
performance [24], [32].

()()()()

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

  


    (5)

The area under the ROC curve (AUC) is a measure of how
well a parameter can distinguish between two classes
(defective/non defective) [25], [31].

1

2

r rTP FP
AUC

 


 (6)

All these performance measures are given by Weka tool.
The results of Precision, Recall and F-Measure for each class
(Y and N) are reflected in the tables (Table III to Table XIV).
These accuracy measures are sensitive to class imbalance
problem and reflect the symbol of ‗?‘ in case of such issue.
Highest scores in each class are highlighted in bold for easy
identification.

Results of CM1 datasets are given in Table III. It can be
seen that in Precision, NB performed better in both the classes
(Y and N). In Recall, NB and DT both performed better in Y
class whereas RBF, SVM and PART showed better
performance in N class and finally in F-measure, NB showed
better performance in Y class whereas RBF, SVM and PART
performed better in N class.

Results of JM1 datasets are reflected in Table IV. In
precision, PART performed better in Y class whereas kStar
performed better in N class. In Recall, kNN performed better in
Y class and SVM performed better in N class. In F-measure,
kStar outperformed in Y class whereas MLP and RBF
outperformed in N class.

Table V reflects the results of KC1 dataset. It can be
observed that in precision, SVM performed better in Y class
whereas RF performed better in N class. In Recall, kNN and
kStar both performed better in Y class and SVM performed
better in N class. And finally in F-measure, RF performed
better in Y class and RBF outperformed in N class.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

303 | P a g e

www.ijacsa.thesai.org

TABLE III. CM1 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.167 0.222 0.190

N 0.919 0.888 0.903

MLP
Y 0.000 0.000 0.000

N 0.904 0.955 0.929

RBF
Y ? 0.000 ?

N 0.908 1.000 0.952

SVM
Y ? 0.000 ?

N 0.908 1.000 0.952

kNN
Y 0.067 0.111 0.083

N 0.904 0.843 0.872

kStar
Y 0.067 0.111 0.083

N 0.904 0.843 0.872

OneR
Y 0.000 0.000 0.000

N 0.903 0.944 0.923

PART
Y ? 0.000 ?

N 0.908 1.000 0.952

DT
Y 0.118 0.222 0.154

N 0.914 0.831 0.871

RF
Y 0.000 0.000 0.000

N 0.907 0.989 0.946

TABLE IV. JM1 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.537 0.226 0.318

N 0.823 0.949 0.882

MLP
Y 0.765 0.081 0.146

N 0.804 0.993 0.889

RBF
Y 0.694 0.104 0.181

N 0.807 0.988 0.889

SVM
Y ? 0.000 ?

N 0.792 1.000 0.884

kNN
Y 0.363 0.334 0.348

N 0.829 0.846 0.837

kStar
Y 0.403 0.317 0.355

N 0.830 0.876 0.853

OneR
Y 0.378 0.151 0.216

N 0.807 0.935 0.866

PART
Y 0.818 0.019 0.037

N 0.795 0.999 0.885

DT
Y 0.496 0.268 0.348

N 0.828 0.929 0.876

RF
Y 0.572 0.189 0.284

N 0.819 0.963 0.885

Results of KC3 dataset is reflected in Table VI. It is
reflected that in Precision, MLP and OneR showed highest
performance in Y class whereas NB performed better in N
class. In Recall, NB and kNN performed better in Y class and
in N class, SVM outperformed the others. In F-measure, NB
performed better in Y class whereas SVM performed better in
N class.

Results of MC1 dataset are reflected in Table VII. In
Precision, kNN and PART showed better performance in Y
class whereas NB performed better in N class. In Recall, NB
performed better in Y class whereas MLP, RBF, SVM and DT
performed better in N class. In F-Measure, kNN and PART
performed better in Y class whereas MLP, RBF, SVM and DT
performed better in N class.

TABLE V. KC1 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.492 0.337 0.400

N 0.795 0.881 0.836

MLP
Y 0.647 0.247 0.358

N 0.787 0.954 0.863

RBF
Y 0.778 0.236 0.362

N 0.789 0.977 0.873

SVM
Y 0.800 0.045 0.085

N 0.753 0.996 0.858

kNN
Y 0.398 0.393 0.395

N 0.793 0.796 0.795

kStar
Y 0.449 0.393 0.419

N 0.801 0.835 0.817

OneR
Y 0.444 0.180 0.256

N 0.767 0.923 0.838

PART
Y 0.667 0.157 0.255

N 0.771 0.973 0.861

DT
Y 0.533 0.360 0.430

N 0.803 0.892 0.845

RF
Y 0.615 0.360 0.454

N 0.808 0.923 0.862

TABLE VI. KC3 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.444 0.400 0.421

N 0.878 0.896 0.887

MLP
Y 0.500 0.300 0.375

N 0.865 0.938 0.900

RBF
Y 0.000 0.000 0.000

N 0.818 0.938 0.874

SVM
Y ? 0.000 ?

N 0.828 1.000 0.906

kNN
Y 0.333 0.400 0.364

N 0.870 0.833 0.851

kStar
Y 0.300 0.300 0.300

N 0.854 0.854 0.854

OneR
Y 0.500 0.300 0.375

N 0.865 0.938 0.900

PART
Y 0.250 0.100 0.143

N 0.833 0.938 0.882

DT
Y 0.300 0.300 0.300

N 0.854 0.854 0.854

RF
Y 0.286 0.200 0.235

N 0.843 0.896 0.869

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

304 | P a g e

www.ijacsa.thesai.org

TABLE VII. MC1 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.156 0.357 0.217

N 0.984 0.953 0.968

MLP
Y ? 0.000 ?

N 0.976 1.000 0.988

RBF
Y ? 0.000 ?

N 0.976 1.000 0.988

SVM
Y ? 0.000 ?

N 0.976 1.000 0.988

kNN
Y 0.400 0.286 0.333

N 0.983 0.990 0.986

kStar
Y 0.250 0.143 0.182

N 0.979 0.990 0.984

OneR
Y 0.333 0.143 0.200

N 0.979 0.993 0.986

PART
Y 0.400 0.286 0.333

N 0.983 0.990 0.986

DT
Y ? 0.000 ?

N 0.976 1.000 0.988

RF
Y 0.000 0.000 0.000

N 0.976 0.998 0.987

Results of MC2 dataset are reflected in Table VIII. In
precision, NB performed better in Y class whereas PART
performed better in N class. In Recall, PART performed better
in Y class whereas NB and RBF performed better in N class. In
F Measure, PART performed better in both the classes.

TABLE VIII. MC2 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.833 0.385 0.526

N 0.742 0.958 0.836

MLP
Y 0.500 0.538 0.519

N 0.739 0.708 0.723

RBF
Y 0.800 0.308 0.444

N 0.719 0.958 0.821

SVM
Y 0.400 0.154 0.222

N 0.656 0.875 0.750

kNN
Y 0.667 0.462 0.545

N 0.750 0.875 0.808

kStar
Y 0.400 0.308 0.348

N 0.667 0.750 0.706

OneR
Y 0.500 0.231 0.316

N 0.677 0.875 0.764

PART
Y 0.727 0.615 0.667

N 0.808 0.875 0.840

DT
Y 0.500 0.385 0.435

N 0.704 0.792 0.745

RF
Y 0.500 0.462 0.480

N 0.720 0.750 0.735

Table IX reflects the result of MW1 dataset. It can be seen
that in Precision, MLP performed better in both the classes. In
Recall, MLP performed better in Y class whereas OneR
performed better in in N class. In F-measure, MLP performed
better in both the classes.

TABLE IX. MW1 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.333 0.625 0.435

N 0.95 0.851 0.898

MLP
Y 0.545 0.75 0.632

N 0.969 0.925 0.947

RBF
Y ? 0.00 ?

N 0.893 1.000 0.944

SVM
Y ? 0.000 ?

N 0.893 1.000 0.944

kNN
Y 0.400 0.500 0.444

N 0.938 0.910 0.924

kStar
Y 0.143 0.125 0.133

N 0.897 0.910 0.904

OneR
Y 0.500 0.125 0.200

N 0.904 0.985 0.943

PART
Y 0.250 0.125 0.167

N 0.901 0.955 0.928

DT
Y 0.250 0.125 0.167

N 0.901 0.955 0.928

RF
Y 0.333 0.125 0.182

N 0.903 0.970 0.935

TABLE X. PC1 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.280 0.700 0.400

N 0.983 0.907 0.944

MLP
Y 1.000 0.300 0.462

N 0.965 1.000 0.982

RBF
Y 0.333 0.100 0.154

N 0.955 0.990 0.972

SVM
Y ? 0.000 ?

N 0.951 1.000 0.975

kNN
Y 0.273 0.300 0.286

N 0.964 0.959 0.961

kStar
Y 0.125 0.300 0.176

N 0.961 0.892 0.925

OneR
Y 0.333 0.100 0.154

N 0.955 0.990 0.972

PART
Y 0.375 0.600 0.462

N 0.979 0.948 0.963

DT
Y 0.389 0.700 0.500

N 0.984 0.943 0.963

RF
Y 0.750 0.300 0.429

N 0.965 0.995 0.980

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

305 | P a g e

www.ijacsa.thesai.org

Results of PCI datasets are shown in Table X. It can be
seen that in Precision, MLP performed better in Y class
whereas DT performed better in N class. In Recall, NB and DT
performed better in Y class whereas MLP and SVM both
performed better in N class. In F-measure, DT performed better
in Y class whereas MLP performed better in N class.

Results of PC2 datasets are shown in Table XI. According
to results in Precision, kStar performed well in both the classes.
In Recall, kStar performed well in Y class whereas RBF, SVM,
DT and RF performed well in N class. In F-measure, kStar
performed well in Y class however RBF, SVM, DT and RF
performed well in N class.

Results of PC3 dataset is reflected in Table XII. It can be
seen that in Precision, OneR and RF performed better in Y
class however NB performed better in N class. In Recall, NB
performed better in Y class whereas RBF, SVM and PART
performed better in N class. In F-measure, DT performed better
in Y class whereas OneR and RF performed better in N class.

Results of PC4 dataset are shown in Table XIII. It is
reflected that in Precision, SVM performed better in Y class
whereas DT performed better in N class. In Recall, DT
performed better in Y class whereas SVM performed better in
N class. In F-Measure, DT performed better in Y class whereas
RF performed better in N class.

Results of PC5 dataset are shown in Table XIV. It can be
seen that in Precision, SVM performed better in Y class
whereas DT performed better in N class. In Recall, DT
performed better in Y class whereas SVM performed better in
N Class. In F Measure, DT performed better in Y class whereas
RBF performed better in N class.

TABLE XI. PC2 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.000 0.000 0.000

N 0.976 0.967 0.972

MLP
Y 0.000 0.000 0.000

N 0.977 0.991 0.984

RBF
Y ? 0.000 ?

N 0.977 1.000 0.988

SVM
Y ? 0.000 ?

N 0.977 1.000 0.988

kNN
Y 0.000 0.000 0.000

N 0.977 0.991 0.984

kStar
Y 0.143 0.200 0.167

N 0.981 0.972 0.976

OneR
Y 0.000 0.000 0.000

N 0.977 0.995 0.986

PART
Y 0.000 0.000 0.000

N 0.977 0.991 0.984

DT
Y ? 0.000 ?

N 0.977 1.000 0.988

RF
Y ? 0.000 ?

N 0.977 1.000 0.988

TABLE XII. PC3 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.150 0.907 0.257

N 0.929 0.190 0.316

MLP
Y 0.346 0.209 0.261

N 0.883 0.938 0.909

RBF
Y ? 0.000 ?

N 0.864 1.000 0.927

SVM
Y ? 0.000 ?

N 0.864 1.000 0.927

kNN
Y 0.480 0.279 0.353

N 0.893 0.952 0.922

kStar
Y 0.313 0.233 0.267

N 0.884 0.919 0.901

OneR
Y 0.600 0.140 0.226

N 0.879 0.985 0.929

PART
Y ? 0.000 ?

N 0.864 1.000 0.927

DT
Y 0.500 0.279 0.358

N 0.894 0.956 0.924

RF
Y 0.6000 0.140 0.226

N 0.879 0.985 0.929

TABLE XIII. PC4 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.486 0.346 0.404

N 0.901 0.942 0.921

MLP
Y 0.676 0.481 0.562

N 0.922 0.964 0.942

RBF
Y 0.667 0.154 0.250

N 0.881 0.988 0.931

SVM
Y 0.818 0.173 0.286

N 0.884 0.994 0.936

kNN
Y 0.477 0.404 0.438

N 0.908 0.930 0.919

kStar
Y 0.333 0.327 0.330

N 0.894 0.897 0.895

OneR
Y 0.650 0.250 0.361

N 0.892 0.979 0.933

PART
Y 0.464 0.500 0.481

N 0.920 0.909 0.914

DT
Y 0.515 0.673 0.583

N 0.946 0.900 0.922

RF
Y 0.778 0.404 0.532

N 0.912 0.982 0.946

Accuracy results are shown in Table XV. It can be seen that
RBF showed better performance with higher accuracy in 5
datasets. MLP, SVM, RF each showed higher accuracy in 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

306 | P a g e

www.ijacsa.thesai.org

datasets. On the other hand NB, kStar and kNN did not show
higher accuracy in any of the dataset. MCC results are shown
in Table XVI, it can be seen that scores in most of the
classifiers could not be drawn due to class imbalance. NB and
DT each performed better in 3 datasets whereas MLP showed
higher performance in 2 datasets. RBF, kNN, kStar, PART and
RF each showed higher performance in 1 dataset. SVM and
OneR did not perform well in any single dataset. Table XVII
shows the results of ROC area, it can be seen that RF reflected
high performance in 8 datasets whereas NB, MLP, kStar and
PART each showed high performance in 1 dataset. Remaining
algorithms did not show high performance in any of the used
dataset. It has been noted that Besides the Precision, Recall and
F measure, MCC is also sensitive to the class imbalance
problem as it could not give the scores in many of the
classifiers. However accuracy and ROC both did not show any
symbol of class imbalance in the results which make them non
sensitive to this issue. Therefore, besides the Accuracy and
ROC, other performance measures including Precision, Recall,
F-Measure and MCC should be used for effective performance
analysis. Class imbalance issue can be resolved in the used
datasets with many techniques [31]. However the purpose of
this research is to use the exact snapshot of NASA cleaned
dataset that is why no preprocessing or class balancing
techniques are used.

TABLE XIV. PC5 DATASET RESULTS

Classifier Class Precision Recall F-Measure

NB
Y 0.676 0.168 0.269

N 0.759 0.970 0.852

MLP
Y 0.560 0.204 0.299

N 0.762 0.941 0.842

RBF
Y 0.760 0.139 0.235

N 0.756 0.984 0.855

SVM
Y 0.875 0.051 0.097

N 0.740 0.997 0.850

kNN
Y 0.500 0.496 0.498

N 0.815 0.817 0.816

kStar
Y 0.439 0.423 0.431

N 0.790 0.801 0.795

OneR
Y 0.455 0.336 0.387

N 0.776 0.852 0.812

PART
Y 0.646 0.226 0.335

N 0.770 0.954 0.852

DT
Y 0.537 0.526 0.531

N 0.826 0.833 0.830

RF
Y 0.588 0.365 0.450

N 0.794 0.906 0.846

TABLE XV. ACCURACY RESULTS

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF

CM1 82.6531 86.7347 90.8163 90.8163 77.551 77.551 85.7143 90.8163 77.551 89.7959

JM1 79.8359 80.3541 80.3972 79.1883 73.9637 75.9931 77.1589 79.4905 79.1019 80.1813

KC1 74.212 77.3639 78.7966 75.3582 69.341 72.2063 73.3524 76.5043 75.6447 77.937

KC3 81.0345 82.7586 77.5862 82.7586 75.8621 75.8621 82.7586 79.3103 75.8621 77.5862

MC1 93.8567 97.6109 97.6109 97.6109 97.2696 96.9283 97.2696 97.2696 97.6109 97.4403

MC2 75.6757 64.8649 72.973 62.1622 72.973 59.4595 64.8649 78.3784 64.8649 64.8649

MW1 82.6667 90.6667 89.3333 89.3333 86.6667 82.6667 89.3333 86.6667 86.6667 88.000

PC1 89.7059 96.5686 94.6078 95.098 92.6471 86.2745 94.6078 93.1373 93.1373 96.0784

PC2 94.47 96.7742 97.6959 97.6959 96.7742 95.3917 97.235 96.7742 97.6959 97.6959

PC3 28.7975 83.8608 86.3924 86.39 24 86.0759 82.5949 87.0253 86.3924 86.3924 87.0253

PC4 86.0892 89.7638 87.4016 88.189 85.8268 81.8898 87.9265 85.3018 86.8766 90.2887

PC5 75.3937 74.2126 75.5906 74.2126 73.0315 69.8819 71.2598 75.7874 75.000 75.9843

TABLE XVI. MCC RESULTS

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF

CM1 0.097 -0.066 ? ? -0.037 -0.037 -0.074 ? 0.041 -0.032

JM1 0.251 0.206 0.215 ? 0.186 0.212 0.126 0.104 0.252 0.244

KC1 0.250 0.296 0.347 0.151 0.190 0.238 0.147 0.239 0.291 0.346

KC3 0.309 0.295 -0.107 ? 0.218 0.154 0.295 0.056 0.154 0.111

MC1 0.208 ? ? ? 0.325 0.174 0.206 0.325 ? -0.006

MC2 0.444 0.243 0.371 0.040 0.374 0.062 0.137 0.512 0.189 0.216

MW1 0.367 0.589 ? ? 0.373 0.038 0.211 0.110 0.110 0.150

PC1 0.400 0.538 0.161 ? 0.247 0.128 0.161 0.440 0.490 0.459

PC2 -0.028 -0.015 ? ? -0.015 0.146 -0.010 -0.015 ? ?

PC3 0.088 0.183 ? ? 0.294 0.173 0.245 ? 0.304 0.245

PC4 0.334 0.515 0.279 0.342 0.359 0.225 0.352 0.396 0.514 0.516

PC5 0.245 0.216 0.251 0.173 0.314 0.227 0.209 0.274 0.361 0.322

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

307 | P a g e

www.ijacsa.thesai.org

TABLE XVII. ROC AREA RESULTS

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF

CM1 0.703 0.634 0.702 0.500 0.477 0.538 0.472 0.610 0.378 0.761

JM1 0.663 0.702 0.713 0.500 0.591 0.572 0.543 0.714 0.671 0.738

KC1 0.694 0.736 0.713 0.521 0.595 0.651 0.551 0.636 0.606 0.751

KC3 0.769 0.733 0.735 0.500 0.617 0.528 0.619 0.788 0.570 0.807

MC1 0.826 0.805 0.781 0.500 0.638 0.631 0.568 0.684 0.500 0.864

MC2 0.795 0.753 0.766 0.514 0.668 0.510 0.553 0.724 0.615 0.646

MW1 0.791 0.843 0.808 0.500 0.705 0.543 0.555 0.314 0.314 0.766

PC1 0.879 0.779 0.875 0.500 0.629 0.673 0.545 0.889 0.718 0.858

PC2 0.751 0.746 0.724 0.500 0.495 0.791 0.498 0.623 0.579 0.731

PC3 0.773 0.796 0.795 0.500 0.616 0.749 0.562 0.79 0.664 0.855

PC4 0.807 0.898 0.862 0.583 0.667 0.734 0.614 0.776 0.834 0.945

PC5 0.725 0.751 0.732 0.524 0.657 0.629 0.594 0.739 0.703 0.805

V. CONCLUSION

Software defect prediction using machine learning
techniques is considered as one of the emerging research areas
now days. Identification of defects at the early stage of
development can contribute to the delivery of high quality
software by using limited amount of resources. This study
deals with the detailed performance analysis of various
machine learning classification techniques on software defect
prediction using 12 widely used and publically available
NASA datasets. The classification techniques include: Naïve
Bayes (NB), Multi-Layer Perceptron (MLP). Radial Basis
Function (RBF), Support Vector Machine (SVM), K Nearest
Neighbor (KNN), kStar (K*), One Rule (OneR), PART,
Decision Tree (DT), and Random Forest (RF). The
performance is evaluated by using various measures extracted
from confusion matrix such as: Precision, Recall, F-Measure,
Accuracy, MCC, and ROC Area. It is reflected from the results
that neither the Accuracy and nor the ROC can be used as an
effective performance measure as both of these did not react on
class imbalance issue. However, Precision, Recall, F-Measure
and MCC reacted to class imbalance problem in the results
with the symbol of ‗?‗. The results presented in this research
can be used as baseline for other researches so that the results
of any proposed technique, model or framework can be
compared and easily verified. For future work, class imbalance
issue should be resolved in NASA cleaned datasets. Moreover,
to improve the performance, feature selection and ensemble
learning techniques should also be explored.

REFERENCES

[1] F. Lanubile, A. Lonigro, and G. Vissagio, ―Comparing models for
identifying fault-prone software components.‖ Seke, no. July, pp. 312–
319, 1995.

[2] K. O. Elish and M. O. Elish, ―Predicting defect-prone software modules
using support vector machines,‖ J. Syst. Softw., vol. 81, no. 5, pp. 649–
660, 2008.

[3] I. Gondra, ―Applying machine learning to software fault-proneness
prediction,‖ J. Syst. Softw., vol. 81, no. 2, pp. 186–195, 2008.

[4] J. Zheng, ―Cost-sensitive boosting neural networks for software defect
prediction,‖ Expert Syst. Appl., vol. 37, no. 6, pp. 4537–4543, 2010.

[5] R. Malhotra, ―Comparative analysis of statistical and machine learning
methods for predicting faulty modules,‖ Appl. Soft Comput. J., vol. 21,
pp. 286–297, 2014.

[6] P. Kumudha and R. Venkatesan, ―Cost-Sensitive Radial Basis Function
Neural Network Classifier for Software Defect Prediction,‖ Sci. World
J., vol. 2016, 2016.

[7] R. Mahajan, S. K. Gupta, and R. K. Bedi, ―Design of software fault
prediction model using BR technique,‖ in Procedia Computer Science,
vol. 46, no. Icict 2014, pp. 849–858, 2015.

[8] I. A. and A. Saha, ―Software Defect Prediction: A Comparison Between
Artificial Neural Network and Support Vector Machine,‖ Adv. Comput.
Commun. Technol., pp. 51–61, 2017.

[9] M. Singh and D. Singh Salaria, ―Software Defect Prediction Tool based
on Neural Network,‖ Int. J. Comput. Appl., vol. 70, no. 22, pp. 22–28,
2013.

[10] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[11] Y. Ma, G. Luo, X. Zeng, and A. Chen, ―Transfer learning for cross-
company software defect prediction,‖ Inf. Softw. Technol., vol. 54, no.
3, pp. 248–256, 2012.

[12] Y. Singh and R. Malhotra, Object-Oriented Software Engineering. PHI
Learning Pvt. Ltd. New Delhi, 2012.

[13] R. Moser, W. Pedrycz, and G. Succi, ―A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,‖ pp. 181, 2008.

[14] E. Giger, M. D‘Ambros, M. Pinzger, and H. C. Gall, ―Method-level bug
prediction,‖ pp. 171, 2012.

[15] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
―Predicting bugs using antipatterns,‖ IEEE Int. Conf. Softw.
Maintenance, ICSM, pp. 270–279, 2013.

[16] K. Herzig, S. Just, A. Rau, and A. Zeller, ―Predicting defects using
change genealogies,‖ 2013 IEEE 24th Int. Symp. Softw. Reliab. Eng.
ISSRE 2013, pp. 118–127, 2013.

[17] S. Moustafa, M. Y. ElNainay, N. El Makky, and M. S. Abougabal,
―Software bug prediction using weighted majority voting techniques,‖
Alexandria Eng. J., vol. 57, no. 4, pp. 2763–2774, 2018.

[18] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad, ―Machine
Learning Techniques for Sentiment Analysis: A Review,‖ Int. J.
Multidiscip. Sci. Eng., vol. 8, no. 3, pp. 27-32, 2017.

[19] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, ―Hybrid Tools and
Techniques for Sentiment Analysis: A Review,‖ Int. J. Multidiscip. Sci.
Eng., vol. 8, no. 3, pp. 29-33, 2017.

[20] M. Ahmad and S. Aftab, ―Analyzing the Performance of SVM for
Polarity Detection with Different Datasets,‖ Int. J. Mod. Educ. Comput.
Sci., vol. 9, no. 10, pp. 29–36, 2017.

[21] M. Ahmad, S. Aftab, and I. Ali, ―Sentiment Analysis of Tweets using
SVM,‖ Int. J. Comput. Appl., vol. 177, no. 5, pp. 25–29, 2017.

[22] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz,
―SVM Optimization for Sentiment Analysis,‖ Int. J. Adv. Comput. Sci.
Appl., vol. 9, no. 4, pp. 393-398, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

308 | P a g e

www.ijacsa.thesai.org

[23] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz,
―Rainfall Prediction in Lahore City using Data Mining Techniques,‖ Int.
J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 254-260, 2018.

[24] N. Farnaaz and M. A. Jabbar, ―Random Forest Modeling for Network
Intrusion Detection System,‖ Procedia Comput. Sci., vol. 89, pp. 213–
217, 2016.

[25] T. Fawcett, ―An introduction to ROC analysis,‖ Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[26] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ―Data quality: Some
comments on the NASA software defect datasets,‖ IEEE Trans. Softw.
Eng., vol. 39, no. 9, pp. 1208–1215, 2013.

[27] ―NASA – Software Defect Datasets [Online]. Available: https://nasa
softwaredefectdatasets.wikispaces.com. [Accessed: 01-April-2019].

[28] ―NASA Defect Dataset.‖ [Online]. Available:
https://github.com/klainfo/NASADefectDataset. [Accessed: 01-April-
2019].

[29] B. Ghotra, S. McIntosh, and A. E. Hassan, ―Revisiting the impact of
classification techniques on the performance of defect prediction
models,‖ Proc. - Int. Conf. Softw. Eng., vol. 1, pp. 789–800, 2015.

[30] G. Czibula, Z. Marian, and I. G. Czibula, ―Software defect prediction
using relational association rule mining,‖ Inf. Sci. (Ny)., vol. 264, pp.
260–278, 2014.

[31] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme,
―Preliminary comparison of techniques for dealing with imbalance in
software defect prediction,‖ Proc. 18th Int. Conf. Eval. Assess. Softw.
Eng. ACM, pp. 1–10, 2014.

[32] A. Iqbal and S. Aftab, ―A Feed-Forward and Pattern Recognition ANN
Model for Network Intrusion Detection,‖ Int. J. Comput. Netw. Inf.
Secur., vol. 11, no. 4, pp. 19–25, 2019.

