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Abstract—Defect prediction at early stages of software 

development life cycle is a crucial activity of quality assurance 

process and has been broadly studied in the last two decades. The 

early prediction of defective modules in developing software can 

help the development team to utilize the available resources 

efficiently and effectively to deliver high quality software product 

in limited time. Until now, many researchers have developed 

defect prediction models by using machine learning and 

statistical techniques. Machine learning approach is an effective 

way to identify the defective modules, which works by extracting 

the hidden patterns among software attributes.  In this study, 

several machine learning classification techniques are used to 

predict the software defects in twelve widely used NASA datasets. 

The classification techniques include: Naïve Bayes (NB), Multi-

Layer Perceptron (MLP). Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), 

One Rule (OneR), PART, Decision Tree (DT), and Random 

Forest (RF). Performance of used classification techniques is 

evaluated by using various measures such as: Precision, Recall, 

F-Measure, Accuracy, MCC, and ROC Area. The detailed results 

in this research can be used as a baseline for other researches so 

that any claim regarding the improvement in prediction through 

any new technique, model or framework can be compared and 

verified. 

Keywords—Software defect prediction; software metrics; data 

mining; machine learning; classification; class imbalance 

I. INTRODUCTION 

Prediction of defective modules in an early stage of 
software development is considered as one of most challenging 
aspect of quality assurance activity [11]. The identification of 
defects in an early stage is crucial as the cost of correcting 
these defects increases exponentially in the later phases of 
software development life cycle (SDLC). In software 
engineering, testing and bug fixing is very expensive and 
require huge amount of resources [12].  Predicting defective 
modules in the developing software has been investigated by 
many studies since the last two decades. An efficient software 
defect identification technique depends upon various factors, 
most importantly the extraction of software metrics from 
historical data. Various software metrics are used to classify 
the software instance/class/module as defective or non-
defective. [13-16]. Furthermore, many empirical studies have 
also reflected that the subsets of software metrics can improve 
the performance of classifiers [17]. The activity of software 

defect prediction is necessary in order to enhance the 
effectiveness of quality assurance process. It can help to 
develop a qualitative product with limited amount of resources 
in a limited time period. Machine learning techniques are 
considered a promising way to predict the software defects in 
an early stage of SDLC by detecting the hidden pattern in 
historical software data. The purpose of this paper is to analyze 
the performance of supervised machine learning techniques on 
software defect prediction by using NASA datasets. Machine 
learning techniques used in this research are: Naïve Bayes 
(NB), Multi-Layer Perceptron (MLP). Radial Basis Function 
(RBF), Support Vector Machine (SVM), K Nearest Neighbor 
(KNN), kStar (K*), One Rule (OneR), PART, Decision Tree 
(DT), and Random Forest (RF). Supervised machine learning 
techniques need the pre-classified data (training data) for 
training. During the training process these techniques make 
rules to classify the unseen data (test data) [18-19], [20-23], 
[26-27]. In this study, NASA‘s clean software defect datasets 
are used for experiments, including: CM1, JM1, KC1, KC3, 
MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5. This 
research performs a detailed performance analysis of widely 
used machine learning classification techniques by using the 
70:30 proportion of training and test data. The benchmark 
datasets are used in experiments so that any researcher can 
compare these results with the results of his/her proposed 
technique and claim the high accuracy which would be easy to 
validate for all research community. 

Further organization of this paper is as follows. Section II 
discusses the related work. Section III describes about 
materials and methods used for the experiments. Section IV 
reflects the results and findings of the experiments. Section V 
finally concludes this study. 

II. RELATED WORK 

Many researchers have used machine learning techniques 
to predict the software defects at an early stage of software 
development, some of the selected studies are discussed here. 
Researchers in [1] compared six classification techniques by 
using the data of 27 academic projects. Classification 
techniques include: Principal Component Analysis (PCA), 
Discriminant Analysis, Logistic Regression (LR), Holographic 
Networks, Logical Classification, and Layered Neural 
Networks model. Back propagation learning technique was 
used to develop Neural Network. Performance was evaluated 
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by using Predictive Validity, Verification Cost, 
Misclassification Rate, and Achieved Quality. According to 
results, no model performed well in predicting the software 
defects. Researchers in [2] used SVM for software defect 
prediction by using four publicly available NASA datasets: 
PC1, CM1, KC1 and KC3. The performance is compared with 
eight machine learning and statistical techniques i.e. K-Nearest 
Neighbours (KNN), Logistic Regression (LR), Multilayer 
Perceptron (MLP), Decision Trees, Radial Basis Function 
(RBF), Bayesian Belief Networks (BBN), Naïve Bayes, and 
Random Forest (RF). Parameters generated from confusion 
matrix were used for performance evaluation. The results 
reflected that SVM performed better than some of the other 
techniques. Researchers in [3] studied and explored the 
significant software metrics to predict the software defects. 
Significant metrics were identified through sensitive analysis 
by ANN model which was trained using the historical data. 
The identified metrics then used to develop separate Neural 
Network models to predict the defective modules. The 
performance was compared with the Gaussian kernel SVM. 
JM1 dataset was used for experiment from NASA MDP 
repository. The results reflected that SVM performed better 
than ANN in binary defect classification. In [4], researchers 
performed an experiment using three Cost-Sensitive Boosting 
algorithms and Back-Propagation learning techniques. From 
these three, two based on weight updating architectures and 
one based on threshold value. Four NASA datasets were used 
for experiment and performance was evaluated using 
Normalized Expected Cost of Misclassification (NECM). 
According to results, the threshold based Feed Forward Neural 
Network performed better than other methods particularly for 
object oriented software modules. Researchers in [5] compared 
the statistical and machine learning techniques on software 
defect prediction by using public domain datasets of AR1 and 
AR6. The techniques included: Artificial Neural Networks, 
Decision Trees, Cascade Correlation Network, Support Vector 
Machines, Group Method of Data Handling Method, and Gene 
Expression programming. Performance was evaluated by using 
AUC values. Results reflected that Decision Tree achieved 0.8 
and 0.9 AUC scores for AR1 and AR6 respectively which were 
better than other used techniques. Researchers in [6] presented 
a software defect prediction technique using Conventional 
Radial Basis Function along with novel Adaptive Dimensional 
Biogeography-based optimization model. For experiment, five 
NASA datasets from PROMISE repository were used and the 
results showed the higher accuracy of proposed technique as 
compared to early used techniques. In [7], researchers 
developed a GUI tool in MATLAB for software defect 
prediction. The proposed tool was based on Bayesian 
Regularization (BR) technique which reduced the software cost 
by limiting the squared errors and weights. The performance of 
used technique was compared with Levenberg Marquardt (LM) 
Algorithm and according to results BR performed better. 
Researchers in [8] compared Artificial Neural Network (ANN) 
and Support Vector Machine (SVM) on software defect 
prediction. For experiment, seven NASA datasets from 
PROMISE repository were used. The performance was 
evaluated in terms of Specificity, Recall, and Accuracy. 
Results showed that SVM performed better. In [9], the 
researchers proposed a GUI tool in MATLAB which used CK 

(Chidamber and Kemerer) object-oriented metrics for software 
defect prediction. For experiment, NASA datasets from 
PROMISE repository were used and performance of 
Levenberg-Marquardt (LM) algorithm is compared with 
Polynomial Function-based Neural Network on software defect 
prediction. According to results the proposed model performed 
better than other techniques. 

III. MATERIALS AND METHODS 

This study analyzes the performance of various machine 
learning classifiers on software defect prediction by using 
NASA benchmark datasets. Each dataset includes several 
features along with known output class. The output/target class 
is one which is predicted on the basis of other available 
attributes. The attribute which is predicted is known as 
dependent attribute whereas other attributes which are used to 
predict the dependent attribute are known as independent 
attributes. The selected datasets for this study contains 
dependent attribute which has values either ―Y‖ or ―N‖. ―Y‖ 
means the specific software instance or module has tendency to 
be defective and ―N‖ means it is not defective. In this research, 
total of 12 cleaned NASA datasets [26] are used in 
experiments. The datasets includes CM1, JM1, KC1, KC3, 
MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5 (Table I). 
Each selected dataset represents a NASA‘s software system, 
which includes different metrics, closely related to software 
quality. 

Two versions of clean datasets are provided by [26]: DS‘ 
(which included duplicated and inconsistent instances) and 
DS‘‘ (which does not include duplicated and inconsistent 
instances). These datasets were initially available at [27] but 
removed later. We have taken these datasets from [28], where 
backup of NASA datasets are stored. These cleaned datasets 
are already used and discussed by [29-31]. Table II reflects the 
cleaning criteria implemented by [26]. 

The experiments are performed in Weka [10], one of the 
most popular data mining tools. This tool is developed in Java 
language at the University of Waikato, New Zealand and 
widely accepted due to its portability, General Public License 
and ease of use. 

TABLE I. NASA CLEANED DATASETS [26] 

Dataset Attributes Modules Defective 
Non- 

Defective 

Defective 

(%) 

CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC1 39 1952 36 1916 1.8 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1,053 130 923 12.3 

PC4 38 1,270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 
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TABLE II. CLEANING CRITERIA [26], [29] 

Criterion 
Data Quality 

Category 
Explanation 

1. Identical cases 
‗Instances that have identical values 

for all metrics including class label‘. 

2. Inconsistent cases 

‗Instances that satisfy all conditions 

of Case 1, but where class labels 
differ‘. 

3. 
Cases with missing 
values 

‗Instances that contain one or more 
missing observations‘. 

4. 

Cases with 

conflicting feature 

values 

‗Instances that have 2 or more metric 
values that violate some referential 
integrity constraint. For example, 
LOC TOTAL is less than 
Commented LOC. However, 
Commented LOC is a subset of LOC 
TOTAL‘. 

5. 
Cases with 
implausible values 

‗Instances that violate some integrity 

constraint. For example, value of 

LOC=1.1‘ 

IV. RESULTS AND DISCUSSION 

This section aims to analyze the performance of used 
classification techniques. The performance is analyzed and 
evaluated through various measures generated from confusion 
matrix (shown in Fig. 1). A confusion matrix consists of the 
following parameters: 

True Positive (TP): Instances which are actually positive 
and also classified as positive. 

False Positive (FP): Instances which are actually negative 
but classified as positive. 

False Negative (FN): Instances which are actually positive 
but classified as negative. 

True Negative (TN): instances which are actually negative 
and also classified as negative. 

The classification techniques are evaluated through 
following measures: Precision, Recall, F-measure, Accuracy, 
MCC and ROC. 

Precision is defined as the ratio of True Positive (TP) 
modules with respect to total number of modules which are 
classified as positive [2]. 

Precision
( )

TP

TP FP


              (1) 

 

Fig. 1. Confusion Matrix. 

Recall is defined as the ratio of True Positive (TP) modules 
with respect to the total number of modules that are actually 
positive [2]. 

Re
( )

TP
call

TP FN


              (2) 

F-measure provides the average of Precision & Recall [2]. 

Precision * Recall * 2
F-measure

(Precision + Recall)


           (3) 

Accuracy indicates that how much the prediction is 
accurate [2], [32]. 

TP TN
Accuracy

TP TN FP FN




             (4) 

Matthew's Correlation Coefficient (MCC) is defined as a 
ratio of the observed and predicted binary classifications and 
ranges from -1 to +1. The results closer to 1 depicts the good 
prediction whereas closer to or below 0 indicates the bad 
performance [24], [32]. 

( )( )( )( )

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

  


      (5) 

The area under the ROC curve (AUC) is a measure of how 
well a parameter can distinguish between two classes 
(defective/non defective) [25], [31].  

1

2

r rTP FP
AUC

 


            (6) 

All these performance measures are given by Weka tool. 
The results of Precision, Recall and F-Measure for each class 
(Y and N) are reflected in the tables (Table III to Table XIV). 
These accuracy measures are sensitive to class imbalance 
problem and reflect the symbol of ‗?‘ in case of such issue. 
Highest scores in each class are highlighted in bold for easy 
identification. 

Results of CM1 datasets are given in Table III. It can be 
seen that in Precision, NB performed better in both the classes 
(Y and N). In Recall, NB and DT both performed better in Y 
class whereas RBF, SVM and PART showed better 
performance in N class and finally in F-measure, NB showed 
better performance in Y class whereas RBF, SVM and PART 
performed better in N class. 

Results of JM1 datasets are reflected in Table IV. In 
precision, PART performed better in Y class whereas kStar 
performed better in N class. In Recall, kNN performed better in 
Y class and SVM performed better in N class. In F-measure, 
kStar outperformed in Y class whereas MLP and RBF 
outperformed in N class.   

Table V reflects the results of KC1 dataset. It can be 
observed that in precision, SVM performed better in Y class 
whereas RF performed better in N class. In Recall, kNN and 
kStar both performed better in Y class and SVM performed 
better in N class. And finally in F-measure, RF performed 
better in Y class and RBF outperformed in N class.  
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TABLE III. CM1 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.167 0.222 0.190 

N 0.919 0.888 0.903 

MLP 
Y 0.000 0.000 0.000 

N 0.904 0.955 0.929 

RBF 
Y ? 0.000 ? 

N 0.908 1.000 0.952 

SVM 
Y ? 0.000 ? 

N 0.908 1.000 0.952 

kNN 
Y 0.067 0.111 0.083 

N 0.904 0.843 0.872 

kStar 
Y 0.067 0.111 0.083 

N 0.904 0.843 0.872 

OneR 
Y 0.000 0.000 0.000 

N 0.903 0.944 0.923 

PART 
Y ? 0.000 ? 

N 0.908 1.000 0.952 

DT 
Y 0.118 0.222 0.154 

N 0.914 0.831 0.871 

RF 
Y 0.000 0.000 0.000 

N 0.907 0.989 0.946 

TABLE IV. JM1 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.537 0.226 0.318 

N 0.823 0.949 0.882 

MLP 
Y 0.765 0.081 0.146 

N 0.804 0.993 0.889 

RBF 
Y 0.694 0.104 0.181 

N 0.807 0.988 0.889 

SVM 
Y ? 0.000 ? 

N 0.792 1.000 0.884 

kNN 
Y 0.363 0.334 0.348 

N 0.829 0.846 0.837 

kStar 
Y 0.403 0.317 0.355 

N 0.830 0.876 0.853 

OneR 
Y 0.378 0.151 0.216 

N 0.807 0.935 0.866 

PART 
Y 0.818 0.019 0.037 

N 0.795 0.999 0.885 

DT 
Y 0.496 0.268 0.348 

N 0.828 0.929 0.876 

RF 
Y 0.572 0.189 0.284 

N 0.819 0.963 0.885 

Results of KC3 dataset is reflected in Table VI. It is 
reflected that in Precision, MLP and OneR showed highest 
performance in Y class whereas NB performed better in N 
class. In Recall, NB and kNN performed better in Y class and 
in N class, SVM outperformed the others. In F-measure, NB 
performed better in Y class whereas SVM performed better in 
N class. 

Results of MC1 dataset are reflected in Table VII. In 
Precision, kNN and PART showed better performance in Y 
class whereas NB performed better in N class. In Recall, NB 
performed better in Y class whereas MLP, RBF, SVM and DT 
performed better in N class. In F-Measure, kNN and PART 
performed better in Y class whereas MLP, RBF, SVM and DT 
performed better in N class. 

TABLE V. KC1 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.492 0.337 0.400 

N 0.795 0.881 0.836 

MLP 
Y 0.647 0.247 0.358 

N 0.787 0.954 0.863 

RBF 
Y 0.778 0.236 0.362 

N 0.789 0.977 0.873 

SVM 
Y 0.800 0.045 0.085 

N 0.753 0.996 0.858 

kNN 
Y 0.398 0.393 0.395 

N 0.793 0.796 0.795 

kStar 
Y 0.449 0.393 0.419 

N 0.801 0.835 0.817 

OneR 
Y 0.444 0.180 0.256 

N 0.767 0.923 0.838 

PART 
Y 0.667 0.157 0.255 

N 0.771 0.973 0.861 

DT 
Y 0.533 0.360 0.430 

N 0.803 0.892 0.845 

RF 
Y 0.615 0.360 0.454 

N 0.808 0.923 0.862 

TABLE VI. KC3 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.444 0.400 0.421 

N 0.878 0.896 0.887 

MLP 
Y 0.500 0.300 0.375 

N 0.865 0.938 0.900 

RBF 
Y 0.000 0.000 0.000 

N 0.818       0.938     0.874 

SVM 
Y ? 0.000 ? 

N 0.828 1.000 0.906 

kNN 
Y 0.333 0.400 0.364 

N 0.870 0.833 0.851 

kStar 
Y 0.300 0.300 0.300 

N 0.854 0.854 0.854 

OneR 
Y 0.500 0.300 0.375 

N 0.865 0.938 0.900 

PART 
Y 0.250 0.100 0.143 

N 0.833 0.938 0.882 

DT 
Y 0.300 0.300 0.300 

N 0.854 0.854 0.854 

RF 
Y 0.286 0.200 0.235 

N 0.843 0.896 0.869 
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TABLE VII. MC1 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.156 0.357 0.217 

N 0.984 0.953 0.968 

MLP 
Y ? 0.000 ? 

N 0.976 1.000 0.988 

RBF 
Y ? 0.000 ? 

N 0.976 1.000 0.988 

SVM 
Y ? 0.000 ? 

N 0.976 1.000 0.988 

kNN 
Y 0.400 0.286 0.333 

N 0.983 0.990 0.986 

kStar 
Y 0.250 0.143 0.182 

N 0.979 0.990 0.984 

OneR 
Y 0.333 0.143 0.200 

N 0.979 0.993 0.986 

PART 
Y 0.400 0.286 0.333 

N 0.983 0.990 0.986 

DT 
Y ? 0.000 ? 

N 0.976 1.000 0.988 

RF 
Y 0.000 0.000 0.000 

N 0.976 0.998 0.987 

Results of MC2 dataset are reflected in Table VIII. In 
precision, NB performed better in Y class whereas PART 
performed better in N class. In Recall, PART performed better 
in Y class whereas NB and RBF performed better in N class. In 
F Measure, PART performed better in both the classes. 

TABLE VIII. MC2 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.833 0.385 0.526 

N 0.742 0.958 0.836 

MLP 
Y 0.500 0.538 0.519 

N 0.739 0.708 0.723 

RBF 
Y 0.800 0.308 0.444 

N 0.719 0.958 0.821 

SVM 
Y 0.400 0.154 0.222 

N 0.656 0.875 0.750 

kNN 
Y 0.667 0.462 0.545 

N 0.750 0.875 0.808 

kStar 
Y 0.400 0.308 0.348 

N 0.667 0.750 0.706 

OneR 
Y 0.500 0.231 0.316 

N 0.677 0.875 0.764 

PART 
Y 0.727 0.615 0.667 

N 0.808 0.875 0.840 

DT 
Y 0.500 0.385 0.435 

N 0.704 0.792 0.745 

RF 
Y 0.500 0.462 0.480 

N 0.720 0.750 0.735 

Table IX reflects the result of MW1 dataset. It can be seen 
that in Precision, MLP performed better in both the classes. In 
Recall, MLP performed better in Y class whereas OneR 
performed better in in N class. In F-measure, MLP performed 
better in both the classes. 

TABLE IX. MW1 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.333 0.625 0.435 

N 0.95 0.851 0.898 

MLP 
Y 0.545 0.75 0.632 

N 0.969 0.925 0.947 

RBF 
Y ? 0.00 ? 

N 0.893 1.000 0.944 

SVM 
Y ? 0.000 ? 

N 0.893 1.000 0.944 

kNN 
Y 0.400 0.500 0.444 

N 0.938 0.910 0.924 

kStar 
Y 0.143 0.125 0.133 

N 0.897 0.910 0.904 

OneR 
Y 0.500 0.125 0.200 

N 0.904 0.985 0.943 

PART 
Y 0.250 0.125 0.167 

N 0.901 0.955 0.928 

DT 
Y 0.250 0.125 0.167 

N 0.901 0.955 0.928 

RF 
Y 0.333 0.125 0.182 

N 0.903 0.970 0.935 

TABLE X. PC1 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.280 0.700 0.400 

N 0.983 0.907 0.944 

MLP 
Y 1.000 0.300 0.462 

N 0.965 1.000 0.982 

RBF 
Y 0.333 0.100 0.154 

N 0.955 0.990 0.972 

SVM 
Y ? 0.000 ? 

N 0.951 1.000 0.975 

kNN 
Y 0.273 0.300 0.286 

N 0.964 0.959 0.961 

kStar 
Y 0.125 0.300 0.176 

N 0.961 0.892 0.925 

OneR 
Y 0.333 0.100 0.154 

N 0.955 0.990 0.972 

PART 
Y 0.375 0.600 0.462 

N 0.979 0.948 0.963 

DT 
Y 0.389 0.700 0.500 

N 0.984 0.943 0.963 

RF 
Y 0.750 0.300 0.429 

N 0.965 0.995 0.980 
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Results of PCI datasets are shown in Table X. It can be 
seen that in Precision, MLP performed better in Y class 
whereas DT performed better in N class. In Recall, NB and DT 
performed better in Y class whereas MLP and SVM both 
performed better in N class. In F-measure, DT performed better 
in Y class whereas MLP performed better in N class. 

Results of PC2 datasets are shown in Table XI. According 
to results in Precision, kStar performed well in both the classes. 
In Recall, kStar performed well in Y class whereas RBF, SVM, 
DT and RF performed well in N class. In F-measure, kStar 
performed well in Y class however RBF, SVM, DT and RF 
performed well in N class. 

Results of PC3 dataset is reflected in Table XII. It can be 
seen that in Precision, OneR and RF performed better in Y 
class however NB performed better in N class. In Recall, NB 
performed better in Y class whereas RBF, SVM and PART 
performed better in N class. In F-measure, DT performed better 
in Y class whereas OneR and RF performed better in N class. 

Results of PC4 dataset are shown in Table XIII. It is 
reflected that in Precision, SVM performed better in Y class 
whereas DT performed better in N class. In Recall, DT 
performed better in Y class whereas SVM performed better in 
N class. In F-Measure, DT performed better in Y class whereas 
RF performed better in N class. 

Results of PC5 dataset are shown in Table XIV. It can be 
seen that in Precision, SVM performed better in Y class 
whereas DT performed better in N class. In Recall, DT 
performed better in Y class whereas SVM performed better in 
N Class. In F Measure, DT performed better in Y class whereas 
RBF performed better in N class. 

TABLE XI. PC2 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.000 0.000 0.000 

N 0.976 0.967 0.972 

MLP 
Y 0.000 0.000 0.000 

N 0.977 0.991 0.984 

RBF 
Y ? 0.000 ? 

N 0.977 1.000 0.988 

SVM 
Y ? 0.000 ? 

N 0.977 1.000 0.988 

kNN 
Y 0.000 0.000 0.000 

N 0.977 0.991 0.984 

kStar 
Y 0.143 0.200 0.167 

N 0.981 0.972 0.976 

OneR 
Y 0.000 0.000 0.000 

N 0.977 0.995 0.986 

PART 
Y 0.000 0.000 0.000 

N 0.977 0.991 0.984 

DT 
Y ? 0.000 ? 

N 0.977 1.000 0.988 

RF 
Y ? 0.000 ? 

N 0.977 1.000 0.988 

TABLE XII. PC3 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.150 0.907 0.257 

N 0.929 0.190 0.316 

MLP 
Y 0.346 0.209 0.261 

N 0.883 0.938 0.909 

RBF 
Y ? 0.000 ? 

N 0.864 1.000 0.927 

SVM 
Y ? 0.000 ? 

N 0.864 1.000 0.927 

kNN 
Y 0.480 0.279 0.353 

N 0.893 0.952 0.922 

kStar 
Y 0.313 0.233 0.267 

N 0.884 0.919 0.901 

OneR 
Y 0.600 0.140 0.226 

N 0.879 0.985 0.929 

PART 
Y ? 0.000 ? 

N 0.864 1.000 0.927 

DT 
Y 0.500 0.279 0.358 

N 0.894 0.956 0.924 

RF 
Y 0.6000 0.140 0.226 

N 0.879 0.985 0.929 

TABLE XIII. PC4 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.486 0.346 0.404 

N 0.901 0.942 0.921 

MLP 
Y 0.676 0.481 0.562 

N 0.922 0.964 0.942 

RBF 
Y 0.667 0.154 0.250 

N 0.881 0.988 0.931 

SVM 
Y 0.818 0.173 0.286 

N 0.884 0.994 0.936 

kNN 
Y 0.477 0.404 0.438 

N 0.908 0.930 0.919 

kStar 
Y 0.333 0.327 0.330 

N 0.894 0.897 0.895 

OneR 
Y 0.650 0.250 0.361 

N 0.892 0.979 0.933 

PART 
Y 0.464 0.500 0.481 

N 0.920 0.909 0.914 

DT 
Y 0.515 0.673 0.583 

N 0.946 0.900 0.922 

RF 
Y 0.778 0.404 0.532 

N 0.912 0.982 0.946 

Accuracy results are shown in Table XV. It can be seen that 
RBF showed better performance with higher accuracy in 5 
datasets. MLP, SVM, RF each showed higher accuracy in 4 
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datasets. On the other hand NB, kStar and kNN did not show 
higher accuracy in any of the dataset. MCC results are shown 
in Table XVI, it can be seen that scores in most of the 
classifiers could not be drawn due to class imbalance. NB and 
DT each performed better in 3 datasets whereas MLP showed 
higher performance in 2 datasets. RBF, kNN, kStar, PART and 
RF each showed higher performance in 1 dataset. SVM and 
OneR did not perform well in any single dataset. Table XVII 
shows the results of ROC area, it can be seen that RF reflected 
high performance in 8 datasets whereas NB, MLP, kStar and 
PART each showed high performance in 1 dataset. Remaining 
algorithms did not show high performance in any of the used 
dataset. It has been noted that Besides the Precision, Recall and 
F measure, MCC is also sensitive to the class imbalance 
problem as it could not give the scores in many of the 
classifiers. However accuracy and ROC both did not show any 
symbol of class imbalance in the results which make them non 
sensitive to this issue. Therefore, besides the Accuracy and 
ROC, other performance measures including Precision, Recall, 
F-Measure and MCC should be used for effective performance 
analysis. Class imbalance issue can be resolved in the used 
datasets with many techniques [31]. However the purpose of 
this research is to use the exact snapshot of NASA cleaned 
dataset that is why no preprocessing or class balancing 
techniques are used. 

TABLE XIV. PC5 DATASET RESULTS 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.676 0.168 0.269 

N 0.759 0.970 0.852 

MLP 
Y 0.560 0.204 0.299 

N 0.762 0.941 0.842 

RBF 
Y 0.760 0.139 0.235 

N 0.756 0.984 0.855 

SVM 
Y 0.875 0.051 0.097 

N 0.740 0.997 0.850 

kNN 
Y 0.500 0.496 0.498 

N 0.815 0.817 0.816 

kStar 
Y 0.439 0.423 0.431 

N 0.790 0.801 0.795 

OneR 
Y 0.455 0.336 0.387 

N 0.776 0.852 0.812 

PART 
Y 0.646 0.226 0.335 

N 0.770 0.954 0.852 

DT 
Y 0.537 0.526 0.531 

N 0.826 0.833 0.830 

RF 
Y 0.588 0.365 0.450 

N 0.794 0.906 0.846 

TABLE XV. ACCURACY RESULTS 

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF 

CM1 82.6531 86.7347 90.8163 90.8163 77.551 77.551 85.7143 90.8163 77.551 89.7959 

JM1 79.8359 80.3541 80.3972 79.1883 73.9637 75.9931 77.1589 79.4905 79.1019 80.1813 

KC1 74.212 77.3639 78.7966 75.3582 69.341 72.2063 73.3524 76.5043 75.6447 77.937 

KC3 81.0345 82.7586 77.5862 82.7586 75.8621 75.8621 82.7586 79.3103 75.8621 77.5862 

MC1 93.8567 97.6109 97.6109 97.6109 97.2696 96.9283 97.2696 97.2696 97.6109 97.4403 

MC2 75.6757 64.8649 72.973 62.1622 72.973 59.4595 64.8649 78.3784 64.8649 64.8649 

MW1 82.6667 90.6667 89.3333 89.3333 86.6667 82.6667 89.3333 86.6667 86.6667 88.000 

PC1 89.7059 96.5686 94.6078 95.098 92.6471 86.2745 94.6078 93.1373 93.1373 96.0784 

PC2 94.47 96.7742 97.6959 97.6959 96.7742 95.3917 97.235 96.7742 97.6959 97.6959 

PC3 28.7975 83.8608 86.3924 86.39 24 86.0759 82.5949 87.0253 86.3924 86.3924 87.0253 

PC4 86.0892 89.7638 87.4016 88.189 85.8268 81.8898 87.9265 85.3018 86.8766 90.2887 

PC5 75.3937 74.2126 75.5906 74.2126 73.0315 69.8819 71.2598 75.7874 75.000 75.9843 

TABLE XVI. MCC RESULTS 

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF 

CM1 0.097 -0.066 ? ? -0.037 -0.037 -0.074 ? 0.041 -0.032 

JM1 0.251 0.206 0.215 ? 0.186 0.212 0.126 0.104 0.252 0.244 

KC1 0.250 0.296 0.347 0.151 0.190 0.238 0.147 0.239 0.291 0.346 

KC3 0.309 0.295 -0.107 ? 0.218 0.154 0.295 0.056 0.154 0.111 

MC1 0.208 ? ? ? 0.325 0.174 0.206 0.325 ? -0.006 

MC2 0.444 0.243 0.371 0.040 0.374 0.062 0.137 0.512 0.189 0.216 

MW1 0.367 0.589 ? ? 0.373 0.038 0.211 0.110 0.110 0.150 

PC1 0.400 0.538 0.161 ? 0.247 0.128 0.161 0.440 0.490 0.459 

PC2 -0.028 -0.015 ? ? -0.015 0.146 -0.010 -0.015 ? ? 

PC3 0.088 0.183 ? ? 0.294 0.173 0.245 ? 0.304 0.245 

PC4 0.334 0.515 0.279 0.342 0.359 0.225 0.352 0.396 0.514 0.516 

PC5 0.245 0.216 0.251 0.173 0.314 0.227 0.209 0.274 0.361 0.322 
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TABLE XVII. ROC AREA RESULTS 

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF 

CM1 0.703 0.634 0.702 0.500 0.477 0.538 0.472 0.610 0.378 0.761 

JM1 0.663 0.702 0.713 0.500 0.591 0.572 0.543 0.714 0.671 0.738 

KC1 0.694 0.736 0.713 0.521 0.595 0.651 0.551 0.636 0.606 0.751 

KC3 0.769 0.733 0.735 0.500 0.617 0.528 0.619 0.788 0.570 0.807 

MC1 0.826 0.805 0.781 0.500 0.638 0.631 0.568 0.684 0.500 0.864 

MC2 0.795 0.753 0.766 0.514 0.668 0.510 0.553 0.724 0.615 0.646 

MW1 0.791 0.843 0.808 0.500 0.705 0.543 0.555 0.314 0.314 0.766 

PC1 0.879 0.779 0.875 0.500 0.629 0.673 0.545 0.889 0.718 0.858 

PC2 0.751 0.746 0.724 0.500 0.495 0.791 0.498 0.623 0.579 0.731 

PC3 0.773 0.796 0.795 0.500 0.616 0.749 0.562 0.79 0.664 0.855 

PC4 0.807 0.898 0.862 0.583 0.667 0.734 0.614 0.776 0.834 0.945 

PC5 0.725 0.751 0.732 0.524 0.657 0.629 0.594 0.739 0.703 0.805 

V. CONCLUSION 

Software defect prediction using machine learning 
techniques is considered as one of the emerging research areas 
now days. Identification of defects at the early stage of 
development can contribute to the delivery of high quality 
software by using limited amount of resources. This study 
deals with the detailed performance analysis of various 
machine learning classification techniques on software defect 
prediction using 12 widely used and publically available 
NASA datasets. The classification techniques include: Naïve 
Bayes (NB), Multi-Layer Perceptron (MLP). Radial Basis 
Function (RBF), Support Vector Machine (SVM), K Nearest 
Neighbor (KNN), kStar (K*), One Rule (OneR), PART, 
Decision Tree (DT), and Random Forest (RF). The 
performance is evaluated by using various measures extracted 
from confusion matrix such as: Precision, Recall, F-Measure, 
Accuracy, MCC, and ROC Area. It is reflected from the results 
that neither the Accuracy and nor the ROC can be used as an 
effective performance measure as both of these did not react on 
class imbalance issue. However, Precision, Recall, F-Measure 
and MCC reacted to class imbalance problem in the results 
with the symbol of ‗?‗. The results presented in this research 
can be used as baseline for other researches so that the results 
of any proposed technique, model or framework can be 
compared and easily verified. For future work, class imbalance 
issue should be resolved in NASA cleaned datasets. Moreover, 
to improve the performance, feature selection and ensemble 
learning techniques should also be explored. 
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