
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

351 | P a g e

www.ijacsa.thesai.org

BHA-160: Constructional Design of Hash Function

based on NP-hard Problem

Ali AlShahrani

Faculty of Computing Studies

Arab Open University, Riyadh, Kingdom Saudi Arabia

Abstract—Secure hash function is used to protect the integrity

of the message transferred on the unsecured network. Changes

on the bits of the sender’s message are recognized by the message

digest produced by the hash function. Hash function is mainly

concerned with data integrity, where the data receiver needs to

verify whether the message has been altered by eavesdropping by

checking the hash value appended with the message. To achieve

this purpose, we have to use a secure hash function that is able to

calculate the hash value of any message. In this paper, we

introduce an alternative hash function based on NP-hard

problem. The chosen NP-hard problem is known as Braid

Conjugacy problem. This problem has proved to be secure

against cryptanalysis attacks.

Keywords—Hash function; integrity message; cryptanalysis;

attack; NP-hard problem

I. INTRODUCTION

Hash function is the core of any cryptosystem. It is used for
message integrity or for authenticating the data exchanging
process between the connected parties. The design of a secure
hash function consists of a special one-way function that
receives any variable length input and produces a fixed length
output. A one-way function is defined as a function that can
simply take the input message and compute (generate) the
corresponding hash value, but, it is computationally infeasible
to recover the original message using the hash value. A hash
function is called ideal if the hash value h cannot be
distinguished from the values given by a random oracle [1].
Apart from hash functions, some cryptosystems are dependent
on mathematically hard problems. An example of a
mathematical hard problem is the braid theory. Generally,
Braid Groups had been widely used as a tool to create various
cryptographic primitives. There are a few of them such as a
public key cryptosystem, key exchange, authentication and
digital signature [2] [3]. Creating an ideal hash function using
braid groups is connected to the general question of finding a
function to map the braid groups to the sequence of {0,1}. The
result of the secured hash function must be random enough and
reveal no information about the argument of the hash function.
The objective of this paper, therefore, is to create a secured
hash function based on braid group's theory. The mechanism
used in the core of this function is the braid multiplication, by
which we multiply a pre-defined braid by the braid generated
from message transformation (transformation of the message's
content to a braid form). However, the importance of this
research is related to the capability of our designed hash
function to be attached to any cryptosystem for message
integrity purposes with a high level of security. The rest of the

paper is organized in six sections. The related works are
discussed in Section 2. The proposed hash function is
presented in Section 3. In Section 4, the algorithm performance
is analyzed. The discussions and conclusion are presented in
Sections 5 and 6, respectively.

II. LITERATURE REVIEW

Hash functions have been applied for many security
applications and protocols such as PGP, SSL, SSH, IPsec, TLS
and S/MIME [4]. In order to provide these applications with a
high level of security, we have to design a secure hash function
against existing attacks. Let us now discuss the following
scenario to understand the usage of a hash function: Alice
wants to send a message m to Bob. Alice needs to use the hash
function Fh to calculate the hash value h of her message such

that Fh(m) = h, and appends the hash value h with the message.

On the other hand, Bob (the receiver) needs to recalculate h
using the same hash function. By comparing the two hash
values, Bob can judge whether the message has been altered or
not. The message considered "Altered" if Fh(m)Alice ≠

Fh(m)Bob.

The strength of any hash function can be measured by the
complexity of its calculation and operation [5]. Recently,
cryptosystems aimed to use some mathematical NP-hard
problems in order to increase the complexity of their structure
against the attackers. A problem is assigned to the NP
(Nondeterministic Polynomial time) - hard problem class, if it
is solvable in polynomial time by a nondeterministic oracle
machine. Therefore, if we built a hash function based on a NP-
hard problem, we will certain that the attackers cannot attack
this function since it is based on a "hard-to solve" mathematical
problem.

A. Hash Function

A hash function Fh, is a transformation that takes an

arbitrary size input m, and returns with a string of a fixed size,
which is called the hash value h (where h = Fh(m)) [6].

A cryptographically secure hash function should have the
basic requirements in its design, which are:

 Fh can be applied to an input of data of any size.

 Fh produces a fixed-length of output.

 Fh (m) is relatively easy to compute for any given m.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

352 | P a g e

www.ijacsa.thesai.org

 Fh (m) is one-way.

 Fh (m) is collision-free.

MD2, MD5 and SHA [7] are good examples of well-known
hash functions. In 1989, Ron Rivest introduced the MD2
Message Digest Algorithm that takes as input, a message of
arbitrary length and produces as output, a 128-bit message
digest by appending some redundancy to the message, and then
iteratively applies 32 bytes to 16 bytes compression function.
Researches done by [8] and [9] proved that the MD2 is not a
one-way function, therefore, it is not collision-free and they
also showed that it does not reach the ideal security level of
2

128
. However, the use of MD2 for new applications is

discouraged. Similarly, MD5 takes as input, a message of
arbitrary length and produces a 128-bit message digest;
however, it is aimed at 32-bit machines instead of 8-bit
machines in MD2. The algorithm consists of four distinct
rounds with a similar structure, but each uses a different
primitive logical function. According to the research done by
[10] and [11], MD5 is not secure to be used in security
applications since it is not collision-free. Therefore, MD5 in no
longer recommended for new applications where collision-
resistance is required. MD2 and MD5 are meant for digital
signature applications where a large message has to be
"compressed" in a secure manner. They are classified in a bit-
operations based hash function category, since they depend on
crossing, shifting and addition to the message's bits. The
Secure Hash Algorithm (SHA-1) is another example of hash
algorithms. It is one of the most widely used hash functions in
the world. Indeed, four more variants have since been issued
with increased output range and a slightly different design:
SHA-224, SHA-256, SHA-384 and SHA-512 (sometimes they
are collectively referred as SHA-2). However, SHA-1 takes a
message with a maximum less than 2

64
as an input producing a

160-bit message digest. The overall process of SHA-1 consists
of five steps, starting from appending some of the padding bits
to make the message congruent to a 448 modulo 512, ending
with a 160-bit message digest. Through these steps, the
message length must be appended to the message as well as
XOR operations being applied to the message's bits. Research
done by Chinese researchers showed that SHA-1 has been
broken [12]. They presented new collision search attacks on
the hash function SHA-1 and showed that the collision of
SHA-1 can be found with a complexity of less than 2

69
.

B. Braid Group

Number equations consecutively: Equation numbers, within
parentheses, are to position flush right, as in (1), using a right
the second category of our hash function's classification is the
hash function based on the NP-hard problem. In this category,
the heart of the hash function depends on a mathematical
nondeterministic polynomial-time hard problem. Braid groups
had been widely used as a tool to create various
cryptographically primitives. There are a few of them, such as
a public key cryptosystem, key exchange, authentication and
digital signature. However, Conjugacy Problems are NP-hard
problems in braid group theory. We say that braid a and b are
conjugate if we have a = s b s

-1
 for some braid s. Conjugacy

Search Problem is one of the conjugacy problems in braid
theory. This problem lies, that for some braids (a,b) є Bn X Bn

(where Bn is braid group) such that x and y are conjugate, find r
є Bn such that b = rar

-1
. Any braid can be decomposed as a

product of simple braids. One type of simple braid is the Artin
generators σi, these have a single crossing between i-th and

(i+1)-st strand as in Fig 1. Besides, the n-braid group Bn can

be presented by the Artin generators σ1,…, σn -1 and relations

σi σj = σj σi for |i - j| > 1 and σi σj σi = σj σi σj for |i - j| = 1.

Fig. 1. Artin Generator σ
i

Many operations can be applied on two braids. For
example, braid multiplication is the most used operation over
braid. The multiplication of braids a by b where (a,b) є Bn
results in a new braid which is unique. The process of
ascertaining the original two braids (braid a and b), given the
resulted braid after the multiplication, is known to be a hard-
problem. The multiplication of two braids is carried out by
placing the braid a under the braid b. As we previously
mentioned, many cryptosystem's primitives have been built on
braid group theory, but no hash function based on braid has
been implemented yet. However, many researches are done in
the braid group, and most of these researches showed the
strength of this theory against attacks.

III. PROPOSED BHA-160 HASH FUNCTUION

ARCHITIECTURE

Currently, most of the existing hash functions are focusing
on scrambling and shifting of the bits in the input blocks. With
the intention of randomizing the bits of the input blocks,
usually they are using the exclusive OR (XOR) operation and
some additions in their implementation. For our work, we
proposed a new approach of hash function architecture. In our
opinion, hash function is not just scrambling or shifting the
bits, but should also include the mathematical hard problems.
We have found that the braid group’s theory is the best way to
do this, as it provides mathematical hard problems and also
some advantages in computational aspects. The proposed
structure consists of an initial vector called initial braid and
blocks of text (represented as braid) to be the inputted into the
hash function. We apply a braid operation (multiplication) on
the braid groups to concentrate two different braids that then
produce a completely new unique braid. By repeating this
process, we will get a random braid that cannot be traced back
to get the initial value of the hash function. This condition is
able to fulfill the important properties of a secured hash
function. The architecture of the proposed hash function will
follow the steps as follows as in Fig. 2:

 Generate a random braid BIV, to be as an initial vector
of the hash function.

 Generate another braid by manipulating the bits from
the text blocks.

n

i + 1

i

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

353 | P a g e

www.ijacsa.thesai.org

 Do a multiplication operation on the initial braid and
the braid generated beforehand.

 Repeat the iteration until the last text blocks.

A. BHA-160 Processing Stages

The algorithm of BHA-160, takes as input a message of
arbitrary length thereby producing as output, a 160-bit message
digest. The input is processed in 192 bit blocks. The combined
braid, as illustrated in the architecture, is achieved from the
braid multiplication and will be processed in order to reduce
the size of the digest to 160-bit. The overall processing of a
message to produce a digest consists of four stages. The stages
are:

 Stage 1: Append Padding Bits

The 192 bit block is padded to make sure the length is
always in the desired length. The padding process is done by
taking the first 8-bit block from the input message (which is
less from the desired length) and then cyclic left shift the bits
of the block by 2 bits as shown in Fig. 3.

After appending the padding bits, we will XOR every 8-bit
in 192-bit block. The result of this stage is 12 8-bit blocks.
Fig. 4 presents the input setup of BHA-160 in the first stage.

Fig. 2. Architecture of the Proposed Hash Function (BHA-160).

Fig. 3. Padding Process for BHA-160.

Fig. 4. Input Setup of BHA-160.

 Stage 2: Convert to Artin Generators, σ

This process is the beginning of mapping the input into a
braid representation. As we can see in Fig. 5, B[i] represents
the braid index or, in other words, the location where crossing
occurs in braid groups. By mapping the input into a braid
representation, we need to calculate the value of the crossing.
With the number of strands n = 128, we convert the first 7 bits
from binary to positive decimal. The 8th bit indicates the sign
of the number that can be negative or positive. The positive
sign indicates a positive crossing and the negative sign
indicates a negative crossing.

Fig. 5. Relation between Blocks of Bits with Artin Generators.

 Stage 3: Braids Multiplication

The inputs of this stage are two braids with 12-byte size (12
crossing). The first braid represents the plain text block after
the transformation (transforming the plain text block to Artin
representation Bi. The second braid will be the initial value of

BIV that is represented as braids Di with 24-byte (BIV that will

be used for one time only, in the beginning of this stage).
However, the initial value of Di will be reduced to 12-byte size

to be multiplied by Bi. The braid reduction occurs by XORing

D2i-1 and D2i for all values of 1≤ i ≤12. Therefore, the

resulted braid, after reduction, is a 12-byte braid size which is
represented as D'i. The combined braid, resulted from

multiplying the two braids D'i and Bi as shown in Fig. 6 will

therefore be in the size ranging from 0-24 crossing, since there
is a possibility for zero crossing. However, the combined braid

p
0
 P

1

P
2

p
n

Braid
Groups

Braid

Groups

Braid Multiplication

Message

Digest D
i+1

B
IV

F(x)

Plain Text Blocks

D
i+1

....

D
i
 B

i

Reduce Braid to 160-bit

11010100 01010011

01001101

192-bit

00110101

....

....
8 bit

192 BIT

Xor Xor

....

B=1 B=2 B=12

....
8 bit

B=1 B=2 B=3 B=12

σ
B[1]

σ
B[2]

σ
B[3]

σ
B[12]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

354 | P a g e

www.ijacsa.thesai.org

then will be multiplied by the next input block after reduction
to 12-byte instead of using the same value of BIV.

 Stage 4: Message Digest Reduction and Production

This is the final stage where we produce the message digest
of the corresponding plain text. However, this stage will be
executed when we reach the last input block. The output will
be in the size of 192-bit, meanwhile, we are looking for 160-bit
size. Therefore, we will reduce the output size to 160-bit by
keeping the first 160-bit and ignoring the remaining bits as
portrait in Fig. 7.

Fig. 6. Braid Multiplication.

Fig. 7. Message Digest Reduction.

IV. PERFORMANCE ANALYSIS

The performance of BHA-160 is examined against well-
known hash functions, including: MD2, MD5, SHA-1, SHA-
256, SHA-512. The experiment at each point is the mean of 10

measurements. The experiments of all hash functions are
implemented on Core i7-4500U of a CPU of 2.4GHz, running
Java 6 under Windows 7. The performance results are
presented in Fig. 8.

Fig. 8. Performance of Standard Hash Functions Against BHA-160.

The performance result shows that our BHA-160 is in the
middle class, where it could outperform MD2 and it is almost
close to the performance of other functions. However, we
realized that a tradeoff between security and performance
exists. Manipulating braids includes performing complex
mathematical operations. In addition, the key size of BHA-160
is relatively larger than the key size used by most of the hash
functions included in this study.

V. DISCUSSION

Two important parameters should be discussed, they are:
the security and the performance of the proposed architecture.
In terms of security, the 8-bit block of plain text will produce

an Artin representation of a string in a 128 braid (27=128),
which is big enough for security purposes, since the advice size
for braid to be used for cryptography purposes is an 80 strings
braid. Mathematically, the braid theory proved to be secure
since it is virtually impossible to retrieve one of the multiplied
braids after a braid multiplication operation. In terms of
performance, a block of 192-bit will require one braid
multiplication of two 128-strings braids, and 24 XOR
operations. This can be considered a minimal operation that
needs to be applied on every 192-bit plain text block.

VI. CONCLUSION

In conclusion, there is a presentation of less security level
by bit-operations harsh functions that have a dependence on
bits of XORing message as compared to the hash functions that
are based on problems that are NP-hard. However, the
proposed hash function is proved that it is secure due to the fact
that it is based on mathematical problems that are hard to solve
hence it is worth to be evaluated. The proposed hash function’s
internal stages tend to depend on the mapping of bits into braid
representation as well as multiplying the resulted braids to each
other. These stages form the core of the entire architecture of
the hash function that is proposed and they could be able to
fulfill the significant features of a hash function that is secured.

D'i = D
2i-1

 D2i

....

....

X

...............

0 – 24 Crossing

12 - Crossing 12 - Crossing

σ
D1

σ
D'12

σ
B1

σ
B12

σ
D24

σ
D3

σ
D2

σ
D1

σ
D2

σ
D24

σ
D'1

Di

D'i Bi

Di+1

X: Braid Multiplication

192 - BIT

............... σ
D1

σ
D2

σ
D3

.....

.

σ
D20

............... σ
D1

σ
D2

σ
D3

σ
D20

160 - BIT

σ
D24

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

355 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] P. Hofmann and B. Schneier, Attacks on Cryptographic Hashes in
Internet Protocols, facs.org. November 2005. [Online]. Available:
https://tools.ietf.org/html/rfc4270 [Accessed May 20, 2019].

[2] K. Ko, S. Lee, J. Cheon, J. Han, J. Kang and C. Park, New Public-Key
cryptosystem using braid groups, In advance in Cryptology: Crypto
2000.

[3] I. Al-Siaq, Public Key Cryptosystems based on Numerical Methods,
Global Journal of Pure and Applied Mathematics, Vol.13, No.7 pp
(2017) pp 3105-3112.

[4] R. Dobai, J. Korenek, L. Sekanina, Evolutionary design of hash function
pairs for network filters, Applied Soft Computing, Volume 56, July
2017, Pages 173-181.

[5] G. Yu, Y. Zhao, C. Lu, J. Wang, HashGO: hashing gene ontology for
protein function prediction, Computational Biology and Chemistry,
Volume 71, December 2017, Pages 264-273.

[6] Y. Cui, J. Jiang, Z. Lai, Z. Hu, W. Wong, Supervised discrete
discriminant hashing for image retrieval, Pattern Recognition, Volume
78, June 2018, Pages 79-90.

[7] W. Stalling, Cryptography and network security: principles and
practices, Prentice Hall 2

nd
 ED. 1999.

[8] N. Rogier and Chauvaud, The Compression Function of MD2 is not
Collision Free, Selected Areas in Cryptography '95, 1995.

[9] F. Muller, The MD2 Hash Function is not One-Way, Advanced in
Cryptology-Asia Crypt '2004, 2004.

[10] V. Klima, Finding MD5 Collision-a toy for a Notebook, Cryptology
ePrint Archive, Report 2005/075.

[11] X. Wang, D. Feng, X. Lai, H. Yu, Collision for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report
2004/199.

[12] X. Wang, Y. Yin, H. Yu, Finding Collisions in the Full SHA-1, Crypto
2005.

