
(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

436 | P a g e

www.ijasca.thesai.org

Skyline Path Queries for Location-based Services

Nishu Chowdhury1, Mohammad Shamsul Arefin2,*

Computer Science and Engineering Department, Chittagong University of Engineering and Technology

Chattogram, Bangladesh

Abstract—A skyline query finds objects that are not

dominated by another object from a given set of objects. Skyline

queries help us to filter unnecessary information efficiently and

provide us clues for various decision making tasks. In this paper,

we consider skyline queries for location-based services and

proposed a framework that can efficiently compute all non-

dominated paths in road networks. A path p is said to dominate

another path q if p is not worse than q in any of the k dimensions

and p is better than q in at least one of the k dimensions. Our

proposed skyline framework considers several features related to

road networks and return all non-dominated paths from the road

networks. In our work, we compute skylines considering two

different perspectives: business perspective and individual user’s

perspective. We have conducted several experiments to show the

effectiveness of our method. From the experimental results, we

can say that our system can perform efficient computation of

skyline paths from road networks.

Keywords—Skyline queries; trip planning; location-based

services

I. INTRODUCTION

Given a k-dimensional database DB, a skyline query
retrieves a set of skyline objects, each of which is not
dominated by another object. An object p is said to dominate
another object p` if p is not worse than p` in any of the k
dimensions and p is better than p` in at least one of the k
dimensions. Fig. 1 shows a typical example of skyline. The
table in Fig. 1 is a list of five routes, each of which contains
two numerical attributes–“Cost” and “Distance”. In the list,
R2 and R5 are dominated by R3, while others are not
dominated by any other routes. Therefore, the skyline of the
list is {R1, R3, and R4}. Such skyline results are important for
users to take effective decisions over complex data having
many conflicting criteria. A number of efficient algorithms for
computing skylines from the database have been demonstrated
in the literature [1, 2, 3, 4, 5, 6].

Location-based services (LBSs) use positioning technology
and traditional map information to furnish mobile users with
new sorts of on-line services.

Location-based services in road network are becoming
more popular. With rapid growth of technology, skyline
queries on road networks [14, 15, 16, 17] have attracted much
attention now a days.

Traffic jam refers to a long line of vehicles stuck in a jam.
It is a common problem in the big cities and towns like Dhaka
city of Bangladesh. Many factors such as less number of
roads, lack of modern proper traffic management systems,
narrowness of the roads, and increase of vehicles are the main
causes of traffic jams in cities like Dhaka. These traffic jams

are creating many problems such as not reaching in time at
offices, ambulance carrying patients cannot reach at the
hospitals in time etc.

In such a scenario, a well-developed location-based service
that focuses on the road conditions such as traffic jam, number
of passengers and cost to the destination can give some
comforts to the people by choosing skyline routes from which
people can select their desired paths based on their
preferences.

Each road in a road network has multiple-path criteria such
as the distance of the road, the travel time through that road,
the number of travellers and the number of traffic. The last
two factors vary according to time. Before starting a journey, a
traveller may want to know about the conditions of the road
taken on their destination at a specific point of time. He/she
may also want to know trip cost and other conditions of the
roads.

In this paper, we apply skyline queries to support location-
based services for road networks. In our approach, at first, a
user needs to choose his pick-up point and the destination
point. Based on the choice of the source and the destination by
a user, our system then finds all alternate routes from source to
destination. Next, each route is represented with several
features such as traffic conditions, travelling time, travelling
costs, number of passengers available through that each routes
etc. After representing each route with a number of features,
we apply skyline queries to filter dominated routes and to
return only useful routes for the users. From the return results,
a user can select his desired path such as less cost path or less
traffic path.

The remainder of this paper is organized as follows:
Section II provides a brief review of related work. We provide
motivating examples at Section III. Section IV describes
different concept related to the paper. We provide detail
description of our proposed approach at Section V. In
Section VI we present the experimental results. Finally, we
conclude our paper at Section VII.

(a) Roads (b) Skyline

Fig. 1. Skyline Example.

*Corresponding Author

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

437 | P a g e

www.ijasca.thesai.org

II. RELATED WORK

Since the introduction of skyline queries in 2001, there are
many works related to skyline queries considering different
settings.

The Block-Nested Loops Algorithm (BNL) [4], which is
the easiest skyline query method. Its objective is to build a
candidate skyline set. This calculation investigates every data
point with each other data point in the dataset. The BNL
calculation requires each data point in the database be checked
and tried for predominance; consequently, the time required
for calculation increments with the volume of information.

The DAC calculation [4] separates information into groups
and at that point leads skyline query in each group. The results
are consolidated to acquire a definitive result.

The SaLS aalgorithm [2] utilizes an element acquired from
the raw information as a threshold value with which to filter
and dispose data points.

The BBS algorithm [18] is at present the most well-known
skyline query algorithm. The BNL and DAC algorithms
require that a large portion of the data points be processed all
together to complete the skyline query comparison.
Conversely, BBS utilizes an index structure for the
identification of skyline points, which diminishes the number
of points that must be tested all together to process a query.

Previous studies in which skyline queries were utilized to
check road networks can be classified into those attempting to
recognize skyline landmarks and those trying to distinguish
skyline paths.

Deng et al. [8] presented the idea of searching for skyline
landmarks in street network. The skyline landmark query
recognizes landmarks that coordinate user criteria when user is
going on a road network. For instance, when a user travels on
a road network, skyline landmark query encourages him/her
those points that are adjacent. The algorithm in this work
characterizes landmark attributes as static or dynamic. Static
properties have fixed values. Dynamic properties have
variable attributes. The algorithm initially distinguishes static
skyline landmarks on their static attribute values. At that
point, when users perform to check, the algorithm
distinguishes all unique skyline landmarks dependent on their
dynamic attribute values, and consolidates query points with
the static skyline landmarks. At last, the algorithm can recover
skyline landmarks that fit all characteristics.

Huang and Jensen [13] proposed an alternate skyline
landmark search concept from that of [8]. They contended that
users' movement in road networks ought to be founded on a
recently settled way. The algorithm in this work was like that
proposed by Deng et al. [8], which utilized the ideas of static
and dynamic attributes to identify skyline landmarks. The
main contrast between the algorithms is the attribute
calculation method. Deng et al. [8] considered the separation
between the landmark and the inquiry area of the user, while
the researchers of this work consider the separation between
the landmark and the path preset by the user.

Tian et al. [21] presented the idea of skyline paths. Their
proposed algorithm would utilize the edge attributes of a road

network to discover all skyline paths between the user-
specified starting vertex and goal. The algorithm would first
decide a single skyline path between a starting vertex and goal
whose summation of all attributes values is the most reduced
among all ways. At that point, the algorithm would recognize
other skyline paths by (1) a greedy algorithm to locate a relay
vertex between starting vertex s and goal t. If skyline path
domination was available after adding the two values, at that
point a can‟t be a piece of a skyline path. In this instance, the
algorithm again employs the greedy algorithm to identify
other possible relay vertices or identify the next relay vertex
following a.

Kriegel et al. [15] utilized the greedy algorithm to
distinguish a possible relay vertex among s and t. Kriegel et al.
[15] utilized a reference vertex to help estimations. By
utilizing such a technique, they proclaimed the strategy
proposed in this work was quicker than that proposed in
crafted by [21].

Many researchers have looked to broaden the works in [15]
and [21]. Aljubayrin et al. [1] examined the issue of skyline
trips on different POI classes. Hsu et al. [10] connected the
possibility of a skyline path to the arranging of treks to beat
the conventional problem of acquiring multicriteria answers.
Yang et al. [23] consolidated GPS history information in their
inquiries to enable the user to design their skyline route under
time-varying vulnerability. Unfortunately, these works don't
consider aggregate attributes in road networks, which make
them inapplicable to the issues tended to in this examination.

A new concept M-tree structure is described in [7]. A.
Guttman al. [9] describes dynamic index structure called an R-
tree and W. Son al. [20] describes spatial skyline queries for
dynamic environment.

In [11], they focus on processing the continuous skyline
query in road networks. They design a grid index to
effectively manage the information of data objects. They
proposed several algorithms combined with the grid index to
answer the skyline queries.

In [12], they overcome the specific assumptions that each
object is static in road networks. They focus on processing
the CKNSQ over moving objects with uncertain dimensional
values in Euclidean space and the velocity of each object
(including the query object) varies within a known range.

Sheng et al. [19] present external memory algorithms for
solving the skyline problem its variants in a worst-case
efficient manner. They proved that the running time can be
improved if some dimensions have small domains.

In [22], they bring out novel information by analyzing
bulky databases to consolidate users experience to find place
of interest. They use Apriori algorithm for identifying hidden
association among item sets from large databases of user
checking in data and to construct the route analogous to the
key terms provided by user.

III. MOTIVATING EXAMPLES

Consider the graph of Fig. 2 that represents a road network
where L1 is considered as a source location and L2 is a

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

438 | P a g e

www.ijasca.thesai.org

destination location. Each vertex in Fig. 2 represents a
junction i.e. dropping and/or pickup point and each edge
represents a connection between two vertices. There are four
values associated with each edge those are travel time, cost,
distance and passengers, respectively. For example, edge (L1,
l1) has values (3.18, 0.35, 0.7, 4), which indicates that the
required time to reach from L1 to l1 is 3.18, cost of is 0.35, the
distance between L1 and l1 is 0.7 and number of available
passengers in is 4. In Fig. 2 if we use the route <L1, l5, l6, l2,
l8,l9,l4, L2> to reach from L1 to L2, we need total time 3.18 +
5 + 2.27 + 3.18 + 4.54 +4.09 + 1.81 = 24.07 and cost is 0.35 +
0.55 + 0.25 + 0.35 + 0.5 + 0.45 + 0.2 = 2.65. Here, total
distance is 0.7 + 1.1 + 0.5 + 0.7 + 1 + 0.9+0.4 = 5.3 and the
number of available passengers in this route is 4 + 5+ 7 + 6 +
8 + 10 + 10 = 50.

In this paper, we have considered two different scenarios.
One is for business purpose and another is for individual
user‟s perspective. These scenarios are explained below.

A. Business Perspective

In applications such as Pathao and Uber, one trip can only
be allotted to one passenger request at a specific time. In
contrast, microbuses and cars have the capacity to carry five to
eight passengers, respectively. Let us assume that a service
provider has a microbus, which is a 10-seater vehicle. Suppose
this person plans a trip from location L1 to L2. Before starting
the journey, by utilizing our method this person can find
shorter route as well as a faster route. Our method also
suggests a route having a large number of passengers, whereas
for a fast route this method provides a route with a shorter
distance and lesser traffic. Here, the passengers are those
whose destination location is the same as that of the service
provider and the start location belongs to the list of suggested
routes. Thereby, the service provider can choose its preferable
route and accept the passenger request for the same.

Table I shows the distance information on all routes and
Fig. 3 presents the traffic and passenger conditions of two
alternate routes. In Fig. 3, the graph lines are represented by
three colours: green represents light traffic, orange represents
medium traffic, and red indicates high traffic.

Hence, compared to multiple routes, it is necessary to find a
desired route that is not dominated by any other route. In
detail, a route is preferable to visitors if it is not dominated by
any other route. The information on routes is given below.
This information is collected from Google Map API.

Fig. 2. Example of a Graph Representing a Road Network.

TABLE I. INFORMATION ON ROUTES

Route Starting Ending Distance Locations

Route 1 L1 L2 5.3 Km L1,l5,l6,l2,l8,l9,l4,L2

Route 2 L1 L2 4.8 Km L1,l1,l2,l3,l4,L2

Route 3 L1 L2 5.6 Km L1,l5,l6,l2,l3,l4,L2

Route 4 L1 L2 4.5 Km L1,l1,l2,l8,l9,l4,L2

The traffic and passenger conditions of two routes are
graphically represented in Fig. 3. The route line colour
changes with time. From this figure, we can say that there is a
light traffic for Road 1 from 8.00 a.m. to 12 p.m., and Road 2
will be free after 2 p.m. It is also observed that there is heavy
traffic for Road 1 from 3 p.m. and for Road 2 from 11 a.m. to
2 p.m. This graph is also helpful in tracing a medium traffic
condition. Road 1 has medium traffic from 12 p.m. to 3 p.m.
and Road 2 from 8 a.m. to 11 a.m. We can also calculate our
travel cost from route distance.

Table II represents the traffic and passenger conditions of
every location for Route 1 and 2. Each row in the table
represents traffic and passenger conditions. For measuring
passenger we use normalize value. These are helpful in
identifying the most interesting and preferable route.

Another graphical representation is given below. Fig. 4,
represents the passenger condition with traffic. In this figure,
blue colour Route 1 and green Road 2.

From Table II we find skyline points H3, H4.

Fig. 3. Traffic Condition of Two Routes with Respect to Time.

TABLE II. ROAD CONDITIONS FOR DIFFERENT TIME INTERVALS

ID Route Travel Time Passenger Traffic
Distance

(Km)

H1 Route 1 8.00 am 50 Low 5.3

H2 Route 1 2.00 pm 40 High 5.3

H3 Route 2 8.00 am 41 High 4.8

H4 Route 2 9.00 pm 35 Medium 4.8

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

439 | P a g e

www.ijasca.thesai.org

Fig. 4. Traffic and Passenger Conditions.

B. Individual Perspective

Suppose a visitor wishes to travel from Location L1 to L2.
Before starting their journey, he/she wishes to know about the
route and traffic conditions as well as the cost of travel. Then,
this method will provide him/her with traffic information
using Google Map Traffic API and calculate the cost by
calculating the fuel cost per litre, the mileage of their vehicle
and the distance between their start and end locations. From
the resulted dataset a user can easily filter routes according to
choice.

Table III represents road condition for specific interval.
Each row in the table represents traffic and cost, which are
helpful to identify the most interesting and preferable route.

From Table III, we find that cost is changing with user.
Moreover, cost depends on user vehicle‟s fuel cost and
mileage.

In this paper, we compute a method that can help service
providers to choose their desired route from our resulted
skyline routes. Our location-based computation method can
significantly find the appropriate route, based on the dataset.
By this way, our method is useful for individual trip planning
and transport service business planning.

TABLE III. TRAVEL COST

ID User
Start

point

End

point
Route

Distance
(Km)

Traffic Cost

H1
user

1
L1 L2

Route

1
5.3 High 2.65

H2
user

1
L1 L2

Route

2
4.8 Low 2.4

H3
user

1
L1 L2

Route

3
5.6 High 2.5

H4
user

1
L1 L2

Route

4
4.5 High 2.25

H5
user

2
L1 L2

Route

1
5.3 High 3.65

H6
user

2
L1 L2

Route

2
4.8 High 3.4

H7
user

2
L1 L2

Route

3
5.6 Low 3.5

H8
user

2
L1 L2

Route

4
4.5 Low 3.35

IV. PRELIMINARIES

Consider a database DB with N attributes and k objects. Let
a1, a2,...,aN be the N attributes of DB. We consider that
smaller values in each attribute are better and that each
attribute has positive values.

A. Skyline Queries

Skyline query is a decision-supporting mechanism that
highlights the best options among vast data.

An example is given below:

In Fig. 5, we have some points in a two-dimensional space,
as shown above, then we define a point p that will dominate
point q provided its coordinates are larger than that of q. In
this example, there is a point p that dominates several other
points. So what is the skyline point? Skyline points are points
that are not dominated by any other points present in the
dataset. They are also called maximal points. If you connect
these with horizontal and vertical lines, then you will get
skyline points.

Let L denote a set of all locations. Each location has an ID
and a spatial coordinate l = (xy). Let us suppose A is a
category attribute. In our research work, passenger and traffic
are category attributes. So, we denote the coordinates of
location L by l. L; l.a represents the value of attribute A.

Definition 1 (Dominance Relationship): Given two objects
a and a’ exist, then object a is said to dominate a’ if a < a’ for
all the attributes.

Definition 2 (Skyline Query): Skyline query is the set of
objects that cannot be dominated by any other object. Given
point p, r ∈ D. If p < r, then p belongs to the skyline set.

B. Multi-Attribute Network Graph (MAG)

Graph G (V, E, W) is a multi-attribute network graph, where
V denotes a set of vertices, E a set of edges, and W weight
vector. In Fig. 6, nodes define profiles of activity, roles and
actors etc. Edges define the relationship among those nodes
or entities and weight defines the behaviour of the edges.

Fig. 5. Skyline Points.

Fig. 6. Multi-Attribute Network Graph (MAG).

A

 B

C

 D

 E

 F

(5, 6)

(9, 6)

(7, 5)

(2, 7)

(9, 8)

(10, 8)

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

440 | P a g e

www.ijasca.thesai.org

V. METHODOLOGY

Our method comprises two modules: the first module
delves into the business perspective and the second into the
individual perspective. Fig. 7 describes the proposed
framework. In each module, the user can provide the source
and destination addresses while prioritising a specific
destination based on his/her choice.

The business perspective and individual perspective
operates in three processes or modules: processing module,
query execution module and output module. Our functional
algorithm, which parses the dataset and the filters, is known as
the processing module. In terms of both perspectives, it works
in five steps: first, it measures the geolocations of the start and
end locations. Upon completion, an iteration process continues
to measure all alternate routes from the source location to the
destination location. Thereafter, it calculates traffic, trip cost
or passengers based on the dataset. Thereafter, the process
migrates into the query execution module, where a resulted
dataset is generated imposing skyline queries. Through these
processes, we get the dominant paths that are filtered later on
the system output, which shows the result of these potential
paths.

The most naïve approach to locating skyline paths in a road
network is to identify all of the paths between the origin and
destination in the network, calculate attributes of the paths,
and perform a dominance check of all the attributes. The
process of estimating traffic, cost and passenger are given in
below.

A. Traffic Estimation

Fig. 8 describes the traffic condition at a specific time.
Suppose we wish to assess the traffic conditions in all
alternate routes from L1 to L2 at 2 pm. In this framework, car
has been used as a transport mode. We get four routes from
the given graph: Route 1 comprises L1, l5, l6, l2, l8, l9, l4, L2
and Route 2 comprises L1, l1, l3, l4, L2. Similarly Route 3
contains L1, l5, l6, l2, l3, l4, L2 and Route 4 contains L1, l1,
l2, l8, l9,l4,L2. For assessing the traffic conditions at a specific
time, Google Map Traffic API is used. For example, if
someone wants to assess the traffic condition from L1 to L2 at
2 pm, then the system counts all alternate routes that he/she
can take to reach the destination. Thereafter, it uses the
latitude and longitude of a distance at every 0.5 km interval
and checks the location at each iteration. Whenever a new
location returns, we measure the traffic condition at those
points by employing Google Map Traffic API. It provides the
standard time and the time required to reach one‟s destination,
and then it stores all the data on the latter for every 0.5 km
interval. In this way, we can obtain all the data on the time
taken for all alternate routes. In this figure, the blue-coloured
text represents the standard time (in minutes) taken to travel
from one location to another. Another colour represents the
time required to travel from one location to another. In this
figure, three different colours are used: orange is used to
represent medium traffic, green to indicate low traffic and red
for heavy traffic. When the standard time is equal to the
required time, the given time interval contains medium traffic.
If the required time is low, it indicates the presence low
traffic. Otherwise, the presence of heavy traffic is indicated.

By this way, we gather data for our dataset. Tables IV, V, VI
and VII represent the required time for Route 1, Route 2,
Route 3 and Route 4 respectively.

Now, we calculate the total required time for each route.
From above dataset we find Route 1, Route 2, Route 3 and
Route 4 require 24.07, 21.79, 25.43 and 20.43 minutes
respectively.

B. Cost Estimation

Table III represents user wise cost for each route. Here, we
represent how cost is changing with distance, mileage and fuel
consumption. In our method, cost measures by using the
following formula.

Cost = (mileage/per ltr fuel cost) * Distance (1)

Fig. 7. System Architecture.

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

441 | P a g e

www.ijasca.thesai.org

TABLE IV. REQUIRED TIME AND DISTANCE FOR ROUTE 1

Source Destination Required Time

(min)
Distance (Km)

L1 l5 3.18 0.7

l5 l6 5 1.1

l6 l2 2.27 0.5

l2 l8 3.18 0.7

l8 l9 4.54 1

l9 l4 4.09 0.9

l4 L2 1.81 0.4

TABLE V. REQUIRED TIME AND DISTANCE FOR ROUTE 2

Source Destination
Required

Time (min)

Distance

(Km)

L1 l1 4.54 1

l1 l2 2.27 0.5

l2 l3 6.81 1.5

l3 l4 6.36 1.4

l4 L2 1.81 0.4

TABLE VI. REQUIRED TIME AND DISTANCE FOR ROUTE 3

Source Destination Required

Time (min)
Distance (Km)

L1 l5 3.18 0.7

l5 l6 5 1.1

l6 l2 2.27 0.5

l2 l3 6.81 1.5

l3 l4 6.36 1.4

l4 L2 1.81 0.4

TABLE VII. REQUIRED TIME AND DISTANCE FOR ROUTE 4

Source Destination
Required

Time (min)

Distance

(Km)

L1 l1 4.54 1

l1 l2 2.27 0.5

l2 l8 3.18 0.7

l8 l9 4.54 1

l9 l4 4.09 0.9

l4 l2 1.81 0.4

C. Passenger Estimation

Fig. 9 describes the condition of passenger at specific time;
suppose, we need to assess the condition of passenger of all
alternate routes from location L1 to L2. The passenger
condition for specific time for each location can be assessed
through passenger request. Fig. 8 shows the passenger
condition. From this Fig. 8, we have found four alternate
routes: Route 1 comprises L1, l5, l6, l2, l8, l9, l4, L2 and
Route 2 comprises L1, l1, l3, l4, L2. Similarly Route 3
contains L1, l5, l6, l2, l3, l4, L2 and Route 4 contains L1, l1,

l2, l8, l9,l4,L2. For example, we want to measure number of
passengers for Route 1.At first, we count passengers of all
location of Route 1, whose destination location is L2. Now get
the maximum value from these locations. Suppose the value is
P. We use the following formula to normalize location wise
passengers.

Pi=P + 1 - Pi (2)

Tables VIII, IX, X and XI represent the condition of
passengers for Route 1, Route 2, Route 3 and Route 4,
respectively.

Now, calculate the condition of passenger for each route.
Route 1, Route 2, Route 3 and Route 4 has 50, 41, 40 and 51
passengers, respectively.

Fig. 8. Traffic Condition and the Distance of all Alternate Routes from L1 to

L2.

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

442 | P a g e

www.ijasca.thesai.org

TABLE VIII. PASSENGER CONDITION FOR ROUTE 1

Source Destination Number of Passengers

L1 l5 4

l5 l6 5

l6 l2 7

l2 l8 6

l8 l9 8

l9 l4 10

l4 L2 10

TABLE IX. PASSENGER CONDITION FOR ROUTE 2

Source Destination Number of Passengers

L1 l1 9

l1 l2 8

l2 l3 9

l3 l4 5

l4 L2 10

Fig. 9. Passenger Condition from L1 to L2.

TABLE X. PASSENGER CONDITION FOR ROUTE 1

Source Destination Number of Passengers

L1 l5 4

l5 l6 5

l6 l2 7

l2 l3 9

l3 l4 5

l4 L2 10

TABLE XI. PASSENGER CONDITION FOR ROUTE 2

Source Destination Number of Passengers

L1 l1 9

l1 l2 8

l2 l8 6

l8 l9 8

l9 l4 10

l4 L2 10

D. Computing Skyline

Here, we generate a dataset that measure attributes such as
traffic, passenger, cost and distance.

Let‟s consider a scenario. Suppose source is S and
destination is D. There are ten alternate routes from S to D.
We denote traffic condition as low, medium and high and
define them as 1, 2, and 3 respectively. Table XII represents
the route condition for a specific time.

From this dataset we need desire routes. By using BBS [18]
algorithm we get our skyline routes. Fig 10 describes the BBS
algorithm.

Using BBS algorithm, we get our skyline routes as R1, R2,
R3 and R4. From this method, a user can easily find his/her
desire route in proficient and appropriate way. If one wants a
large passenger, low traffic and low cost route, then he/she can
get the desired routes from the resulted routes.

TABLE XII. ROAD CONDITION FOR A SPECIFIC TIME

Route Traffic Cost Passenger Distance (Km)

R1 1 55 20 20

R2 3 60 9 10

R3 2 50 10 15

R4 1 45 8 30

R5 3 100 20 50

R6 2 120 30 60

R7 2 110 50 70

R8 2 130 40 50

R10 2 150 50 30

R11 3 140 60 40

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

443 | P a g e

www.ijasca.thesai.org

Fig. 10. BBS Algorithm for Skyline Computation (Adapted from [18]).

VI. EXPERIMENTS

We have implemented our proposed system in .Net
Framework. We have performed the experiment in a
simulation environment of a PC running on windows OS
having an Intel(R) Core i7, 1.73 GHz CPU and 4 GB main
memory. Due to the lack of real data, we evaluate our
proposed algorithm using synthetic datasets only.

Fig. 11 shows the results when we consider Route 1, Route
2, Route 3 and Route 4. We observe that with the increases of
distance, number of passengers varies.

Fig. 12 shows that with the increase of distance, number of
routes also increases.

In Fig. 13, when we consider two (2D), three (3D), four
(4D), and five (5D) features. We observe that with the
increases of routes, there is very slight increase in computation
time. This is because during the computation process, time
increases with the increase of number of routes. We can also
observe that computation time gradually increases if the
number of features increases.

Fig. 11. Passenger Varies with Distance.

Fig. 12. Number of Routes Varies with the Distance.

Fig. 13. Time Varies with Number of Routes.

Fig. 14. Skyline Points Varies with Number of Routes.

Simultaneously, it is also observed that skyline points
increase with the number of routes and number of features.
Fig. 14 represents how skyline points increase with the
number of routes.

Algorithm 1: BBS

Input: A dataset D (r-tree).

Output: The Set of skyline points of dataset D.

1. S=∅ // list of skyline points

2. insert all entries of the root R in the heap

3. while heap not empty

4. remove top entry e

5. if e is dominated by some point in S discard e

6. else // e is not dominated

7. if e is an intermediate entry

8. for each child ei of e

9. if ei is not dominated by some point in S

10. insert ei into heap

11. else // e is a data point

12. insert ei into S

13. end while

14. end

(IJASCA) International Journal of Advanced Computer Science & Applications

Vol. 10, No. 5, 2019

444 | P a g e

www.ijasca.thesai.org

VII. CONCLUSION

With the rapid growth of civilization, traffic is seen to
increase day by day. Therefore, collecting traffic information,
passenger condition and cost calculation has become a popular
method. Our experimental results demonstrate that the
proposed algorithm is scalable enough to compute the skyline
path for a specific time. The proposed approach can easily
expand for recommendation. In this work, we performed
different analyses on synthetic data. In future, we aim to
expand large passenger route methodology in more efficient
way and find desire route based on user preference. So that we
can get skyline points in more proper ways. We also want to
trace the vehicle movement and position in a more efficient
and effective way.

REFERENCES

[1] S. Aljubayrin, Z. He, and R. Zhang, „„Skyline trips of multiple POIs
categories‟‟, in Proc. Int. Conf. Database Syst. Adv. Appl. (DASFAA),
2015, pp. 189–206.

[2] I. Bartolini, P. Ciaccia, and M. Patella, „„SaLSa: Computing the skyline
without scanning the whole sky‟‟, in Proc. Int. Conf. Inf. Knowl.
Manage. (CIKM), 2006, pp. 405–414.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, „„The R*-
tree: An efficient and robust access method for points and rectangles”, in
Proc. ACM Special Interest Group Manage. Data (SIGMOD), 1990, pp.
322–331.

[4] S. Borzsony, D. Kossmann, and K. Stocker, „„The skyline operator‟‟, in
Proc. IEEE 17th Int. Conf. Data Eng. (ICDE), Apr. 2001, pp. 421–430.

[5] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu, „„Monitoring path nearest
neighbor in road networks‟‟, in Proc. ACM Special Interest Group
Manage. Data (SIGMOD), 2009, pp. 591–602.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, „„Skyline with
presorting‟‟, in Proc. IEEE Int. Conf. Data Eng. (ICDE), Mar. 2003, pp.
717–719.

[7] P. Ciaccia, M. Patella, and P. Zezula, „„M-tree: An efficient access
method for similarity search in metric spaces”, in Proc. Int. Conf. Vary
Large Data Bases (VLDB), 1997, pp. 426–435.

[8] K. Deng, Y. Zhou, and H. Tao, „„Multi-source skyline query processing
in road networks”, in Proc. IEEE Int. Conf. Data Eng. (ICDE), Apr.
2007, pp. 796–805.

[9] A. Guttman, „„R-trees: A dynamic index structure for spatial searching”,
SIGMOD Rec., vol. 14, no. 2, pp. 47–57, 1984.

[10] W. T. Hsu, Y. T. Wen, L. Y. Wei, and W. C. Peng, „„Skyline travel
routes: Exploring skyline for trip planning”, inProc. IEEE Int. Conf.
Mobile Data Manage. (MDM), Jul. 2014, pp. 31–36.

[11] Y.-K. Huang, C.-H. Chang, and C. Lee, „„Continuous distance-based
skyline queries in road networks”, Inf. Syst., vol. 37, no. 7, pp. 611–633,
2012.

[12] Y.-K. Huang and Z.-H. He, „„Processing continuous K-nearest skyline
query with uncertainty in spatio-temporal databases”, J. Intell. Inf. Syst.,
vol. 45, no. 2, pp. 165–186, 2015.

[13] X. Huang and C. S. Jensen, „„In-route skyline querying for location-
based services”, in Proc. Web Wireless Geograph. Inf. Syst. (W2GIS),
2004, pp. 120–135.

[14] S. Jang and J. Yoo, „„Processing continuous skyline queries in road
networks”, in Proc. Int. Symp. Comput. Sci. Appl., Oct. 2008, pp. 353–
356.

[15] H.-P. Kriegel, M. Renz, and M. Schubert, „„Route skyline queries: A
multipreference path planning approach”, in Proc. IEEE Int. Conf. Data
Eng. (ICDE), Mar. 2010, pp. 261–272.

[16] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, „„On
trip planning queries in spatial databases”, in Proc. Int. Symp. Spatial
Temporal Databases (SSTD), 2005, pp. 273–290.

[17] S. Pan, Y. Dong, J. Cao, and K. Chen, „„Continuous probabilistic skyline
queries for uncertain moving objects in road network”, Int. J. Distrib.
Sensor Netw., vol. 2014, Mar. 2014, Art. no. 365064.

[18] Papadias, Y. Tao, G. Fu, and B. Seeger, „„An optimal and progressive
algorithm for skyline queries”, in Proc. ACM Special Interest Group
Manage. Data (SIGMOD), 2003, pp. 467–478.

[19] C. Sheng and Y. Tao, „„Worst-case I/O-efficient skyline algorithms”,
ACM Trans. Database Syst., vol. 37, no. 4, 2012, Art. no. 26.

[20] W. Son, S.-W. Hwang, and H.-K. Ahn, „„MSSQ: Manhattan spatial
skyline queries”, Inf. Syst., vol. 40, pp. 67–83, Mar. 2014.

[21] Y. Tian, K. C. K. Lee, and W.-C. Lee, „„Finding skyline paths in road
networks”, in Proc. ACM Int. Conf. Adv. Geograph. Inf. Syst.
(SIGSPATIAL), 2009, pp. 444–447.

[22] Y.-T. Wen, K.-J. Cho, W.-C. Peng, J. Yeo, and S.-W. Hwang, „„KSTR:
Keyword-aware skyline travel route recommendation”, in Proc. IEEE
Int. Conf. Data Mining (ICDM), Nov. 2015, pp. 449–458.

[23] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang, „„Stochastic
skyline route planning under time-varying uncertainty”, in Proc. IEEE
Int. Conf. DataEng. (ICDE), Mar./Apr. 2014, pp. 136–147.

