
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

42 | P a g e

www.ijacsa.thesai.org

The Implementation of Software Anti-Ageing Model

towards Green and Sustainable Products

Zuriani Hayati Abdullah
1
, Jamaiah Yahaya

2
, Siti

Rohana Ahmad Ibrahim
3
, Sazrol Fadzli

4

Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia Bangi, Selangor, Malaysia

Aziz Deraman
5

School of Informatics & Applied Mathematics,

Universiti Malaysia Terengganu, Kuala Terengganu,

Malaysia

Abstract—Software ageing is a phenomenon that normally

occurs in a long running software. Progressive degradation of

software performance is a symptom that shows software is

getting aged and old. Researchers believe that the ageing

phenomenon can be delayed by applying anti-ageing techniques

towards the software or also known as software rejuvenation.

Software ageing factors are classified into two categories:

internal and external factors. This study focuses on external

factors of software ageing, and are categorized into three main

factors: environment, human and functional. These three factors

were derived from empirical study that been conducted involving

fifty software practitioners in Malaysia. The anti-ageing model

(SEANA model) is proposed to support in preventing the

software from prematurely aged, thus prolong its usage and

sustainable in their environment. SEANA model is implemented

in collaboration with a government agency in Malaysia to verify

and validate the model in real environment. The prototype of

SEANA model was developed and applied in the real case study.

Furthermore, the anti-ageing guideline and actions are suggested

for ageing factors to delay the ageing phenomenon in application

software and further support the greenness and sustainability of

software products.

Keywords—Software ageing factor; ageing prevention;

software anti-ageing model; SEANA model; SeRIS Prototype

System; Green And Sustainable Product; Emprirical Study

I. INTRODUCTION

As the increase of dynamic software requirements
nowadays from users and stakeholders, software development
process is becoming more complex and resulting the
degradation of software performance and software quality
[1][2]. If this happens to the software which is operating in
certain environments, it may get aged prematurely and no
longer relevant in their environment. Users may refuse to use
the software anymore because it does not fulfil and satisfied the
requirements and expectation. Progressive degradation of
software performance, such as software crash or hang and
accumulation of software errors are reported as the
phenomenon of software ageing. The ageing of the software is
caused by two factors which are by the changes that have been
made throughout its execution and also cause by the failure to
adapt with the dynamic environment [3].

Software ageing may occur when there are accumulation of
errors or software failure throughout its execution. However, it
does not affect or change the functionality of a software, but its
effects on the time responsiveness of the software and user

satisfaction over the software [4]. Software failure is closely
related to the software downturn during its life cycle. The
problem led to a progressive decline in software performance,
and caused the software to not function properly. This
degradation process is called software ageing [5][23]. Previous
studies revealed that we could slowed down software ageing by
identifying the influential factors of the ageing phenomenon.
There are two types of ageing influential factors which are
internal and external factors. However, there are very few
studies focuses on external factors [4] [8] that are closely
related to software quality in application software. Based on
our initial investigation has discovered that some applications
get old and aged as early as three years and thus forced the
users to not used the application anymore. In this scenario, the
application ages prematurely. Currently there is no software
anti-ageing mechanism or guideline to assist users or
developers to measure and guarantee the software still relevant
and young in their operating environment. However, in
general, sustainability in software is associated with the ability
to operate in a longer time and viable in their environment.

This paper discusses the research background and related
works in Section II, the empirical study conducted in this
research is presented in Section III. Section IV of this paper
presents the development of the anti-ageing model while the
validation and the implementation of the model are discussed
in Section V. The anti-ageing actions are introduced and
presented in Section VI, and lastly concludes with a discussion
and conclusion.

II. BACKGROUND STUDY AND RELATED WORKS

The phenomenon of ageing is applicable in software which
is operating in certain environments. By identifying the
significant factors and causes of software ageing, it can ageing
effect to environment, organization delay and help in
preventing the occurrence of ageing phenomenon. This process
may be stated as anti-ageing or a rejuvenation process of a
software product. Currently in software engineering, the
rejuvenation process of a software is considered as one of the
mechanism for handling faults tolerant or failure in the long
running software [6][21]. Hence, it is essential to find solutions
on how to prevent or slow down the ageing process in order to
maintain the relevancy of the software and still meet their
business requirement. Next section will discuss software
ageing issues and software and economics.

This work is supported in part by the Arus Perdana Grant of UKM (AP-

2017-005/3).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

43 | P a g e

www.ijacsa.thesai.org

A. Software Ageing Issues and Effects

Software ageing has been studied by several researchers as
early as in 1990s. Previous studies indicated that issues and
challenges related to software ageing in computer software
area are normally associated with accumulation of
undetermined threads or failure, data corruption, memory
related problem such as memory leaking and bloating, data-
files fragmentation, residual defects, unreleased files lock,
memory lack and overruns [7][8].

Nowadays, software ageing does not only associate to
computer software or system software but also being
investigated that relates to mobile application such as android
and windows mobile application [9][10][11]. Mobile was
running for a longer time without rebooted or shut down
compared to computer. Therefore, software ageing in mobile
devices lead to an extensive challenge to ultimate the user
experience and satisfaction. Software ageing issues are not
limited to mobile and computer software only but now
extended to the ageing phenomenon in cloud computing
environment [5][12]. This shows that software ageing is a
relevant issue to be explored and investigated further.

Good quality software will delay in the occurrence of
ageing and prolong their usage and relevancy. This is
supported by the previous researchers who believed that by
maintaining good quality of software, it can somehow prevent
or minimize the error or failure and thus results in user
satisfaction when using the software [13]. Good quality
software is referred to the technical behaviour of the software
and end user’s perspective towards the software, which
measures the satisfaction and fulfil expectation of the software.
The study done by Yahaya et al. [13] reveals that with these
two quality characteristics and measurements will maintain and
ensure the software are relevant more longer of time in their
operating environment.

In addition to good quality software, Matias, Trivedi and
Maciel [14] claimed that software maintenance must be
implemented systematically to ensure the optimum quality
throughout software life cycle. In software engineering, there
are four main maintenance activities which are corrective,
adaptive, preventive and perfective. These activities may
control and delay the ageing progress of software. For instance,
preventive maintenance can help to slow down the occurrence
of failures determinable to this cause.

Previous studies revealed that software ageing might gave
negatives effects or influences in various aspects [2][4]. For
examples its gives drawback to organizational level. Ageing
effects on the operating system at resource level such as non-
released memory, round-off and data file fragmentations and
also debug errors. These delay the work and schedule because
of slow time responsiveness on running application.

B. Software Anti-Ageing and Rejuvenation

Software ageing is irresistible manifestation, but there are
few studies on how to deal with ageing phenomenon in
software. As mentioned earlier, software ageing can be delayed
by adopting two approaches which are through software anti-
ageing and software rejuvenation. There is a difference

between these two approaches where software rejuvenation is
used once software is detected ageing, while anti-ageing
software can be applied before software becomes old in order
to delay the ageing process [15].

According to [12], software rejuvenation process is not a
complex task but a very effective technique in increasing the
availability of a software by rebooting and refreshing the
software. The rejuvenation technique is used to revive ageing
software after the ageing status is detected [16][24]. Cotroneo
et al. [17] suggests that software maintenance activities are
considered as the anti-ageing process where these activities are
used to delay the ageing of software. There are four
maintenance activities that can be used as software anti-ageing
techniques, which are adaptive, corrective, perfective and
preventive maintenance [14]. Adaptive maintenance refers to
adapting to a new environment or sometimes refers to adapting
to new requirements. Corrective maintenance refers to
maintenance to repair fault and perfective maintenance refers
to perfecting the software by implementing new requirements.
In other case it refers to maintaining the functionality of the
system, improving its structure and its performance. While
preventive maintenance involves performing activities to
prevent the occurrence of errors. It tends to reduce the software
complexity thereby improving program understandability and
increasing software maintainability. In this maintenance
activity comprises documentation updating, code optimization,
and code restructuring. This is also known as software re-
engineering.

It is crucial to prevent software ageing because it not only
effects software system, but also effects user and the universe
in general. There was a fatal incident that happened about
twenty-six years ago where twenty eight soldiers dead and
hundreds people were injured because of software failed to
detect an Iraqi Scud missile and it strucked the American army
barracks [18]. Based on various issues on software ageing
discussed in this paper has motivated and led us to explore
more on software ageing phenomenon.

C. Green and Sustainable Software Product

Green software as part of information technology (IT)
covers environmental sustainability, economic energy
efficiency and total cost of ownership, which includes the cost
of disposal and recycling. It also refers to the application of IT
to create the energy efficient and environment to maintain
successful business processes and practices [25]. It
incorporates three dimension that are greening IT systems and
usage, using IT to support environmental sustainability and
also using IT to create green awareness in a way to improve
environmental sustainability [26].

Green and sustainable software can be defined as a
software with direct or indirect negative impact on economy,
society, human being and environment that result from
development, deployment and usage of the software. It should
have minimal and positive effect towards sustainable
development [27]. In addition, Erdelyi [28] defines green
software as the development and operation of the software that
produce minimal disposal and waste as possible [28].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

44 | P a g e

www.ijacsa.thesai.org

III. EMPIRICAL STUDY

This section disscusses on the empirical study that was
conducted in Malaysia. The empirical study was conducted
through a survey to identify the awareness and acceptance of
the software ageing issues and concerns among software
practitioners. Second objective of the the survey was to
examine and classify the ageing factors identified from
literature study that influence the ageing of software. The
survey was carried out involving respondents from agencies in
public and private sectors. The respondents were chosen using
purposive sampling in the group of software practitioners in
Malaysia. The background of the respondent may came from
diverse types of organization background as shown in Table I.

Questionnaires were distributed by two methods physical
questionnaire and online questionnaire (through Google form).
Fifty respondents have participated and responded to this
survey. Table I shows the respondents’s background and their
organisations. Majority of the respondent are from service,
public administator and ministry department (42%).
Respondents are also came from various other backgrounds
such as Computer/Security System (8%), Computer
Engineering/Design (6%), Software Development (2%),
Training/Education/ Consultancy(6%), Internet based
organization (20%), Internet based Business e-commerce/web
hosting (4%), Healthcare (2%), Intergration system (2%) and
others (10%). Fig. 1 illustrates that most of the respondents
(48%) have three to ten years working experience, 46% of the
respondents have working experience less than three years,
while only 6% have working experience from eleven to more
than twenty years.

TABLE I. BACKGROUND OF ORGANISATION FUNCTION

 Background of Organisation/ Function
Percentage
(%)

1 Service/Public Administrator/Ministry Dept. 42%

2 Software Development 2%

3 Computer/Security System 8%

4 Computer Engineering/Design 6%

5 Telecommunicating/Networking 2%

6
Internet based Business (ASP)/ e-commerce/ web
hosting

20%

7 Healthcare 2%

8 Integration System 2%

9 Training/Education/ Consultancy 6%

10 Others 10%

Total : 100%

Fig 1. Service Period.

Fig 2. Software Ageing Awareness.

TABLE II. SOFTWARE AGEING FACTORS

Factor Metrics Mean %

Functionality

Time responsiveness 3.62 72.4

Software are unable to meet

the user’s needs
3.6 72.0

Failure to function as user’s
intended

3.58 71.6

Progressive performance

degradation
3.52 70.4

Software is no longer relevant 3.52 70.4

High frequency of software

error
3.4 68.0

Failure to upgrading the

functionality
3.34 66.8

Failure to get support 3.32 66.4

User Interface (UI) 2.98 59.6

Environment

Dynamic to environment changes 3.42 68.4

Lack of cost for software

maintenance
3.42 68.4

Software not compatible with

current hardware
technology

3.4 68.0

Hardware changes 3.36 67.2

Business process changes 3.22 64.4

Business need 3.12 62.4

Changes of software technology 3.06 61.2

Human

Lack of expertise in upgrading and

maintaining software
3.4 68.0

Weak software quality

practices among practitioners
3.32 66.4

Inefficient software management
by management team

3.14 62.8

Software is not user friendly 3.08 61.6

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

45 | P a g e

www.ijacsa.thesai.org

Based on the first objective of the empirical study, the
analysis shows that most of the respondents (64%) are not
aware and realise the presence of the phenomenon of software
ageing in their operational software. Nevertheless, they agree
that they have experienced in the scenario of ageing occurrence
in their daily software operation (refer to Fig. 2). Majority of
respondents reveal that there are no standard mechanism or
policy that can be referred to measure the quality states of the
software. This finding discovers the inadequate of awareness
among software practitioners and software developers in
software quality and related aspects. Inadequate of awareness
in software quality practices can be one of possible factors that
influence to the occurrence of software ageing.

This study also determines other possible factors that might
influence and contribute to the software ageing phenomenon
for application software. The initial discover and
indentification of metrics were done through literature study
and brainstorming approach among research team and experts.
They include software engineering experts, software engineers
and academicians in Malaysia. Twenty initial metrics have
been identified and verifies through this empirical study.
Table II shows the findings which verified the ageing factors.
From the findings, the software ageing factors are further
mapped and classified into three categories which are
functionality, environment, and human.

The percentages shown in Table II are obtained from the
score given by the respondents of this survey. The higher

percentage means that the factor has high influence and crucial
toward the ageing process. The study reveals that functionality
factor contributes the highest percentage (76.4%), environment
(65.72%) and human factor (64.7%) (refer Table II). This
indicates the importance of these factors based on respondents
perceive and perspective toward the association of ageing
occurrence and phenomenon in software environment. Time
responsiveness shows the highest score proving that slow
response of the software will contribute to the ageing of
application software. Software ageing may result in slowing
the system performance in performing tasks and therefore,
contributes to user dissatisfaction towards the software. Based
on respondent’s feedback, user interface metric obtains the
lowest percentage which is 59.6%. However, software that
have dull and unattractive user interface and not user friendly
can also lead to software ageing.

IV. SEANA: THE SOFTWARE ANTI-AGEING MODEL

The development of anti-ageing model (or SEANA model)
is based on the findings from the previous empirical study
discussed in previous section as well as literature findings. The
SEANA model comprises of the ageing factors and metrics
(the ageing instrument), software ageing assessment process
and reporting process. The last two components include the
measurement algorithm, ageing levels, anti-ageing guideline
and actions. SEANA model is demonstrated in Fig. 3. The
following sub sections explain each of the components in this
model.

Fig 3. Software Anti-Ageing Model (SEANA).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

46 | P a g e

www.ijacsa.thesai.org

A. Ageing Factor

The ageing factors comprises in SEANA model are
designed to be used and applied by different users. Therefore, a
proper and systematic instrument is needed. The objective of
the instrument is to measure the ageing level of the targeted
software. It can be used by the organisation or company, the
stakeholder or the owner of the application software who wants
to investigate the ageing status of the software. The instrument
is designed in three categories of software ageing factors
(which are functional, environment and human) and twenty
metrics that have been identified and verified in the empirical
study discussed in previous section.

All metrics in the instrument are formulated and designed
to be answered by the respondents by giving scores between 1
to 4 (Likert scale of four).

B. Assessment Process

The second component of this model is the process of
assessment. The assessment process component aims to do the
following tasks:

 To measure the score for each categories of ageing
factors that have been indicated in the instrument.

 To measure the ageing score of the overall factors.

 To map the score obtained in the assessment with the
ageing level.

C. Assessment Report

The third component is the report. This component is the
report generated after the completion of the assessment
process. The report consists of the ageing index level, which
are defined as young, semi-old and very old. If the assessment
result shows that the ageing score is very old, the suggestion of
anti-ageing action will be included in the report. The anti-
ageing action will be suggested to the tested software
according to highest scores of ageing factors obtained by the
respondent during software assessment. Table III shows the
ageing classification level based on the score obtained in the
assessment. The ageing levels or classifications are adopted
from [19] by defining ageing level as big ageing and little
ageing. However, for this study purposes and compatibility, we
classify software ageing into three level which are young,
semi-old and very old.

TABLE III. CLASSIFICATION OF SOFTWARE AGEING

Class Score (%)

Young 68- 100

Semi-old 35 - 67

Very Old 1-34

V. VALIDATION AND IMPLEMENTATION IN CASE STUDY

This section discussed on the validation and
implementation of SEANA model in real case study.

A. The Case Study

The case study has been conducted in order to validate and
implement the proposed model. We conduct a case study in
one of the semi-government agency in east coast of Malaysia.
We choose this agency (referred as KET) because they develop
their own application in-house and have their own maintenance
team to monitor their system application state. The aim of this
case study was to assess three application systems that operated
in their environment (referred as App1, App2 and App3
System).

1) App1 system: App1 System is an information system

that manages the geographical data for a particular region. The

system function similar to Google Maps but only stores and

keeps the data in the east coast area of Malaysia in order to

assist KET to find the rural area for ITC development

purposes. Table IV shows the result obtained from the case

study for App1 system.

TABLE IV. ASSESSMENT RESULTS FOR APP1 SYSTEM

Factors
Average Score

(1-4)
Percentage

Functionality

1.78 44.5%

Environment 1.86 46.5%

Human 2.00 50.0%

Based on the result, the average cumulative score for this
software product is 47% which is mapped into the ageing index
level of Semi-old. A post assessment meeting, and review with
the owner of the system discovered that the App1 System
performed normally slow to retrieve geographical information
such as images or maps. However, the functionality of the
software is still in good condition because they practice the
software maintenance activities and continuously upgrading
the system regularly in order to achieve the user satisfaction.

2) App2 system: The second selected system to be tested

in this case study was App2 System. It is a document

management system that allows KET staff to manage

document online such as letters, memos and filing. Table V

shows the result obtained from this assessment based on the

three factors.

TABLE V. ASSESSMENT RESULTS FOR APP2 SYSTEM

Factor
Average Score (1-

4)
Percentage

Functional 2.56 64%

Environment 2.71 67.8%

Human 2.75 68.8%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

47 | P a g e

www.ijacsa.thesai.org

3) App3 system: The third assessment of application

software is App3 system. App3 System helps KET to monitor

and manage the development of Rural Transformation Centre

(RTC). The result of this assessment is shown in Table VI.

TABLE VI. ASSESSMENT RESULTS FOR APP3 SYSTEM

Factor
Average Score

(1-4)
Percentage

Functional 3.22 80.5%

Environment 3.00 75.0%

Human 3.00 75.0%

Based on the computed result, App3 System ageing index
is 76.8% which is equivalent to Young in ageing index level.
We conducted a review and meeting session to verify the
scored obtained for the system with the system owner and the
owner agreed with the result. They claimed that App3 System
is still in excellent condition and has been used actively by
KET staff. Feedback from system owner is consistent with the
finding that we gained from the case study.

Based on the result obtained for App2 shows that App2
System scored is 66.9% which is mapped into ageing index
level of Semi-old. Feedback from the software owner claims
that App2 System does not have any major problem but the
application system has difficulties to upgrade some of the new
functions that require by the staff.

B. The Prototype of SEANA Model

This section presents the prototype which developed in this
research in order to validate and automate the ageing process as
defined in SEANA model. The prototype is called the Software
Anti-Ageing and Rejuvenation Index System (or SeRIS). The
development of SeRIS was based on prototyping approach.
The system was undergone through alpha and beta testing to
validate the correctness and verify based on actual user’s
requirements. It was also being validated and applied in
specific software product in real environment. This
confirmation study was carried out collaboratively with
industry. Feedbacks from the testing and validation activity
were used in refining the SEANA model and SeRIS prototype
system.

Fig 4. SeRIS Main Page.

Fig. 4 to Fig. 6 illustrate the interfaces of SeRIS. The
system was implemented to validate the propose ageing
measurements and automate the ageing process to ensure the
correctness of the computational that involve in the model. The
SeRIS prototype system assists users in applying SEANA
model in the real environment. SeRIS provides interface to
input data of the targeted application software to be evaluated,
computes the ageing scores for each factors and produces the
ageing level and report.

Fig 5. SeRIS Main Page - After Assessment.

Fig 6. Assessment Report Generated by SeRIS System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

48 | P a g e

www.ijacsa.thesai.org

VI. THE ANTI-AGEING GUIDELINES AND ACTIONS

A. The Anti-Ageing Guideline

The next step in the anti-ageing process is to identify the
necessary anti-ageing actions associated with each of the
ageing factors. Based on the ageing index level shown in
Table III, the anti-ageing actions are proposed to be carried out
and applied on the software that has the lowest score during the
ageing assessment described in Section IV. The anti-ageing
actions are derived from software maintenance activities.
Previous researchers revealed that one way to manage software
ageing was through systematic maintenance of the software
[20]. Software maintenance is a vast activity process of
modifying and upgrading the software or part of the software
to repair software error or fault, to add new functions or
modification, or adaptation to a new environment [22][23].

As discussed in Section II, software maintenance activity
can be categorized into four different types: adaptive,
corrective, perfective and preventive. This research adopts the
maintenance approaches as defined by Matias et al [14] as the
baseline of the anti-ageing actions. The proposed anti-ageing
actions are derived from literature and case study findings. The
actions are recommended to ensure the software stays relevant
and fulfil users’ need and expectation in the dynamic
environment today for longer time of usage. Table VII-IX
show the anti-ageing guideline and actions for functional,
environment and human factor related to the ageing factors and
measurements.

TABLE VII. ANTI-AGEING FOR FUNCTIONALITY FACTORS

 Metrics Anti-Ageing Action

1 Time responsiveness

Perfective

- Monitor the memory usage

- Improve the quality aspect of the

software.

- Check the software structure

(optimisation)

2
Users’ requirement

and expectation

Adaptive

- Check quality assessment based on

user’s perspective and approach.

- Enhance or modify software based

on user requirements and

expectations regularly.

3 Functionality

Corrective

- Correct the error and fault of the

software accordingly and

systematically.

4
Degradation of

Performance

Perfective

- Improve the functional of software

service to increase performance

Corrective

- Check and correct faults tolerant

and failure regularly

5 Software Relevancy

Perfective

- Improve and enhance the software

function to ensure the up-to-date

service/functions are available.

6
Software Faults and

Failures

Corrective

- Correct the fault and

 error accordingly and

systematically.

- Improve the change request and

process.

TABLE VIII. ANTI-AGEING FOR ENVIRONMENTAL FACTORS

 Metrics Anti-Ageing Action

1
Dynamic to

environment change

Corrective

- Easy maintenance for environment

change

- Easy maintenance for business

change.

2

Cost for software

maintenance and

software

upgrading

Training

- Focus on in-house training for staff

- Minimize outsourcing

- In-house maintenance

3

Technology

demand and

compatibility

Adaptive & Perfective

- Improve and enhance the software
according to new/current technology

demand and compatibility.

4 Hardware Changes

Adaptive

- Improve and enhance the software

for meeting new/current hardware

demand and compatibility.

5
Business process

change and demand

Adaptive

- Improve and enhance the software

function/services to ensure the

demands in business processes are

maintained and achieved.

6
Software technology

change

Adaptive

- Enhance the software for meeting

new/current software technology

demand and compatibility.

TABLE IX. ANTI-AGEING FOR HUMAN FACTORS

 Metrics Anti-Ageing Action

1
Upgrading and

maintenance expert

Training

- Focus on training for staff in

software maintenance and

related.

2
Software quality

practice

Training

- Awareness to the staff for quality

assurance

- Train staff for software quality

practices and implementation.

3
Software

management capability

Training

- Train for software management

practices.

4 User Interface

Adaptive

- Improve and enhance the

software for user friendliness and

usability aspect

- Improve and enhance software
functionality.

B. The Anti-Ageing Action Implementation

The proposed anti-ageing actions are suggested to the
systems that have been tested in the case study discussed in
previous section. Based on the assessment results, we choose
the lowest score among the three systems. In this case the
App1 system has been selected with the lowest percentage
(47%) and ageing index level of Semi-old. The implementation
of the anti-aging actions has been carried out on the three
metrics that obtained the lowest score during the assessment.
Table X shows the metrics and the proposed anti-ageing
actions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

49 | P a g e

www.ijacsa.thesai.org

TABLE X. IMPLEMENTATION OF ANTI-AGEING FOR ACTION

Metrics
Score

(1..4)
Anti-Ageing Action

Time

responsiveness
1

Refer to Table VII to apply the anti-ageing

action for time responsiveness.

Suggested action to be applied is

perfective maintenance.

User Interface

1

Refer to Table IX to apply the anti-ageing
action for User Interface.

Suggested action to be applied is adaptive

maintenance.

Cost for

software
maintenance

and software

Upgrading

1

Refer Table VIII to apply the anti-ageing
action for reducing the cost for software

maintenance and software upgrading.

Suggested action to be applied is by

conducting in-house training for
manintenance and try to minimize

outsourcing.

VII. DISCUSSION

This research focuses on identification of software ageing
factors and measurements as the fundamental of further related
research which in our scope is the anti-ageing model, guideline
and actions. This paper starts the discussion with presenting the
background and related work of software ageing. The
underlying issues and works related to software ageing,
rejuvenation, anti-ageing and green and sustainability have
been investigated and studied. Later we conducted the
empirical study to explore more from real industrial
perspective on these related issues and topics.

The findings from empirical study were used as the input to
the development of the anti-ageing model. This model is called
Software Anti-Ageing or SEANA model. The main objective
of the survey was to validate and verify the ageing factors
among software practitioners. The empirical study which was
conducted in Malaysia revealed three main ageing factors and
associated measurements. The ageing factors are categorized as
functional, environment and human. Based on the analysis,
twenty metrics have been recognized to measure software
ageing. The metrics were assigned with numerical scales for
further quantifying of the software ageing score and level.

The SEANA model was developed as shown in Fig. 3 and
could be used to measure the ageing status/level of any
application software operating in certain environments. After
the ageing level has been identified based on the assessment,
the anti-ageing actions can be generated further aligned with
the results of the ageing index. The anti-ageing actions are
proposed in order to counteract and minimize the occurrence of
ageing phenomenon in the specific targeted software. This is
believed will prolong the relevancy of the software operating in
their environments. The anti-ageing guideline and actions
defined in this model will assist and ease the software owner or
the stakeholder to make decision on the solution to be taken in
order to deal with software ageing phenomenon if it occurs in
their applications.

The SEANA model has been validated and applied in real
case study collaborated with local industry in Malaysia. In this
agency, three application software were used as case study as
described in this paper. Furthermore, the prototype system,

SeRIS was developed to validate and automate the process.
The case study and SeRIS prototype system prove the
effectiveness and practicality of SEANA model.

VIII. CONCLUSIONS

As a conclusion, even though software ageing is inevitable
it can be delayed by applying anti-ageing techniques that has
been presented in this paper. This study focuses on external
factors of software ageing and identifies three main and
essential ageing factors which are environment, human and
functional. The anti-ageing model for application software was
developed and tested in real industrial environment, and further
recommended an anti-ageing guideline and actions associated
with ageing phenomenon in software. For future work, it is
suggested that the anti-ageing model proposed in this research
to be applied and aligned with the green and sustainability
context of software product. Sustainability dimensions which
are social, economy and environment can be embedded in the
new enhance anti-ageing model. Furthermore, with the prolong
usage of software and delaying the aged of the software will
reduce the waste and maintain minimum waste disposal of
software product and development process.

ACKNOWLEDGMENT

This work was supported in part by the Arus Perdana Grant
of UKM (AP-2017-005/3).

REFERENCES

[1] Li, Y. Qi, and L. Cai, “A Hybrid Approach for Predicting Aging-Related
Failures of Software Systems,” 2018 IEEE Symp. Serv. Syst. Eng., pp.
96–105, 2018.

[2] J. H. Yahaya and A. Deraman, “Towards the Anti-Ageing Model for
Application Software,” Proc. World Congr. Eng., vol. II, 2012.

[3] L. Parnas, “Software Aging Invited,” ICSE ’94 Proc. 16th Int. Conf.
Softw. Eng., pp. 279–287, 1994.

[4] S. Ahamad, “Study of Software Aging Issues and Prevention Solutions,”
Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 08, pp. 307–313, 2016.

[5] Melo, J. Araujo, V. Alves, and P. Maciel, “Investigation of software
aging effects on the OpenStack cloud computing platform,” J. Softw.,
vol. 12, no. 2, pp. 125–138, 2017.

[6] Cotroneo, A. K. Iannillo, R. Natella, R. Pietrantuono, and S. Russo,
“The software aging and rejuvenation repository:
Http://openscience.us/repo/software-Aging/,” 2015 IEEE Int. Symp.
Softw. Reliab. Eng. Work. ISSREW 2015, pp. 108–113, 2016.

[7] R. Mohan and G. Ram Mohana Reddy, “Software aging trend analysis
of server virtualized system,” Int. Conf. Inf. Netw., pp. 260–263, 2014.

[8] J. H. Yahaya, Z. N. Zainal Abidin, and A. Deraman, “Software Ageing
Measurement and Classification Using Goal Question Metric (GQM)
Approach,” Sci. Inf. Conf. 2013, pp. 160–165, 2013.

[9] Y. Zhao, J. Xiang, S. Xiong, Y. Wu, J. An, S. Wang, and X. Yu, “An
Experimental Study on Software Aging in Android Operating System,”
2015 2nd Int. Symp. Dependable Comput. Internet Things, pp. 148–150,
2015.

[10] J. Araujo, V. Alves, D. Oliveira, P. Dias, B. Silva, and P. Maciel, “An
Investigative Approach to Software Aging in Android Applications,”
2013 IEEE Int. Conf. Syst. Man, Cybern., pp. 1229–1234, Oct. 2013.

[11] S. Huo, D. Zhao, X. Liu, J. Xiang, Y. Zhong, and H. Yu, “Using
Machine Learning for Software Aging Detection in Android System,”
2018 Tenth Int. Conf. Adv. Comput. Intell., pp. 741–746, 2018.

[12] J. Araujo, R. Matos, V. Alves, P. Maciel, F. V. de Souza, R. M. Jr., and
K. S. Trivedi, “Software aging in the eucalyptus cloud computing
infrastructure,” ACM J. Emerg. Technol. Comput. Syst., vol. 10, no. 1,
pp. 1–22, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

50 | P a g e

www.ijacsa.thesai.org

[13] J. H. Yahaya, A. Deraman, S. R. A. Ibrahim, and Y. Y. Jusoh, “Software
Certification Modeling: From Technical to User Centric Approach"
Aust. J. Basic Appl. Sci., vol. 7, no. 8, pp. 9–18, 2013.

[14] R. Matias Jr., K. S. Trivedi, and P. R. M. Maciel, “Using Accelerated
Life Tests to Estimate Time to Software Aging Failure,” 2010 IEEE 21st
Int. Symp. Softw. Reliab. Eng., pp. 211–219, Nov. 2010.

[15] Z. H. Abdullah, J. Yahaya & A. Deraman “The Anti-Ageing Model for
Assessment of Application Software,” Postgrad. Res. Work. , SoftTech
Asia 2018, 2018.

[16] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Lifetime extension of
software execution subject to aging,” IEEE Trans. Reliab., vol. 66, no. 1,
pp. 123–134, 2017.

[17] D. Cotroneo, R. Natella, R. Pietrantuono, “A Survey of Software Aging
and Rejuvenation Studies,” ACM J. Emerg. Technol. Comput. Syst. -
Spec. Issue Reliab. Device Degrad. Emerg. Technol. Spec. Issue
WoSAR 2011, vol. V, no. 212, p. 30, 2010.

[18] D. N. Arnold, “The Patriot Missile Failure,” 2000.

[19] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software
Aging and Rejuvenation: Where We Are and Where We Are Going,”
2011 IEEE Third Int. Work. Softw. Aging Rejuvenation, no. 30, pp. 1–
6, Nov. 2011.

[20] J. Zhao, K. S. Trivedi, Y. Wang, and X. Chen, “Evaluation of software
performance affected by aging,” 2010 IEEE Second Int. Work. Softw.
Aging Rejuvenation, vol. 3, pp. 1–6, Nov. 2010.

[21] I. Sommerville, Software Engineering (Tenth Edition). 2016.

[22] Z. H. Abdullah, J.H.Yahaya, Z. Mansor & A.Deraman. “Software
Ageing Prevention from Software Maintenance Perspective – A
Review,” Journal of Telecommunication, Electronic and Computer
Engineering, vol. 9, no. 3-4, pp. 93-96, 2017.

[23] J. H. Yahaya, A. Deraman & Z. H. Abdullah. “Evergreen Software
Preservation: The Conceptual Framework of Anti-Ageing Model,“
Information Science and Applications, Lecture Notes in Electrical
Engineering, vol. 339, pp 899-906, 2015.

[24] Z. N. Zainal Abidin, J.H. Yahaya, A. Deraman & Z. H. Abdullah.
“Rejuvenation Action Model for Application Software,” The 6th
International Conference on Information and Communication
Technology (ICoICT 2018), 3-5 May 2018.

[25] S. Murugesan & P.A. Laplante. “IT for a greener planet,” IT Pro
January/February, pp. 16–20, 2011.

[26] Murugesan, S. “Harnessing green IT: Principles and practices,” IEEE IT
Professional, vol. 10, no. 1, pp.5-6, 2008.

[27] M. Dik, J. Drangmeister, E. Kern & S. Naumann. “Green software
engineering with agile methods in green and sustainable software
(GREENS),” Proceedings of 2013 2nd International Workshop on
Green and Sustainable Software , pp 78–85, 2013.

[28] K. Erdelyi. “Special factors of development of green software
supporting eco sus-tainability,” Proceedings of EEE 11th international
symposium on intelligent systems and informat-ics (SISY), pp 337–340,
2013.

