
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Alerts Clustering for Intrusion Detection Systems:
Overview and Machine Learning Perspectives

Wajdi Alhakami
Department of Computer Sciences, College of Computers and Information Technology,

Taif University, Taif, Saudi Arabia, KSA

Abstract—The tremendous amount of the security alerts due to
the high-speed alert generation of high-speed networks make the
management of intrusion detection computationally expensive.
Evidently, the high-level rate of wrong alerts disproves the
Intrusion Detection Systems (IDS) performances and decrease
its capability to prevent cyber-attacks which lead to tedious
alert analysis task. Thus, it is important to develop new tools
to understand intrusion data and to represent them in a compact
forms using, for example, an alert clustering process. This hot
topic of research is studied here and an understandable taxonomy
followed by a deep survey of main published works related
to intrusion alert management is presented in this paper. The
second part of this work exposes different useful steps for
designing a unified IDS system on the basis of machine learning
techniques which are considered one of the most powerful tools
for solving certain problems related to alert management and
outlier detection.

Keywords—Intrusion detection systems; alert clustering; taxon-
omy; survey; machine learning

I. INTRODUCTION

Intrusion Detection Systems (IDSs) are widely deployed
into servers for data security purposes. However, these systems
produce a lot of false positive alerts making the task of security
analysts difficult such as taking suitable actions for them. This
problem has received considerable attention from researchers
given that manual intrusion alerts management is extremely
fastidious and computationally expensive. Consequently, it
will not be easy to manage alerts and to take appropriate
actions for them. Thereby, the automation of the process
of alert management is a necessity. It turns out that this
problem becomes more difficult with the context of high-speed
networks [1], [2]. Indeed, new severe issues related especially
to the scalability, the real time constraints, and efficiency create
a major challenge to the success of IDS [3], [4]. In particular,
the big quantity of the security alerts leads to an expensive
intrusion detection process. Evidently, the high-level rate of
wrong alerts disproves the IDS performances and decrease its
capability to prevent cyber-attacks that lead to tedious alert
analysis task. In particular, alert clustering and outlier detection
are crucial problems for taking suitable actions and for security
threats understanding [5], [1], [2]. The content of this paper
is a taxonomy and a survey related to the intrusion alert
management. In fact, an understandable taxonomy, especially
for beginner researchers, is presented. It is related to intrusion
detection system with special emphasize on intrusion alert
management problem. An informative description is presented
for intrusion detection systems, for both misuse and anomaly-
based detection, and for low- and high-level alert management
(i.e. alert ranking, normalization, clustering, correlation, etc.)

[6], [7], [8]. The second part of this paper is dedicated to
expose how to design a possible IDS framework using machine
learning techniques which are considered one of the most
powerful tools for solving certain problems related to alert
management and outlier detection. The rest of this paper is
organized as follows. In the next section, a taxonomy related
to the current area of research is presented. Section 3 is devoted
to survey main existing works in the literature. Section 4
describes how can machine learning techniques be involved
and considered as an interesting alternative to deal with such
problem. Finally, we conclude the paper in the last section.

II. TAXONOMY

This section presents a comprehensible taxonomy, espe-
cially for beginner researchers, for intrusion detection systems
(IDS) and intrusion alert management problems. In particular,
informative descriptions are given for intrusion detection tech-
niques, alert management, alert clustering/classification and
alert correlation.

1) Intrusion Detection Systems (IDSs): Intrusion detection
systems are widely deployed into both hosts and networks to
protect assets. To ensure security, most of developed IDSs ap-
ply mainly the so-called misuse-based (named also signature-
based) or anomaly-based IDS techniques [9]. The key purpose
of these techniques is to help the security administrator to
fully recognize what the IDS is doing. Fig. 1 illustrate main
intrusion detection techniques.

• Misuse (Signature)-based detection

Misuse-based intrusion detection techniques have been proven
to detect effectively attacks without generating a great number
of false alarms. For this reason, they are broadly approved in
the most commercial systems. Such technique can be used
to detect known attacks, so, we have to create signatures
(patterns) for known attacks and store them into databases as
a priori information. However, this kind of approach cannot
detect unknown attacks and therefore they must be frequently
updated with signatures of new attacks.

• Anomaly-based detection

Anomaly-based approaches (named behaviour-based) are used
to detect unknown (novel or irregular) and known attacks on
the basis of their profiles or statistical models. These models
employ labeled data to model and train anomaly detection
as a classification problem. This kind of approach try to
find behavior (attack behavior) deviating from normal one. In
general, techniques driven from pattern recognition (parametric

www.ijacsa.thesai.org 573 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Fig. 1. Classification of intrusion detection approaches.

and non-parametric statistical models, neural networks, rule-
based algorithms, hidden Markov model, etc.) are applied
to identify normal data and abnormal (anomalous) ones. For
example, the user can be notified about the existing of unusual
behavior if the network activity deviates from its normal state.
If normal behavior is well trained and well modeled, unusual
behavior can be labelled and identified as intrusive. Thus,
normal behavior should be well defined otherwise, if it is not,
a lot of false alerts will be generated. Thus, the modeling
problem, which is a difficult task, is very important for the
design of anomaly-based approach. Finally, when compared
to misuse-based approaches, anomaly-based ones are more
efficient and faster, but, they generate a lot of false positive
rate.

2) Intrusion detection alert management: Alert manage-
ment function address two different processing: low-level pro-
cessing and high-level processing (Fig. 2). Each level is able
to accomplish specific objectives such as alert pre-processing,
alert correlation, alert fusion, etc. Through management func-
tion, alerts are processed in order to help the security admin-
istrator to understand what the IDSs are addressing.

• Low-level alert management

The main purpose of low-level alert management is to fa-
cilitate further high-processing. It is required to achieve low
processing such as updating alert attributes to a standardized
format, scoring and prioritizing alerts, translating all alert’s
attributes into numerical values, etc. For instance, ranking
alerts is required to mark and select only significant alerts for
further investigation. In the literature, only few works have
been proposed to deal with the importance of low level alert
management for the overall system evaluation [3], [4]. Authors
showed the importance of this step by defining various metrics
to score and prioritize alerts such as applicability, sensor status,
severity, alert relationship, etc.

• Alert Normalization

Alert attributes vary from one IDS to another. Thus, alerts
from diverse sensors are encoded with different formats. For
this reason, it is important to unify all information to make
easy further processing. The normalization step will convert

all diversified alert attributes into an appropriate unified repre-
sentation such as the well known standard “Intrusion Detection
Message Exchange Format” (IDMEF). Such standard is able
to provide a flexibility for any possible extension since it is
based on XML language. Each alert can be represented by the
IDMEF data model as shown in Fig. 3.

• Alert scoring/ranking/prioritizing

Ranking and prioritizing alerts is a useful tool to evaluate the
relative importance of such alerts. It helps in reduction the
amount of incoming alerts by quickly discard irrelevant alerts.
Some developed procedures [3], [4], [10] employed mainly
the following properties: the integrity, the secrecy, and the
availability metrics. In general, these properties are calculated
easily since they are stored in the IDS database. As output,
each alert is assigned with high or medium or low score. To
achieve an appropriate scoring task as proposed in [3], [4], the
pseudo-code for alert scoring in Fig. 4 can be used.

• High-level Alert Management

Automated and intelligent high-level alert management is a
potential task helping the administrator to analyze properly
alerts, and to save his time and effort. Alert management can
be defined as a generalization function related to a variety of
specific operations like alert classification (or clustering), alert
fusion (or aggregation), and alert correlation. These operations
are considered crucial since they provide an abstraction of a set
of alerts. In the literature several approaches were proposed to
solve the problem of alert management from different angles
and some of them are presented in Section 3.

• Alert Aggregation/Fusion/Merging

The role of the aggregation function is to group alerts having
same common characteristics such as the source IP, the target
IP, the type of the attack, etc. The fusion/merging function
attempts to combine a group of alerts into one hyper-alert.
The latter should be representative of each belongs to the
same cluster (or component). Some relevant methods [6], [7],
[8] were developed in this context to help the analyst to
take rapidly, through one global meta-alert, appropriate action
against the seriousness of the attack.

www.ijacsa.thesai.org 574 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Fig. 2. Classification of Intrusion Alert Management Techniques.

Fig. 3. The IDMEF data model.

Fig. 4. Pseudo-code for alert scoring.

www.ijacsa.thesai.org 575 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

• Alert Clustering/Classification

This function attempts to cluster or classify alerts that match
the same attack occurrence and share common features like
source/target IP address or port number. Clustering output
leads to reduce the number of alerts. Several criteria, as
presented in [6], can be defined to achieve this task as a
”similarity relation” to connect alerts to specific cluster.

• Alert correlation

Alert correlation is used to discover any relationship between
alerts in response to launched attacks in order to achieve a
final goal. Some criteria [3] are defined to achieve this and
provide different ways to study the relationship between the
attacks.

III. SURVEY ON INTRUSION DETECTION ALERT
MANAGEMENT

It is noteworthy that several promising approaches have
been developed, in the past decades, to solve the problem of
intrusion alert management [11], [12]. Intrusion alert manage-
ment methods can be categorized into four main categories:
predefined attack scenarios-based approaches, similarity-based
approaches, prerequisites and consequences-based approaches,
and hybrid approaches. The main common objective of these
approaches is to categorize alerts and to reduce false positive
ones.

A. Predefined Attack Scenarios

This category takes into account only the known attack
scenarios in order cluster alerts. These attack scenarios are
learned in general from different datasets [13], [7], [14]. In
order to construct the detected attack and to correlate alerts,
each sequence of alerts must be compared with a known
attack. The main advantage of this category is its ability to
discover the causal relationship between attacks. However, the
main drawback of this category is it is limited to known
attacks and not unknown ones which is not very helpful
for discovering and detecting new ones. Several solutions
are suggested, like in [13], where attack scenarios through
chronicle language is proposed. Another work is proposed in
[7] that uses explicit rules to solve such problem. In [14] attack
scenarios are constructed by comparing probability measures.
This probability is defined as a metric and is usually calculated
through a training data.

B. Similarity-based Approaches

The second category of approaches involves the defini-
tion of a similarity metric between alert’s attributes (e.g.
source/target IP address, port number, etc.) to classify alerts
[15], [16], [17], [18], [6]. Such metric may discover the
relationships between different alerts. The obtained score, after
calculating the similarity metric, decides if these alerts will be
correlated or no. Although this category can be considered
as effective for many cases; however, it cannot find the
main causal relationship between alerts. For example, in [16],
authors grouped alerts into common cluster using an clustering
algorithm. A probabilistic-based distance method for alert
clustering was also implemented in [15]. The suggested prob-
abilistic model consists of a unified mathematical framework

with appropriate similarity functions for each alert feature.
As a result, alerts are grouped if the similarity measures are
closely matched.

C. Prerequisites and Consequence-based Approaches

A third category has the role to match prerequisites with
the consequences based on the dependencies between alerts
[19], [20], [21], [22]. Two or more attacks are correlated if
any of the prerequisites of the later attack match any of the
consequences of the early one. With this principle, causal
relationships between attacks can be successfully identified,
and it is will possible to build a new attack scenarios by
connecting each attack into a sequence of causal relations. The
main advantage of this kind of approach is its simplicity to find
out the casual relationship between alerts, but the process of
discovering individual attacks is computationally expensive. A
typical work is proposed in [21] which is based on logical
predicates to construct prerequisites and consequences model
of attacks.

D. Hybrid Approaches

Hybrid methods are proposed to overcome limitation of ap-
plying only single algorithm and to solve the alert management
problems with several techniques at the same time [23], [24],
[25], [26], [11]. Some interesting papers [12], [11] demonstrate
that hybrid approaches provide better flexibility. For instance,
a hybrid fuzzy-based anomaly IDS utilizing hidden Markov
model (HMM) detector and a normal database detector to
minimize false alert rate was developed in [24]. Another
decision support system (DSS) for online network behavior
monitoring is proposed in [23]. The developed classification
model involves three phases: alert preprocessing, model con-
structing and rule refining. In [25], an effective algorithm is
implemented for filtering false alert in network-based IDSs.
The proposed filter involves three main components which
are based on statistical properties of the alerts. In [8], [11], a
collaborative architecture for multiple IDSs to detect real-time
network intrusions is also developed. More advanced works
are proposed in the literature such as the one published in [27]
that enables alert aggregation and minimizing false alerts using
an anomaly detector technique. In [26], authors proposed an
interesting framework based on structured patterns technique
for aggregating input alerts in real-time.

IV. DATASETS AND EVALUATING METRICS

A. Datasets

For evaluation purposes, several challenging datasets are
provided for researcher working in this field and several
of these datasets are publicly available to be used. In the
following, some of well known datasets are presented.

• ISCX dataset [28]

The ISCX (Information Security Centre of Excellence) is one
of the widely used dataset. Records are defined by simulation
and based on eleven features.

• TUIDS dataset [29]

www.ijacsa.thesai.org 576 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

The TUIDS dataset [29] was prepared by the University of
Tezpur, in which several attack scenarios are performed. The
used representative features are labeled into normal or attack.

• KDDCup’1999 dataset [30]

The KDDCup’1999 is the most important and used dataset for
IDS performance evaluation. It is generated through several
simulations and contains more than 4 million records. Each
records is defined on the basis of 41 features either as normal
or abnormal attacks.

• CICIDS’2017 dataset [31]

The CICIDS’2017 dataset is created for Cybersecurity and it
contains both attack and normal scenarios as for the case of
ISCX dataset.

• Kyoto 2006+ dataset [32]

This dataset is also a challenging benchmark used for real
traffic data analysis. It involves 24 features.

B. Evaluating Metrics

When evaluating IDSs, several factors should be considered
such as the cost, the ease-of-use, the speed, the memory/CPU,
the effectiveness, and scalability. The performance is usually
evaluated and expressed using the following metrics: True
positives (TP), True negatives (TN), False positives (FP),
False negatives (FN), sensitivity (or True positive rate: TPR),
specificity (or True negative rate), and precision. These metrics
are defined as follows:

• True Positive Rate (TPR) = TP/(FN + TP).

• False Negative Rate (FNR) = TN/(FP + TN).

• False Positive Rate (FPR) = FP/(FP + TN).

• Accuracy = (TN + TP)/(TP + FP + TN + FN).

V. MACHINE LEARNING (ML) PERSPECTIVES

Machine learning-based approaches (Bayesian approaches,
Neural Networks, Statistical mixture models, SVM, Hidden
Markov model, genetic algorithms, etc.) [33], [34], [35], [36],
[37], [38], [39], [1], [2] have been proposed as a powerful
techniques to solve several issues related to IDS, alert classifi-
cation and intrusion detection problems. In particular, they are
considered as effective tools for complex data modeling able
to represent alerts in a compact form, to filter and to reduce the
huge quantity of false alerts and to identify abnormal activities.
Moreover, they offer high flexibility to train classifiers and to
identify attacks based on a well predefined or extracted specific
features. Their use, which is based on the using of a prior and
newly acquired information, has proven to be of great impor-
tance in this growing area in order to improve the performance
of IDS. In the literature, numerous machine learning-based
algorithms were implemented for alert classification/clustering
[35], [39], [2]. In particular, support vector machines (SVM)
is widely employed since it is able to filter efficiently false
alert and also it is considered by an important number of
researchers in the context of intrusion alert management [40],
[41], [42]. Indeed, an SVM-based network intrusion detector
is implemented in [40] and its performance is well studied in

[41]. A system for alert and attacks grouping is also developed
by [43]. In the subsequent work, the expectation maximization
(EM) algorithm is investigated to combine resulted groups into
one single attack. Probabilistic models are also investigated
online alert aggregation [44]. The later work used the so-
called maximum likelihood method to estimate the statistical
model’s parameters. An anomaly-based algorithm that uses
a discriminative machine learning model is implemented to
detect intrusions attempts [45]. In fact, input intrusions can
be modeled as outliers via a principled probabilistic approach.
Moreover, finite mixtures models are mainly used to detect
both previously seen (known) and unknown attacks. The same
authors proposed another interesting classifier in [2] for online
intrusion detection.

VI. MACHINE LEARNING (ML) BASED INTRUSION
ALERT CLUSTERING

According to the literature review, many works show that
machine learning approaches can be very useful for intrusion
alert clustering and outlier detection [44], [43], [46]. A lot
of works share some common steps which are described in
the following sub-sections. Thus, the main objective of this
section is to present for the interested reader how can to
design a unified ML-based solution that includes several steps.
In particular, a case study will be described throughout next
sections.

A. ML-based Framework Design

As shown in Fig. 5, a possible generic solution based on
machine learning concepts for intrusion detection and man-
agement, alert clustering/classification and outlier detection is
presented. Useful technical details related to the implementa-
tion of this solution are also provided.

• A preprocessing step: This step is necessary in order to
unify and rank all alert information. Moreover, at this
level, it is suitable to translate all alert’s attributes into
numerical values because some of them are in the form
of non-numerical values such as SourceIPaddress,
DestinationIPaddress, ServiceProtocol and AlertType.
These attributes must be mapped into a numerical
value.

• A feature extraction/selection step: This step is often
used to simplify and accelerate further processing, it
would be better to select only significant alert features.
Determining an optimal feature set while preserving
high accuracy is a challenging problem. To deal with
this problem, several algorithms were developed in
the literature. Most of them study the relationships
between alerts.

• A clustering of normal/abnormal alerts step: Tthis is
the main important step and the challenge question is
how to develop an accurate intrusion detection model
for both alert clustering and abnormal alert detection
(outlier detection)? Many supervised and unsupervised
machine learning algorithms have been applied to
solve this issue. A good choice of a machine learning
(ML) technique helps in obtaining effective clustering
results.

www.ijacsa.thesai.org 577 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Fig. 5. General ML-based framework for alert clustering.

B. Problem Modeling

According to the literature review, many works suppose
that attacks may be considered as a random processes gen-
erating alerts [44], [43], [46]. For instance, one of the most
interesting techniques that can be applied is mixture models
associated with maximum likelihood principle. More specifi-
cally, the method “expectation-maximization: EM” [44] can be
a reasonable choice. This method has the advantage to avoid
the restrictions imposed by other algorithms and can aggregate
efficiently similar alerts. On the other hand, it would be more
interesting if someone considers an effective strategy called “a
bootstrap sampling strategy” within the EM algorithm in order
to improve the overall process and to speed up the processing
time of aggregating similar-alerts from the output of IDSs. As
a result, an optimal representative set of input alerts will be
determined according to some well defined criteria thanks to
the strategy of bootstrap sampling.

1) Alert features selection: In order to study the rela-
tionships between alerts, it is indispensable to analyze their
attributes (features). Among all of them, only few features
contribute mainly to this relationship. Hence, identifying main
features is a crucial step for further processing. To address
this problem, several algorithms were developed, and many of
them consider a lot alert features in the process which is very
expensive. Furthermore, the correlation procedure cannot make
use a big number of attributes given the restrictions imposed
by the high-speed networks environment. Thus, determine
an optimal feature set while preserving high accuracy is a
challenging problem for alert management process. To meet
this challenge, it seems adequate to follow a procedure that
involves for instance two machine learning-based algorithms:
principal component analysis (PCA) and a multi-class sup-
port vector machine. Why PCA ? since its components are
orthogonal to each other and this characteristic has proven to
be a useful statistical technique for dimension reduction and
multivariate analysis [47] and guarantees a robust convergence
and speedup training as confirmed in [48]. SVM is considers
as a robust technique especially when dealing with big data.
SVM is scalable and has high performance when compared
to existing methods such as artificial neural networks (ANN).
Now how can these two techniques be used ? First, PCA can
be used to select an optimal subset of most relevant attributes.

Then, a multi-class support vector machine can be applied to
classify alerts into meaningful clusters based on the selected
features. If the selected features are not sufficient and the
clustering step fails, then, additional attributes are required to
increase the clustering precision and accuracy. This process
will be repeated until finding a good compromise between a
high performance and a small number of alert features. The
following algorithm can be used for alert’s attributes election.

program- Alert’s Attributes Selection
begin

Run the PCA-algorithm;
Rank Alert’s Attributes
Determine initial subset of attr.
Fa :=initial attributes ;
Fa := {F1, F2,....,Fm}; (m < 41)
Fr := {All Attributes} - Fa ;
NumberSelectedAttributes := m;

Repeat
{Classify dataset using SVM in N
classes:(Normal, DoS, U2R, R2L, Probe)}
{Compute the classification accuracy}
IF (Accuracy < \epsilon) then

{Select best Attr. with best rank.}
bestAttribute := fb;
Fa := Fa + fb;
NumberSelectedAttributes ++ ;

Else
{Return final selected Attr. }
return Fa ;

End IF
Until convergence (accuracy is achieved)

end.

2) Dimensionality reduction: To speed up the step of alert
clustering, it would be interesting to reduce the data dimension
by taking, for example, into account a preprocessing step
of data sampling. Among of the motivating techniques, the
“bootstrap-sampling” [49] can be examined. Bootstrap is a
data resampling method which was introduced as a tool for
estimating the sample distribution of statistics. It is applied
successfully in many pattern classification problems. The key
idea of the Bootstrap is to generate new samples (random

www.ijacsa.thesai.org 578 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

samples) to replace original data. The process of determining
a random sample is repeated many times until finding an
empirical distribution of the statistic. The process of sampling
has to reduce the complexity of clustering algorithms (e.g the
EM algorithm). From a technical point of view, the initial
dataset will be replaced by only a small samples which are
closely representative to the initial dataset. Then, the clustering
algorithm will estimate statistics on one of these samples. With
this manner, statistics can be calculated easily and in “real
time”. Details concerns the process of the bootstrap sampling
combined with the EM algorithm are given as follows:

Let’s consider that initial data contains n alerts noted by
A = (A1, ..., An). The key problem is how to find randomly
a representative Bootstrap sample from the initial dataset
denoted A∗ = (A∗1, . . . , A

∗
n). This problem is solved in the

following way:

1) Step 1: From the initial sample A = (A1, ..., An),
create an empirical probability distribution F which
consists in placing the probability of 1/n for each
alert (all alerts have the same probability).

2) Step 2: Given the empirical distribution function, F,
(original data set), generate a new random sample of
size n with replacement: this is called the “bootstrap
resample”.

3) Step 3: Calculate the model statistics through the EM
algorithm for this resample (θ∗) instead of the original
sample(θ).

4) Step 4: Repeat steps 2 and 3 B-times (B is the
number of bootstrap samples) in order to generate
B resamples and to obtain an approximation of the
distribution. The size of B depends on the tests to be
runned on the data.

Now, to estimate the optimal sample size, one can take advan-
tage of some criteria [50]. These criteria can be applied easily
in the context of intrusion alert clustering. The appropriate size
of the strapped sample is determined as follow:

• K : represents the number of alerts having different
attributes each others,

• πi is the a priori probability of a particular alert.

• ε is a fixed small value,

The probability Pi that a particular alert “i” which is from
the sample is given by: Pi = 1 − (1 − πi)n. If the condition
(nπi > 4), the probability Pi can be approximated as: Pi =
1−e−nπi . According to this condition, if we have many similar
alerts then at least one of them should exist in the sample. It is
equivalent to maximize the joint probability: Pn =

∏K
i=1(1−

e−nπi). This problem is equivalent to minimize the derived
of the logarithm the joint probability. Now, denote by n0 the
optimal bootstrap sample size. The value of n0 is determined
as: Size(n0) =

∑K
i=1

πie
−n0πi

1−πie−n0πi
< ε

n0 > 4K

3) Intrusion alert clustering: At this stage, the challenge
question is how to design an accurate intrusion detection model

for both alert clustering and abnormal alert detection (out-
lier detection)? Many supervised and unsupervised machine
learning algorithms have been applied to solve this issue. In
particular, using an enhanced version of the EM algorithm
which is combined with the bootstrap sampling making it
an attractive solution. The EM is one of the most frequently
used technique for estimating the probability density functions
(PDF) in both univariate and multivariate cases. It is used
especially to model a set of feature vectors by a mixture of
statistical distributions. These distributions are then used to
model the observation vectors. There are some researchers
who have tried to apply EM-algorithm for alert clustering such
as in [51], [52], [38], [53]. From a technical point of view,
the distribution of the generated alerts can be approximated
according to multivariate probability distribution given that
an attack instance is considered as a random process. Let’s
consider an alert A consists of d attributes. For example, for the
case of Gaussian distribution, the density function is defined
as: f (Ad; θk) = 1√

2π|Σ|
k

e−
1
2 (ad−µk)TΣk

−1(ad−µk) Where:

• θk = (µk,Σk)).

• ad represents the dth feature of the alert a.

• µk and Σk are respectively the mean and the covari-
ance matrix.

The posteriori probability to be calculated for each alert
corresponds to the labeled classes that should be determined.
The aim is to assign the best label Ln to each alert A
whereLn ∈ {c1, ..., ck}, cn are the classes of the mixture
model and k is the number of classes. The output of the
problem are: model’s parameters associated to each class
which are θk = (µk,Σk); and a posteriori probability γk for
each alert A. The algorithm is based on two main steps: E
(expectation) and M (maximization). In E-step, incoming alerts
are assigned to classes which leads to a compact partition A
with K classes. The second step is the M step, where an
optimal values of the parameters of the developed model is
determined. The main steps of the EM algorithm are illustrated
in the following pseudo-code.

begin
1. Initialization-step:

πk :=
1

K
(1)

2. Expectation-step:

γ
(q)
nk := P (ck/An, θ

(q)
k) :=

π
(q)
k fk(An; θ

(q)
k)∑K

l=1 π
(q)
l fl(An; θ

(q)
l)

(2)

3. Maximization-step:

www.ijacsa.thesai.org 579 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

πqk :=

∑N

n=1
γnk

N

µqk :=

∑N

n=1
γnkAn∑N

n=1
γnk

σqk :=

∑N

n=1
γnk(An−µ(q)

k
)2∑N

n=1
γnk

(3)

N: Number of alerts.

∑K
i=1 πi = 1

πi ≥ 0
(4)

K :number of components (classes)
4. Repeat step 2 and 3 until
convergence based on this criterion:

|γ(q+1)
nk − γ(q)

nk | < ε (5)

c) Online Classification Process

It is possible to extend the previous algorithm to an online
fashion in order to allow alert classification in real-time. The
online classification is a new version over the classical batch
version where the parameters are re-calculated each time a new
alert is coming. The main reason why an online algorithm is
desirable is to avoid huge computational and memory savings.
Thus, it does not require the whole data set to be available
at each iteration. For online clustering, the mixture model
parameter estimates from each previous iteration are used to
initialize the next iteration. If a new alert is observed, it can
be associated with an existing cluster or to a new created
one. This process is performed on the basis of the most likely
component using the obtained measures from the E-step of the
EM-algorithm. If the alert cannot be assigned to an existing
existing component (i.e. there is no similarity with previous
alerts), it is assumed as a new alert instance and therefore a
new component will be created for it. A possible pseudo-code
for online alert classification can be summarized as follows:

program for Online Alert Classification

begin
While (new alert "a" is received) do
- find most likely component for "a"

k∗ := argmaxk(γk(θk)) (6)

- add the new alert to the component

Cold−k := Ck∗

Ck∗ := Ck∗ ∪ {a}

- update the new statistics:

{
πk∗
µk∗
σk∗

(7)

if |θk − θk∗ | ≥ Threshold

- discard previous changes:

Ck∗ := Cold−k

- create new component for new alert
- update number of components

else
- accept changes

Ck∗ := Ck∗ ∪ {a}

Finally, redundant alerts in each cluster can be fused into
a so-called “Meta-Alert”. Redundant alerts are supposed have
equal attribute values. Meta-Alerts are needed for the security
expert reports and may be investigated further in order to detect
more complex attack scenarios. A typical algorithm for meta-
alert generating is given in the following:

program for Meta-alert generating

begin
MergeAlerts := 0;
Repeat for each class Ck
Repeat For each alert Ai in Ck
IF (Attr(Ai) == Attr(Ai+1))

Delete alert Ai;
Meta-Alert := Ai+1;
MergeAlerts := MergeAlerts++;

End IF
End Repeat

End Repeat
end.

4) Outlier detection: Outliers are anomalies’ observations
that do not conform to the normal behavioral of the dataset and
deviate a lot from the other observations since their values are
very different from the data values. Given that, some statistical
parameters such as the mean and the standard deviation are
sensitive to outlier detection; it is recommended to apply for
example more robust well known distance measures such as
the so-called “Mahalanobis distance” to filter false positive
alerts (outliers). Mahalanobis measure is a multidimensional
version of a z-score which is based on clustering between
variables and depends on estimated parameters of the multi-
variate distribution. It measures the distance of any alert to the
center alert (multidimensional mean of the alert-class), given
the covariance (multidimensional variance). The Mahalanobis
distance is scale-invariant (not dependent on the scale of
measurements) and takes into account the correlations of the
data set. These properties are not retained by the classical Eu-
clidean distance. Formally, the Mahalanobis distance between
a particular multivariate alert vector “a” and the mean value µ
is defined as:

MDist(a, µ) =

√
(a− µ)T

∑−1
(a− µ) (8)

www.ijacsa.thesai.org 580 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Where Σ is the covariance matrix of the “normal” data.
All data alerts which are located far away from the mean alert
(center of the data) are considered as outliers. In other word,
multivariate outliers ai have large distance value MDist.
Formally, the Mahalanobis distance follows the chi-square
distribution with p degrees of freedom χ2

p. So, an alert is
considered as outlier if we have MDist(a, µ) > χ(0.975).

program for Alert-Outliers Detection
{Input : different alert classes.
Output: alerts as outliers. }

begin
- Compute mean value of each class;
- Compute the covariance matrix
Repeat for each class Ci,

For each alert aj in Ci,
- Calculate Mahalanobis distance

between ai and mean(MDist).
If(MDist > chi(0.975)) Then

- Set aj as Outlier-Alert;
- Delete aj from class Ci;

End IF
End For

End Repeat
end.

VII. CONCLUSION AND DISCUSSION

The main important problem related to the developed
intrusion detection systems (IDSs) in the literature is that they
produce a lot of false positive alerts for the same attack. There-
fore, it becomes too difficult to distinguish between normal
and abnormal alerts, to classify them accurately and to take
correct actions for them. A lot of promising researches have
been developed but many of them have apparent limitations.
It is noted that despite more than twenty years’ efforts on the
field of intrusion detection systems, a lot of issues still not yet
solved. For example, some developed methods for IDSs are
not qualified to recognize all kind of intrusions (anomalies),
they cannot ensure that all alerts are true positives, and they
fail to identify main malicious activities. In this study, a deep
review of some well known clustering methods is presented.
Then, a particular focus is dedicated for machine learning
techniques which are considered as attractive alternatives to
address main issues related to IDS systems. Moreover, this
paper presents useful technical details for designing and im-
plementing a unified framework by taking part some effective
machine-learning algorithms. Such framework can be helpful
for interested readers in this field of research.

REFERENCES

[1] H. Sallay, A. Ammar, M. B. Saad, and S. Bourouis, “A real time
adaptive intrusion detection alert classifier for high speed networks,”
in 2013 IEEE 12th International Symposium on Network Computing
and Applications, Cambridge, MA, USA, August 22-24, 2013, 2013,
pp. 73–80.

[2] H. Sallay and S. Bourouis, “Intrusion detection alert management for
high-speed networks: current researches and applications,” Security and
Communication Networks, vol. 8, no. 18, pp. 4362–4372, 2015.

[3] K. Alsubhi, I. Aib, and R. Boutaba, “Fuzmet: a fuzzy-logic based
alert prioritization engine for intrusion detection systems,” Int. J. Netw.
Manag., vol. 22, no. 4, pp. 263–284, 2012.

[4] F. Valeur, Real-Time Intrusion Detection Alert Correlation. University
of California, Santa Barbara: Phd thesis, 2006.

[5] W. Alhakami, A. ALharbi, S. Bourouis, R. Alroobaea, and N. Bouguila,
“Network anomaly intrusion detection using a nonparametric bayesian
approach and feature selection,” IEEE Access, vol. 7, pp. 52 181–52 190,
2019.

[6] F. Cuppens, “Managing alerts in a multi-intrusion detection environ-
ment,” in Proceedings of the 17th Annual Computer Security Applica-
tions Conference, ser. ACSAC ’01, 2001, pp. 22–31.

[7] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in Recent Advances in Intrusion Detection, 2001, pp.
85–103.

[8] J. Yu, Y. R. Reddy, S. Selliah, S. Reddy, V. Bharadwaj, and S. Kankana-
halli, “Trinetr: An architecture for collaborative intrusion detection and
knowledge-based alert evaluation,” Advanced Engineering Informatics,
vol. 19, no. 2, pp. 93 – 101, 2005.

[9] M. E. Whitman and H. J. Mattord, Principles of Information Security,
3rd ed. Boston, MA, United States: Course Technology Press, 2007.

[10] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “A compre-
hensive approach to intrusion detection alert correlation,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 3, pp. 146–169, 2004.

[11] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated
attacks and collaborative intrusion detection,” Computers and Security,
vol. 29, no. 1, 2010.

[12] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994 – 12 000, 2009.

[13] B. Morin and H. Debar, “Correlation of intrusion symptoms: an
application of chronicles,” in In Proceedings of the 6th International
Conference on Recent Advances in Intrusion Detection (RAID’03),
2003, pp. 94–112.

[14] O. Dain and R. K. Cunningham, “Fusing a heterogeneous alert stream
into scenarios,” in In Proceedings of the 2001 ACM workshop on Data
Mining for Security Applications, 2001, pp. 1–13.

[15] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Recent
Advances in Intrusion Detection, 2001, pp. 54–68.

[16] K. Julisch, “Clustering intrusion detection alarms to support root cause
analysis,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 443–471, 2003.

[17] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated
detection of stealthy portscans,” Journal of Computer Security, vol. 10,
no. 1/2, pp. 105–136, 2002.

[18] O. M. Dain and R. K. Cunningham, “Building scenarios from a het-
erogeneous alert stream,” in IEEE Workshop on Information Assurance
and Security, 2001, pp. 231–235.

[19] F. Cuppens and A. Miège, “Alert correlation in a cooperative intrusion
detection framework,” in Proceedings of the 2002 IEEE Symposium on
Security and Privacy, 2002, pp. 202–2015.

[20] P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios
through correlation of intrusion alerts,” in Proceedings of the 9th ACM
conference on Computer and communications security, 2002, pp. 245–
254.

[21] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Techniques and tools for
analyzing intrusion alerts,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 2,
pp. 274–318, 2004.

[22] S. J. Templeton and K. Levitt, “A requires/provides model for com-
puter attacks,” in Proceedings of the 2000 workshop on New security
paradigms, New York, NY, USA, 2000, pp. 31–38.

[23] N.-Y. Jan, S.-C. Lin, S.-S. Tseng, and N. P. Lin, “A decision support
system for constructing an alert classification model,” Expert Systems
with Applications, vol. 36, no. 8, pp. 11 145 – 11 155, 2009.

[24] X. D. Hoang, J. Hu, and P. Bertok, “A program-based anomaly intrusion
detection scheme using multiple detection engines and fuzzy inference,”
Journal of Network and Computer Applications, vol. 32, no. 6, pp. 1219
– 1228, 2009.

[25] G. P. Spathoulas and S. K. Katsikas, “Reducing false positives in
intrusion detection systems,” Computers and Security, vol. 29, no. 1,
pp. 35 – 44, 2010.

[26] R. Sadoddin and A. A. Ghorbani, “An incremental frequent structure
mining framework for real-time alert correlation,” Computers and
Security, vol. 28, pp. 153 – 173, 2009.

www.ijacsa.thesai.org 581 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

[27] F. Maggi, M. Matteucci, and S. Zanero, “Reducing false positives in
anomaly detectors through fuzzy alert aggregation,” Information Fusion,
vol. 10, no. 4, pp. 300 – 311, 2009.

[28] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
2012.

[29] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Packet
and flow based network intrusion dataset,” in Contemporary Computing
- 5th International Conference, IC3 2012, Noida, India, August 6-8,
2012. Proceedings, 2012, pp. 322–334.

[30] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications,
CISDA 2009, Ottawa, Canada, July 8-10, 2009, 2009, pp. 1–6.

[31] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proceedings of the 4th International Conference on Information Sys-
tems Security and Privacy, ICISSP 2018, Funchal, Madeira - Portugal,
January 22-24, 2018., 2018, pp. 108–116.

[32] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao,
“Statistical analysis of honeypot data and building of kyoto 2006+
dataset for NIDS evaluation,” in Proceedings of the First Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security, BADGERS@EuroSys 2011, Salzburg, Austria, April 10, 2011,
2011, pp. 29–36.

[33] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Comput.
Netw., vol. 51, no. 12, pp. 3448–3470, 2007.

[34] F. Najar, S. Bourouis, N. Bouguila, and S. Belghith, “A fixed-point
estimation algorithm for learning the multivariate ggmm: application
to human action recognition,” in 2018 IEEE Canadian Conference on
Electrical & Computer Engineering (CCECE), 2018, pp. 1–4.

[35] S. Zanero and S. M. Savaresi, “Unsupervised learning techniques for an
intrusion detection system,” in Proceedings of the 2004 ACM symposium
on Applied computing, 2004, pp. 412–419.

[36] S. Bourouis, A. Zaguia, N. Bouguila, and R. Alroobaea, “Deriving
probabilistic SVM kernels from flexible statistical mixture models and
its application to retinal images classification,” IEEE Access, vol. 7, pp.
1107–1117, 2019.

[37] T. Pietraszek and A. Tanner, “Data mining and machine learning-
towards reducing false positives in intrusion detection,” Inf. Secur. Tech.
Rep., vol. 10, no. 3, pp. 169–183, 2005.

[38] F. Najar, S. Bourouis, N. Bouguila, and S. Belghith, “Unsupervised
learning of finite full covariance multivariate generalized gaussian
mixture models for human activity recognition,” Multimedia Tools and
Applications, pp. 1–23, 2019.

[39] P. Laskov, P. Dussel, C. Schafer, and K. Rieck, “Learning intrusion
detection: supervised or unsupervised,” in IMAGE ANALYSIS AND
PROCESSING, PROC. OF 13TH ICIAP CONFERENCE., 2005, pp.
50–57.

[40] S.-J. Horng, M.-Y. Su, Y.-H. Chen, T.-W. Kao, R.-J. Chen, J.-L. Lai, and
C. D. Perkasa, “A novel intrusion detection system based on hierarchical
clustering and support vector machines,” Expert Syst. Appl., vol. 38,
no. 1, pp. 306–313, 2011.

[41] D. Fisch, A. Hofmann, and B. Sick, “On the versatility of radial
basis function neural networks: A case study in the field of intrusion
detection,” Information Sciences, vol. 180, no. 12, pp. 2421–2439, 2010.

[42] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection
system using support vector machines and hierarchical clustering,” The
VLDB Journal, vol. 16, no. 4, pp. 507–521, 2007.

[43] R. Smith, N. Japkowicz, M. Dondo, and P. Mason, “Using unsupervised
learning for network alert correlation,” in 21st conference on Advances
in artificial intelligence, ser. Canadian AI’08, 2008, pp. 308–319.

[44] A. Hofmann and B. Sick, “Online intrusion alert aggregation with
generative data stream modeling,” IEEE Transactions on Dependable
and Secure Computing, vol. 8, no. 2, pp. 282–294, 2011.

[45] H. Sallay, S. Bourouis, and N. Bouguila, “Web service intrusion
detection using a probabilistic framework,” in Progress in Systems
Engineering, vol. 1089, 2015, pp. 161–166.

[46] T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Inf. Sci., vol. 177, no. 18, pp. 3799–3821, 2007.

[47] I. Jolliffe, Ed., Principal Component Analysis, ser. 3rd ed. Springer-
Verlag, New York, 2002.

[48] E. Oja, “Neural networks, principal components, and subspaces,” Int.
J. Neural Syst., vol. 1, no. 1, pp. 61–68, 1989.

[49] B. Efron, “Better bootstrap confidence intervals,” Journal of the Amer-
ican Statistical Association, vol. 82, no. 397, pp. 171–185, 1987.

[50] C. Banga and F. Ghorbel, “Optimal bootstrap sampling for fast image
segmentation: application to retina image,” in IEEE international con-
ference on Acoustics, speech, and signal processing, 1993, pp. 638–641.

[51] A. Hofmann and B. Sick, “Online intrusion alert aggregation with gen-
erative data stream modeling,” IEEE Trans. Dependable Sec. Comput.,
vol. 8, no. 2, pp. 282–294, 2011.

[52] S. Bourouis, Y. Laalaoui, and N. Bouguila, “Bayesian frameworks for
traffic scenes monitoring via view-based 3d cars models recognition,”
Multimedia Tools and Applications, pp. 1–21, 2019.

[53] I. Channoufi, S. Bourouis, N. Bouguila, and K. Hamrouni, “Image
and video denoising by combining unsupervised bounded generalized
gaussian mixture modeling and spatial information,” Multimedia Tools
Appl., vol. 77, no. 19, pp. 25 591–25 606, 2018.

www.ijacsa.thesai.org 582 | P a g e

