
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Swarm Robotics and Rapidly Exploring Random
Graph Algorithms Applied to Environment

Exploration and Path Planning

Cindy Calderón-Arce1, Rebeca Solis-Ortega2
School of Mathematics,

Costa Rica Institute of Technology,
Cartago, Costa Rica

https://orcid.org/0000-0002-0077-225X1

https://orcid.org/0000-0002-3065-83862

Abstract—We propose an efficient scheme based on a swarm
robotics approach for exploring unknown environments. The
initial goal is to trace a map which is later used to find
optimal paths. The algorithm minimizes distance and danger. The
proposed scheme consists in three phases: exploration, mapping
and path optimization. A cellular automata approach is used
for the simulation of the fist two phases. For the exploration
phase, a stigmergy approach is applied in order to allow for
swarm communication in a implicit way. For the path planning
phase a hybrid method is proposed. First an adapted Rapidly-
exploring Random Graph algorithm is used and then a scalarized
multiobjective technique is applied to find the shortest path.

Keywords—Swarm robotics; cellular automata; path planning;
Rapidly-exploring Random Graph (RRG); scalarized multiobjective
optimization

I. INTRODUCTION

Swarm algorithms have been deeply studied to address
problems such as food search and object collection. However,
it has been recently used to the exploration and mapping of
scenarios, given the importance that this entails in rescue situ-
ations. In particular, use swarms robotics for the examination
of scenarios in the search for optimal, efficient and safe routes,
in a prudential time, reduces the loss and waste of resources
in trajectories inspection.

Swarm robotics study the coordination of a large group
of relatively simple robots through local rules and implicit
communication. This field emerges from the application of
swarm intelligence to robots [1]. Swarm intelligence is inspired
on insect colonies, bird flocks, fish schools and other types
of animal clusters which accomplish complex tasks through
simple rules and communication.

It has to be clear that a group of agents must meet
specific requirements in order to be considered as a swarm.
The agents must be: autonomous, homogeneous, able to sense
and actuate in the environment [2]. The aforementioned set of
characteristics ensure a distributed and scalable swarm.

There are several swarm applications that have been stud-
ied: aggregation, flocking, exploration, foraging, navigation,
path formation, object assembly and others [1], [3], [4]. In
many of this applications, the use of a swarm is desired given
the dangerous nature of the task.

Even though the use of a swarm brings several advantages,
the type of communication associated with it can create a
possible drawback. There are two possible control schemes:
centralized and decentralized. Neither of these control schemes
facilitate the supervision of the swarm by a human operator
[1].

When a centralized swarm is used its scalability is poor
and the swarm becomes sensible to the loss of its central
leader. The decentralized approach overcome this main issue,
but does not allow to synthesize or access global data unless
all individuals are connected to each other. Therefore a human
controller cannot access the data thus it cannot predict or alter
the behaviour of the swarm.

In addition, path planning methods that minimize not only
distances, but also danger, cost, time or energy are of great
relevance searching evacuation and access routes in buildings,
urban centers or even forests.

In this paper we focus our work on the exploration of
unknown, static and dangerous environments. Although these
tasks can be executed by humans, the use of swarm robotics
will allow to save resources and protect the people in charge
of those tasks.

To solve the problem of creating an optimized pathway in
an unknown environment, three phases are proposed. In the
first stage, a simulated swarm based on a cellular automata
scheme will be used for exploring unknown environments. This
scheme autonomously propitiate an efficient dispersion of the
swarm through the unknown area. In order to perform the task
in a more efficient and scalable manner, a decentralized swarm
is implemented.

The second part of the solution also uses a cellular au-
tomata approach, in which all the visited cells are recorded by
an external server in order to trace the map. The non-visited
cells are marked as obstacles. Finally, in the third stage, a
discrete adapted RRG structures the zone by means of a graph.
Then, a Dijkstra algorithm finds the shortest path between two
given points.

This paper is structured as follows: in the next section
works related with swarm robotics, exploration and path plan-
ning are shown. Methods and Materials section presents prob-
lem statement and the algorithms used to solve each problem

www.ijacsa.thesai.org 692 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

stage. Section IV shows environments and experimental set
up in the simulations were carried out and their final results.
Finally, in the last one general conclusions of the work will
be discussed.

II. RELATED WORK

One aim of environments exploration is to know a through-
out region, with the purpose of detect some targets distributed
randomly in the area [5]. For accomplish this task, the most
applied algorithms are bio-inspired. Among the approaches
that have been developed, the stigmergy used by many colonies
of insects to coordinate their activities, which allows a swarm
indirect communication, has been widely researched [5], [6].

Palmieri et al. implemented and tested three biologically
inspired coordination strategies: firefly, particle swarm and ar-
tificial bee behaviour [5], the better performance was obtained
with the firefly-based strategy. This scheme focus on finding
targets and recruit robots around them.

In addition, Tan et al. employed a stigmergy method for
target search in unknown environments, by means of a swarm
[6]. The stigmergy mechanism was employed to guide the
robots motion. A pheromone map was used for helping them
to reach the target. The most of exploration studies focus only
on exploration for finding a target [7], [8]. Therefore, they do
not guarantee the recognition of whole explored area.

On the other hand, the standard methods for solving path
planning problems are based on using approximated schemes
known as sampling based planning methods. These methods
employ a random sample of the space (connecting points
randomly) and deciding if a route or direction is feasible
or if exists a possible collision [9]. Probabilistic RoadMaps
(PRM) [10], Rapidly-exploring Random Graph (RRG) [11]
and Rapidly-exploring Random Tree (RRT) [12] algorithms
are example applications of these methods. RRG generates
an undirected graph, possibly containing cycles, and RRT
a directed tree. Similarly, PRM algorithms trace a roadmap
(graph) which represents a set of collision-free trajectories for
computing the shortest path that connects an initial node to a
final one [13].

All of these algorithms differ on the process applied to
construct a connecting graph [14]. They are probabilistically
complete algorithms which have natural support for solving
high dimensional complex problems [15]. However, they have
the disadvantage of no capacity to stop execution upon failure
nor the ability to report when no possible solution exists.
Therefore, they are computationally expensive [16]. Another
known graph search algorithm is called A*, which uses a
discrete space and its success is highly dependent on grid
resolution [17].

Dijkstra is one of most famous and simple optimization
algorithm [18], with a quadratic time complexity [19]. Also
bio-inspired optimization algorithms, as a metaheuristic meth-
ods, are often used to approximate an optimization problem
solution. They obtain solutions on an efficient way but are not
able to meet the real time constraints, neither to reproduce the
same solution since they are stochastic [16].

Furthermore, for finding a path, it is possible to optimize
not only distance but also other objectives like danger, time

or energy needed to cross it. In that sense, it is possible to
optimize a multiobjective problem, taking into account several
objectives, instead of a problem with a unique objective [20].
Without loss of generality, we consider a biobjective problem,
which optimizes distance and dangerousness, but it is also
possible to extend the proposed solution to a problem with
more than two objectives. A technique implemented to solve
multiobjective problems combines the objectives by means of
a linear combination of them. Thus, the multiobjetive problem
becomes uniobjective and the general optimization methods
could be applied to solve the scalarized problem. In which,
the objective function incorporates performance indicators of
different objectives [21].

III. MATERIALS AND METHODS

A simulated swarm of robots and multiobjectives tech-
niques are used as part of the proposed solution, which is
organized in three phases: exploration, mapping and path
planning, all carried out on simulated environments.

A. Exploration Phase

A cellular automata approach was used for representing
the environment, obstacles and swarm. Von Neumann neigh-
borhood, which is composed by a central cell and its four
orthogonally adjacent cells, was used. The states associated to
each cell were defined by integer numbers as follows: (0) free
cell, (1) cell occupied by an agent and (2) obstacle. The first
two states are changeable during the time, but the third one is
static.

We implemented two approaches to control the behavior
of the swarm: a classic scheme based on a random walk
algorithm, and a bio-inspired one based on stigmergy concept.
For both, a modification was made which constraints the agent
direction.

The stopping criteria of the algorithms was based on the
percentage of environment coverage. It was selected just to
valid and compare the schemes but for real world applications
others criteria can be used like number of iterations or elapsed
time.

1) Random walk algorithm (RW): This algorithm is used
for search strategies for both animal and robots. It is especially
useful when the individuals do not know the environmental
and do not have cues that can drive the motion, or when
their cognitive abilities do not support complex localisation
and mapping behaviours [22].

In its simplest form, a random walk can be thought of
as a sequence of straight movements and direction changes
[22]. Given this an agent can be in one of two states: moving
randomly or changing direction for avoiding obstacles [23].

If we take this scheme and adapt it into a cellular automata
environment, RW can be modeled assuming that each agent is
located in a cell and randomly chooses another one free in its
neighborhood.

A modification of RW, called random walk with direction
(RWD), adds a priority direction to each agent. This priority
will cause that an agent will never be able of choosing a free
cell that is opposite to its priority direction. In that sense, an

www.ijacsa.thesai.org 693 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

(a) (b)

α α0 0

0 0

0

0X

X

Fig. 1. Representation of the three directional neighbors of the cell α where
the agent is located (X represents the non directional neighbor). (a) An agent
with direction North can occupy any free cell situated West-North-East from
its current position. (b) An agent with direction East can occupy any free cell
situated North-East-South from its current position

agent located in α cell, will only have three possible cells
to move on (directional neighbors). In Fig. 1 on the example
(a) the priority direction is set north, in that case the agent
could choose between three cell options: east, north or west.
If obstacle collision occurs, the priority will randomly change
before to continuing with the algorithm, as shown in Alg. 1.

Algorithm 1: Exploration algorithm by random walk
with direction (RWD)

Input: ρ
1 α← ρ position cell
2 τ ← ρ direction
3 while the stop criteria are not satisfied do
4 foreach ρ do
5 wt(ρi)← state of the i-directional neighbor at

time t
6 if ∃ wt(ρi) = 0 then
7 j: randomly choose one directional

neighbor
8 α← ρj
9 else

10 obstacle detected
11 τ ← choose new direction
12 end
13 end
14 t+ +
15 end

Even though random walk performs very well on a swarm
[23], it does not allow agents to learn about the swarm
decisions or to communicate with the environment (beyond the
detection of obstacles). In order to take thoughtful decisions for
accomplish a faster dispersion through the zone, an alternative
algorithm based on a stigmergy approach is proposed.

2) Virtual pheromone algorithms: The stigmergy approach,
proposed by Grassé and mentioned by Tan et al. in [6] is
a mechanism of indirect communication. The agents leave a
trace in the environment to propitiate different actions in others
agents for leading to a spontaneous and systematic behavior
emergence.

Based on this concept, we developed an algorithm called
pheromone walk (PW). In this the agents (ρ) move through
the environment sensing and leaving virtual pheromone on
visited cells, with the aims of communicate the space already
explored.

The pheromone has two parameters: intensity and evapo-
ration rate. The intensity (Υ) determines how strong the initial
signal is in each cell α and the evaporation rate indicates how
fast this signal will fade away. This pheromone is modeled by
an iterative relation, that depends on time t and a decay rate
κ, as follows:

Υt+1(α) = (1− κ) ·Υt(α) (1)

where Υ0 is the initial pheromone intensity and κ is a
constant selected properly.

Under this approach, the agents choose a free cell with
the lowest pheromone intensity, in the case that two or more
cells have the same lowest intensity, then one will be chosen
randomly.

Similar to the random walks algorithms, a modification
of PW called directional pheromone walk (PWD) was imple-
mented. In this case, also a priority direction is assigned to
agents, which will select a free cell with the lowest pheromone
intensity and located in one of its three directional neighbors. If
an obstacle collision is detected, the agent will have to change
its direction and move on (see Alg. 2).

Algorithm 2: Exploration algorithm by directional
pheromone walk (PWD)

Input: ρ
1 α← ρ position cell
2 τ ← ρ direction
3 while the stop criteria are not satisfied do
4 foreach ρ do
5 wt(ρi)← state of the i-directional neighbor of

ρ at time t
6 if ∃ wt(ρi) = 0 then
7 j: randomly choose one directional

neighbor with min(Υt(ρi))
8 α← ρj
9 else

10 obstacle detected
11 τ ← choose new direction
12 end
13 end
14 foreach α do
15 Υt+1(α)← (1− κ) ·Υt(α)
16 end
17 t+ +
18 end

B. Path Planning Phase

Once the obstacle positions are known and the map is
already constructed, an adapted RRG algorithm is used to
structure the space. After that, a Dijkstra algorithm is applied
to find a shortest path between an initial and goal given points.

1) Adapted RRG algorithm: RRG original algorithm oper-
ates in a space, in which a configuration is represented by any
point on the work space, including obstacles [9], [15]. In this
work, each agent is a point into a two dimensional space.

Since the amount of possible configurations is uncountable,
the work space is discretized through a rectangular uniform

www.ijacsa.thesai.org 694 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

partition M of segh × segv dimension. Thus, adapted RRG
algorithm generates a random point on each cell or partition’s
element.

The adapted RRG algorithm structures the search in a
partition of the configuration space, using a discretization and
forcing the graph to explore the whole space by including a
vertex from each cell of the partition, if it is possible. Let C
be the space configuration, Cfree ⊂ C the set of collision-free
configurations and G(V,E) the graph defined by the vertices
set V and the edges set E. The adapted RRG algorithm
initializes the graph with qinit as a unique vertex without
edges. A new configuration is generated creating a random
point in C and looking for the nearest vertex qnear ∈ G, by
means of a Breadth-First Search (BFS) and a First In First
Out (FIFO) buffer [9], considering possible collisions. The new
point and its edge with qnear are added to the graph and so on,
until each cell of the partition has a vertex into the graph. When
a collision between the graph and any obstacle is detected, the
algorithm looks for the nearest collision-free configuration in
the same direction as qnew [24].

A graph G has a collision if G goes through a configuration
q ∈ C\Cfree. LetW be the set of obstacle borders in the work
space. Now suppose that G does not have a collision on the
ith iteration, but it is obtained in the next one by adding the
vertex q2 and the edge q1q2. Then q1 ∈ Cfree but there exists
at least a point in q1q2 that is not in Cfree, i.e, is in W .

Consider the function f defined as follows:

f(x, y) = (x− x1)(y2 − y1)− (y − y1)(x2 − x1) (2)

where (x1, y1) and (x2, y2) are points on the Cartesian plane.
The equation f(x, y) = 0 defines the locus of the points from
the line l passing through (x1, y1) and (x2, y2), which divides
the plane into two regions. Since f is continuous on R2, if
a point (x, y) over one side of l produces f(x, y) > 0, then
f(x, y) > 0 for all points in that region and f(x, y) < 0 for all
points in the opposite region. By means of that property the
intersection between two segments AB and CD occurs if and
only if f(A)·f(B) < 0 with respect to CD and f(C)·f(D) <
0 with respect to AB.

Identifying when the graph intersects W , it is possible to
define when accept or discard q2. In that sense, a COLLI-
SION() function determines if there is an intersection between
q1q2 and W and helps to determine if a new point q2 is inside
or outside an obstacle, based on the previous function (2) and
the Jordan curve theorem [24], [25].

Alg. 3 shows how a network is generated where, D(m)
is the set of all possible directions to go from the reference
point on cell m to an adjacent cell, and F (m, d) indicates
the selected cell after applying d ∈ D(m) from m. CELL
function provides the index of the cell corresponding to a
configuration q. All points generated on each cell are contained
on PointList. On each iteration a center cell is picked from
a list called Queue and a point is generated on every adjacent
cell following the BFS method. Queue originally contains the
index corresponding to qinit and adds indices of those adjacent
cells from each iteration. Central indices that were already
searched are deleted from Queue and added to Memory.
The GRID POINT() function gives a point into the cell of
index F (m, d), if it is possible. If not, the answer will be ∅.

The indices are arranged into a sequential order beginning on
CELL(qinit) and continues bordering the adjacent cells. The
algorithm ends when all the cells have been “visited” by the
graph.

Algorithm 3: Space structuration
Input: W , qinit, qgoal, segh, segv
Output: G(V,E)

1 V ← qinit
2 E ← ∅
3 M← Uniform Partition segh× segv
4 PointList← []
5 i← CELL(qinit)
6 g ← CELL(qgoal)
7 PointList(i)← qinit
8 PointList(g)← qgoal
9 Queue← {i}

10 Memory ← ∅
11 while Queue 6= ∅ do
12 m← Queue(1)
13 Queue← Queue \ {m}
14 if m /∈ Memory then
15 q ← PointList(m)
16 for d in D(m) do
17 qnew ← GRID POINT(W, qinit, ...

...PointList, F (m, d))
18 PointList(F (m, d))← qnew
19 if qnew 6= ∅ and q 6= ∅ then
20 if not COLLISION(W, q, qnew) then
21 V ← V ∪ {qnew}
22 E ← E ∪ Edge(q, qnew)
23 end
24 end
25 Queue← Queue ∪ {F (m, d)}
26 end
27 Memory ←Memory ∪ {m}
28 end
29 end

Space structuration algorithm (Alg. 3) shows an unidirec-
tional search method, which generates just one graph from
the initial configuration to structure the complete work space.
But also a sequential and parallel bidirectional search was
implemented, on which two sub-graphs are generated; one
from qinit and the other one from qgoal, and at the end
both sub-graphs are joined to structure all the work space.
The sequential algorithm alternates each sub-graph generation
looking for a balance in the amount of vertices on each one
and parallel one generates each sub-graph simultaneously.

2) Optimization scalarized problem: Once the graph has
been generated, a Dijkstra Shortest Path (DSP) algorithm is
used to find the optimal path from qinit to qgoal [18]. Taking
into account not only distance but also dangerousness, by
means of the following multiobjective optimization scalarized
problem

min
p∈P

(ωD1(p) + (1− ω)D2(p)) (3)

www.ijacsa.thesai.org 695 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

where D1(p) and D2(p) are the distance and dangerousness
values of the path p, respectively, P is the set of all possible
paths between qinit and qgoal througth the graph and ω ∈ [0, 1]
is the scalarizing constant.

A filter is applied before using the DSP algorithm, which
simplifies the graph removing all the vertices and its corre-
sponding edges with dead ends. Then a cost matrix CostMat
is calculated which assigns each element with the objective
function value (ωD1(e) + (1− ω)D2(e)), for all edges e ∈ E.
If two vertices of V are not directly connected its cost value
will be infinity. D1(e) assigns length and D2(e) dangerousness
of e. Since, it is not possible to know a priori a continuous
danger function defined on all the environment but it is possible
to know information about dangerousness in some places of
environment, we simulate danger information as a discretized
heat distribution on the explored environment. Then, that
information is used to construct a continuous dangerousness
function into the work space. A Radial Basis Function (RBF)
is selected to construct that function, because the most likely
the information has lots of different features and nonlinear
behaviour and it is known that RBF has a good performance
ajusting nonlinear data. Although there are different kernels to
used with RBF, for simplicity without loss of generality we
consider a polyharmonic spline (PHS) kernel. Let ψ : C → R
be the resulting heat RBF, which is defined as follows

ψ(x, y) =
∑
i

(ηi · φi (r)) (4)

with r = ‖(x, y) − (xc, yc)‖2, (xc, yc) represents where the
RBF is centered, φi each PHS function, ηi its corresponding
weights and φ(r) is defined as

φ(r) =

{
rk ln(r) ; for an even k
rk ; otherwise (5)

where k represents the PHS order [26], [27]. Thus, ψ is used to
assign dangerousness rate on each edge e of graph G, through
a line integral over ψ as shown in (6), which is approximated
by means of numerical methods.

D2(e) =

∣∣∣∣∫
ψ

e ds

∣∣∣∣ (6)

Finally, the DSP algorithm is executed to obtain the optimal
path, using CostMat defined above.

IV. EXPERIMENTS

The work space was portrayed as a two-dimensional map
composed by different kind of obstacles, randomly distributed.

A. Experimental Setup

Three environments have been created in order to analyze
the execution of the system. We take under consideration
different scenarios like closed and open spaces, convex and
concave obstacles, dead ends and others.

(a) Env1 (b) Env2

(c) Env3

Fig. 2. Representation of environments used for analysing the execution of
the proposed solution.

The simulations were carried out using the software Pro-
cessing 3.3.7, with a 1005 × 1005 pixel map for all the
environments. Brown shapes represent the obstacles, while the
agents of the swarm (which are a 1:67 scale of the map) are
shown as two concentric circles that portray the body and the
range of sensing. Also, the pheromones was represented by a
circle in the corresponding cell (Fig. 2).

For the exploration phase we employ three different sized
swarm of 10, 15 and 20 agents. The swarm, in each case,
was deployed from the same area. For the PWD and PW
algorithms the parameters selected for the evaporation rate was
κ = 1/Υt(α). Also five different initial pheromone intensities
(Υ0 = 100, 300, 500, 700, 900) where defined.

All the agents are autonomous, homogeneous and have
the ability to communicate with the environment through
pheromones. Each robot not only walks around the environ-
ment avoiding obstacles, but also leaves a trace behind it of
pheromone and senses the virtual substance of others and
determines the intensity of it.

For the optimization phase, work space partitions of 5×5,
10× 10, 15× 15 and 20× 20 were used in order to generate
the possibles optimal paths. Three order PHS functions φi are
using to compute ψ, by means of a RBF with the training data
as centres and the heat distribution shown in Fig. 3.

The heat distribution is the same for all environments
and CostMat is calculated with five different values for the
scalarizing constant ω: 0, 0.125, 0.25, 0.375 and 0.5.

Problem shown in (3) is solved 100 times on each en-
vironment for each ω values defined above and for the three
work space partitions, generating the graph with three different
searches: unidirectional, sequential bidirectional and parallel
bidirectional, denoted Graph 1, Graph 2 and Graph 3, respec-
tively.

www.ijacsa.thesai.org 696 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Fig. 3. Heat distribution used to compute D2, higher values represent a
higher dangerousness on the environment.

0
90

80
70

10000

60

Coverage (%)

50Env.3 40

Ite
ra

tio
ns

Environments

20000

30Env.2 20
10Env.1 0

30000

40000

RW
RWD

Method

Fig. 4. Comparison between the performance between RW and RWD in all
three environments, the graph shows the number of iterations need it to cover
certain percentages of the terrain.

B. Results and Discussion

Comparing the results of the RW and RWD algorithms, it is
clear that adding a direction to the agent helps to improve the
performance of the swarm. In Fig. 4 is shown that in the three
environments RWD reduces the iterations needed for cover
each of them by more than 50%.

Analyzing RWD against the two pheromone methods, we
can see that under certain configuration of Υ0, the performance
of PW can be similar to RWD, however is PWD the one that
stand out (Fig. 5). Given this results we can assure that if we
add direction to the movement of an agent and give him the
ability to communicate its path through the environment with
pheromones, the dispersion and coverage of the swarm in the
area can be accomplish in a more faster and efficient way.

Fig. 5 also shows that, as expected, while the coverage
percentage of the environments increases, the amount of it-
erations necessary to achieve it also increase. This situation
occurs because unexplored points are often very sparse in the
environment, which makes difficult for the swarm to find them.
This fact also causes that the standard deviation (SD) grows
along with the percentage of coverage. A special result is
obtained with the Env1 (Fig. 5(a)) in which the data presented a
big SD. This occurs because the structuring of the environment,
in which, there is only one connection path between two large
unexplored areas .

Fig. 6 presents a summary of the PWD results in every

0
90

80
70

15000

60

Coverage (%)

50
PWD 40

Ite
ra

tio
ns

Algorithms

30000

30
20PW

10
RWD 0

45000

60000

100
300
500
700
900

Pheromone
intensities

(a) Env1

0
90

80
70

2000

60

Coverage (%)

50
PWD 40

Ite
ra

tio
ns

Algorithms

4000

30
20PW

10
RWD 0

6000

8000

100
300
500
700
900

Pheromone
intensities

(b) Env2

0
90

80
70

2000

60

Coverage (%)

50
PWD 40

Ite
ra

tio
ns

Algorithms

4000

30
20PW

10
RWD 0

6000

8000

100
300
500
700
900

Pheromone
intensities

(c) Env3

Fig. 5. Results of iterations needed it to cover certain percentages of the
environments by the algorithms RWD, PW, PWD

0
90

80
70

2000

60

Coverage (%)

50
Env.3 40

Ite
ra

tio
ns

Environments

4000

30Env.2
20

Env.1 10
0

6000

8000

100
300
500
700
900

Pheromone
intensities

Fig. 6. Summary of the results of PWD in all three environments

www.ijacsa.thesai.org 697 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

0
90

80
70

1000

60

Coverage (%)

5020 40

Ite
ra

tio
ns

Number of agents

2000

3015 20
1010 0

3000

4000

100
300
500
700
900

Pheromone
intensities

(a) Env1

0
90

80
70

2000

60

Coverage (%)

5020 40

Ite
ra

tio
ns

Number of agents

4000

3015 20
1010 0

6000

8000

100
300
500
700
900

Pheromone
intensities

(b) Env2

0
90

80
70

60

2000

Coverage (%)

5020 40

Ite
ra

tio
ns

Number of agents

3015 20
10

4000

10 0

6000

100
300
500
700
900

Pheromone
intensities

(c) Env3

Fig. 7. Results of the iterations need it to cover certain percentages of the
environments by the algorithm PWD with three swarm of 10, 15 and 20 agents

environment and in certain percentages of coverage. In this we
can see that there is not an ideal initial pheromone intensity
that gives best results in all the configurations, because this will
vary depending the environment an the percentage coverage.
However we can hypothesize that a low level of Υ0 will
produce similar results to the RWD while highest one will
create a very saturated space and will not allow a faster
dispersion.

All exploration results were performed by a swarm of
ten agents. For comparing the changes that can produce the
introduction of a bigger group of simulated robots, the same
experiments were preformed by a swarm of fifteen and twenty
agents. As expected, while the number of agents increases the
faster is the coverage and dispersion of the area (Fig. 7). Also
it can be seen that the SD of the data and the differences
between the pheromone intensities decreases.

A cellstep heatmap, that shows the number of visits for

(a) Env1 (10 agents and 1800
iterations)

(b) Env1 (20 agents and 912 it-
erations)

(c) Env2 (10 agents and 2806
iterations)

(d) Env2 (20 agents and 1388
iterations)

(e) Env3 (10 agents and 2298
iterations)

(f) Env3 (20 agents and 845 it-
erations)

Fig. 8. Cellstep heatmaps that shows the number of visits for each cell of
the environment. The size of the swarm and the number of iterations need it
to cover the 95% of the area is described in each case.

each cell of the environment, was also created in all the
experiments in order to analyze the behavior of the agents.
The results show that there are areas that are constantly being
explored, this creates what we call over-exploration of the
environments. This situation causes that the agents invest time
on exploring areas that are already known instead of visiting
unexplored ones, what can result on a increases in the iteration
need it to accomplish the overall task. In the examples showed
in Fig. 8, it can be seen that the area where the agents were
deployed are usually highly explored. Also even though the
size of the swarm augmented and the number of iterations
reduced, the over-exploration is not necessarily decreased.

At the same time that exploration is occurring, a external
server stores all visited cells for construct an environment
map. Fig. 9 shows the evolutionary process of creating the
map on Env3, guided by the coverage percentage of area.
Once the exploration is finished, the Adapted RRG algorithm
proposed takes this map to structure the space and find a
path, minimizing the distance but taking into account the
dangerousness.

Fig. 10 shows a small variations on graph generation time
by means of unidirectional and sequential bidirectional search,
but variations resulting of parallel bidirectional search are
slightly larger. Regardless of search type used, execution time
of graph generation increases as mesh becomes more refined.
Execution time with parallel bidirectional search is always

www.ijacsa.thesai.org 698 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

(a) 10% (b) 20% (c) 30% (d) 40%

(e) 50% (f) 60% (g) 70% (h) 80%

(i) 90% (j) 95% (k) 100%

Fig. 9. Example of the map creation process of Env3 carried out during the exploration phase, according the coverage percentage of the area

TABLE I. AVERAGE ELAPSED TIME IN 100 EXPERIMENTS BY FINDING THE OPTIMAL PATH, WITH DIFFERENT PARTITION SIZES AND ω VALUES ON
ENV3

Partition Graph ω = 0 ω = 0.125 ω = 0.25 ω = 0.375 ω = 0.5
size type mean std mean std mean std mean std mean std

5× 5
Graph 1 0.4268 0.1236 0.4127 0.1135 0.4403 0.1431 0.4406 0.1004 0.4393 0.2025
Graph 2 0.5344 0.1158 0.4380 0.0517 0.6308 0.1609 0.5717 0.1844 0.4810 0.0845
Graph 3 0.6740 0.1957 0.7324 0.2828 0.7331 0.2666 0.7029 0.2407 0.7215 0.2549

10× 10
Graph 1 5.2220 0.2101 5.2524 0.2006 5.2481 0.2114 5.3179 0.1993 5.3145 0.2004
Graph 2 5.4593 0.1860 5.5821 0.2236 5.6681 0.1879 5.6588 0.2200 5.6591 0.2328
Graph 3 6.8302 0.4058 7.2021 0.7134 6.8418 0.3448 6.9627 0.4594 7.1016 0.6783

15× 15
Graph 1 19.7240 0.4468 20.5150 0.5672 20.6680 0.4568 20.5630 0.5486 20.2910 0.5838
Graph 2 19.0830 0.5272 20.0130 0.5316 20.0340 0.5244 20.4890 0.5410 20.2180 0.5674
Graph 3 22.1300 1.4991 24.4360 2.2988 25.1070 2.0405 25.0750 2.0488 25.4720 2.8845

20× 20
Graph 1 41.7990 1.1626 44.9960 1.0414 45.3290 0.8837 45.9970 0.9466 46.6880 0.9544
Graph 2 47.0210 1.1203 51.5370 1.0564 50.4570 1.2023 51.2210 1.1727 51.7330 0.9533
Graph 3 45.3380 4.0262 43.4460 4.0006 42.3570 2.3770 42.8490 2.6175 45.2010 4.1474

lower than execution time with unidirectional search. Elapsed
graph generation time on Env3 is always greater than the
elapsed on Env1 and Env2.

Once the graphs have been generated, DSP algorithm is
applied on the same way for three cases: unidirecional, sequen-
tial and parallel bidirectional graph search. Table I summarizes
the elapsed time at path planning process on Env3, we can see
that the variations on Graph 3 (parallel bidirectional search)
are also greater than Graph 1 and 2. There are no significant
differences in path planning time with different ω values into
the same partition, but there are significant differences between
path planning time into different partition sizes. Path planning
time increases as partition size increases. Results for Env1 and

Env2 are quite similar.

The path distance depends on the environment as shown
in Fig. 11. Although there are also slight differences between
path distance obtained with different ω values, the greatest
differences appear with different partition size. Path distance
presents larger variations with a coarse mesh, i.e., with a small
partition sizes. Better results are obtained as the number of
cells increases.

Other general results were made, equivalent to those
showed in [24]. The shortest path found improve according
to refinement of the mesh, but it also depends on the type
of environment. For example 5 × 5 partition is not always

www.ijacsa.thesai.org 699 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

5x5 10x10 15x15 20x20

Partition size

0

1

2

3

4

5

6

G
ra

ph
 g

en
er

at
io

n
tim

e
(s

ec
)

Graph 1 - ω = 0
Graph 1 - ω = 0.125
Graph 1 - ω = 0.25
Graph 1 - ω = 0.375
Graph 1 - ω = 0.5
Graph 2 - ω = 0
Graph 2 - ω = 0.125
Graph 2 - ω = 0.25
Graph 2 - ω = 0.375
Graph 2 - ω = 0.5
Graph 3 - ω = 0
Graph 3 - ω = 0.125
Graph 3 - ω = 0.25
Graph 3 - ω = 0.375
Graph 3 - ω = 0.5

Graph type and ω value

(a) Elapsed time by adapted RRG algorithm on Env1

5x5 10x10 15x15 20x20

Partition size

0

1

2

3

4

5

6

G
ra

ph
 g

en
er

at
io

n
tim

e
(s

ec
)

Graph 1 - ω = 0
Graph 1 - ω = 0.125
Graph 1 - ω = 0.25
Graph 1 - ω = 0.375
Graph 1 - ω = 0.5
Graph 2 - ω = 0
Graph 2 - ω = 0.125
Graph 2 - ω = 0.25
Graph 2 - ω = 0.375
Graph 2 - ω = 0.5
Graph 3 - ω = 0
Graph 3 - ω = 0.125
Graph 3 - ω = 0.25
Graph 3 - ω = 0.375
Graph 3 - ω = 0.5

Graph type and ω value

(b) Elapsed time by adapted RRG algorithm on Env2

5x5 10x10 15x15 20x20

Partition size

0

1

2

3

4

5

6

G
ra

ph
 g

en
er

at
io

n
tim

e
(s

ec
)

Graph 1 - ω = 0
Graph 1 - ω = 0.125
Graph 1 - ω = 0.25
Graph 1 - ω = 0.375
Graph 1 - ω = 0.5
Graph 2 - ω = 0
Graph 2 - ω = 0.125
Graph 2 - ω = 0.25
Graph 2 - ω = 0.375
Graph 2 - ω = 0.5
Graph 3 - ω = 0
Graph 3 - ω = 0.125
Graph 3 - ω = 0.25
Graph 3 - ω = 0.375
Graph 3 - ω = 0.5

Graph type and ω value

(c) Elapsed time by adapted RRG algorithm on Env3

Fig. 10. Average elapsed time of 100 experiments generating graph on each
environment, with uni and bidirectional search methods and based on different
partition sizes

0 0.125 0.25 0.375 0.5

ωvalue

14

16

18

20

22

24

26

28

30

P
at

h
d
is

ta
n
ce

Graph 1 - Part. 5x5

Graph 1 - Part. 10x10

Graph 1 - Part. 15x15

Graph 1 - Part. 20x20

Graph 2 - Part. 5x5

Graph 2 - Part. 10x10

Graph 2 - Part. 15x15

Graph 2 - Part. 20x20

Graph 3 - Part. 5x5

Graph 3 - Part. 10x10

Graph 3 - Part. 15x15

Graph 3 - Part. 20x20

Graph type and partition size

(a) Path distance obtained on Env1

0 0.125 0.25 0.375 0.5

ωvalue

14

16

18

20

22

24

26

28

30

P
at

h
d
is

ta
n
ce

Graph 1 - Part. 5x5

Graph 1 - Part. 10x10

Graph 1 - Part. 15x15

Graph 1 - Part. 20x20

Graph 2 - Part. 5x5

Graph 2 - Part. 10x10

Graph 2 - Part. 15x15

Graph 2 - Part. 20x20

Graph 3 - Part. 5x5

Graph 3 - Part. 10x10

Graph 3 - Part. 15x15

Graph 3 - Part. 20x20

Graph type and partition size

(b) Path distance obtained on Env2

0 0.125 0.25 0.375 0.5

ωvalue

14

16

18

20

22

24

26

28

30

P
at

h
d
is

ta
n
ce

Graph 1 - Part. 5x5

Graph 1 - Part. 10x10

Graph 1 - Part. 15x15

Graph 1 - Part. 20x20

Graph 2 - Part. 5x5

Graph 2 - Part. 10x10

Graph 2 - Part. 15x15

Graph 2 - Part. 20x20

Graph 3 - Part. 5x5

Graph 3 - Part. 10x10

Graph 3 - Part. 15x15

Graph 3 - Part. 20x20

Graph type and partition size

(c) Path distance obtained on Env3

Fig. 11. Average path distance of 100 experiments in graph generation on
each environment, with uni and bidirectional search methods and based on
different ω values

successful, not only because in some cases it is not possible
to structure all space with the graph and obtain a path, but
also because sometimes it is possible to obtain a path but not
necessarily the optimal one. Moreover, it is possible to obtain
different paths based on different partitions. Even though a
finer mesh allows being closer to the optimal solution, it
produces a denser and more complex graph.

Fig. 12 shows the performance of graph generation and
path planning process in Env3. It presents some differences
when using a scalarized objetive function, which combines dis-
tance and dangerousness, and when using an objective function

www.ijacsa.thesai.org 700 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

Fig. 12. Experimental results on Env3 with 10 × 10 as a partition size,
ω =0.375 and an parallel bidirectional search

that optimize just one of these elements. It is possible to see
the RBF resulting with which dangerousness is calculated and
the correponding line integrals.

V. CONCLUSIONS

A solution that involves swarm robotics and multiobjectives
techniques for finding paths, minimizing distance and danger
in an unknown environment, was presented. The solution was
composed by three phases: exploration, mapping and path
planning, and was made under computer simulations with
swarms of ten, fifteen and twenty agents.

Exploration and mapping phases were implemented by
means of a cellular automata, in which the environments were
mapped into a two dimensional map. For the first phase four
algorithms, organized into two approaches, were presented and
applied in three different environments.

The best performance scheme was PWD, which provides
a direction to the agent movements and give him the ability to
communicate its path through the environment. PWD achieves
the complete tasks faster and more efficiently than the others.
Even though all the experiments were carried out with five
different initial amount of pheromone intensity, the ideal value
varies depending on the structure of the space and the coverage
percentage.

As was expected, the coverage time decreases with increase
the number of agents. Besides, as the number of agents in-
creases, differences between results with different pheromone
intensities also decrease.

On the other hand, ω values does not interfere with the
graph generation and graph type (unidirectional, sequential and
parallel bidirectional search) does not affect the optimization
process. But both, graph generation and optimization process,
always depend on partition sizes.

A fine partition allows a complete work space structuring
and to find the optimal path. Shapes and quantity of obstacles
scattered, through the environment, will affect the effectiveness
of the partition dimension. Results show that even though
a more refined partition produces a shorter path, the graph
generation will take longer execution time and produce a
denser and more complex graph.

Parallel bidirectional search has better performance than
unidirectional search, but sequential bidirectional search some-
times has a shorter run-time than parallel one, depending on
the environment.

As future work a more robust algorithm has to be created
in order to reduce the over-exploration of the environments and
a genetic multiobjective optimization algorithm will be used,
without scalarizing.

ACKNOWLEDGMENT

Special thanks to the Research and Outreach of the Costa
Rica Institute of Technology (VIE, ITCR), for their support to
the PROE project (code VIE 1440011). These results are part
of that project.

REFERENCES

[1] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robot-
ica, vol. 31, no. 3, pp. 345–359, 2013.

[2] I. Navarro and F. Matı́a, “An introduction to swarm robotics,” Isrn
robotics, vol. 2013, 2012.

[3] L. Bayındır, “A review of swarm robotics tasks,” Neurocomputing, vol.
172, pp. 292–321, 2016.

[4] L. Garattoni and M. Birattari, “Autonomous task sequencing in a robot
swarm,” Science Robotics, vol. 3, no. 20, p. eaat0430, 2018.

[5] N. Palmieri, X.-S. Yang, F. De Rango, and S. Marano, “Comparison
of bio-inspired algorithms applied to the coordination of mobile robots
considering the energy consumption,” Neural Computing and Applica-
tions, pp. 1–24, 2017.

[6] Q. Tang, F. Yu, Y. Zhang, L. Ding, and P. Eberhard, “A stigmergy
based search method for swarm robots,” in International Conference
on Swarm Intelligence. Springer, 2017, pp. 199–209.

[7] D. A. Lima and G. M. Oliveira, “A cellular automata ant memory model
of foraging in a swarm of robots,” Applied Mathematical Modelling,
vol. 47, pp. 551–572, 2017.

[8] C. R. Tinoco, D. A. Lima, and G. M. Oliveira, “An improved model for
swarm robotics in surveillance based on cellular automata and repulsive
pheromone with discrete diffusion,” International Journal of Parallel,
Emergent and Distributed Systems, pp. 1–25, 2017.

[9] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[10] R. Valencia and J. Andrade-Cetto, “Path planning in belief space with

pose slam,” in Mapping, Planning and Exploration with Pose SLAM.
Springer, 2018, pp. 53–87.

[11] J. Faigl, “On self-organizing map and rapidly-exploring random graph in
multi-goal planning,” in Advances in self-organizing maps and learning
vector quantization. Springer, 2016, pp. 143–153.

[12] A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri, and
R. Siegwart, “An incremental sampling-based approach to inspection
planning: the rapidly exploring random tree of trees,” Robotica, vol. 35,
no. 6, pp. 1327–1340, 2017.

[13] A. D. Mali, “Probabilistic roadmaps with higher expressive power,”
International Journal on Artificial Intelligence Tools, vol. 25, no. 04,
p. 1650027, 2016.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

www.ijacsa.thesai.org 701 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

[15] I. Noreen, A. Khan, and Z. Habib, “A comparison of rrt, rrt* and rrt*-
smart path planning algorithms,” International Journal of Computer
Science and Network Security (IJCSNS), vol. 16, no. 10, pp. 20–27,
2016.

[16] B. Saicharan, R. Tiwari, and N. Roberts, “Multi objective optimization
based path planning in robotics using nature inspired algorithms: A
survey,” in International Conference on Power Electronics, Intelligent
Control and Energy Systems (ICPEICES). IEEE, 2016, pp. 1–6.

[17] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[18] H. Wang, Y. Yu, and Q. Yuan, “Application of dijkstra algorithm in
robot path-planning,” in Second International Conference on Mechanic
Automation and Control Engineering (MACE). IEEE, 2011, pp. 1067–
1069.

[19] R. Arjun and P. Reddy, “Shama, and m. yamuna,”research on the
optimization of dijkstra’s algorithm and its applications”,” International
Journal of Science Technology and Management, vol. 4, no. 1, pp. 304–
309, 2015.

[20] C. Calderón-Arce and P. Alvarado-Moya, “Optimización multiobjetivo
con funciones de alto costo computacional. revisión del estado del arte,”
Revista Tecnologı́a en Marcha, pp. 16–24, 2016.

[21] N. Gunantara, “A review of multi-objective optimization: Methods and
its applications,” Cogent Engineering, vol. 5, no. 1, pp. 1–16, 2018.

[22] C. Dimidov, G. Oriolo, and V. Trianni, “Random walks in swarm
robotics: an experiment with kilobots,” in International Conference on
Swarm Intelligence. Springer, 2016, pp. 185–196.

[23] R. Morlok and M. Gini, “Dispersing robots in an unknown environ-
ment,” in Distributed Autonomous Robotic Systems 6. Springer, 2007,
pp. 253–262.

[24] C. Calderón-Arce, R. Solı́s-Ortega, and T. Bustillos-Lewis, “Path plan-
ning on static environments based on exploration with a swarm robotics
and rrg algorithms,” in 38th Central America and Panama Convention
(CONCAPAN XXXVIII). IEEE, 2018, pp. 1–6.

[25] T. C. Hales, “The jordan curve theorem, formally and informally,”
American Mathematical Monthly, vol. 114, no. 10, pp. 882–894, 2007.

[26] H. Yu, T. Xie, S. Paszczyñski, and B. M. Wilamowski, “Advantages of
radial basis function networks for dynamic system design,” Transactions
on Industrial Electronics, vol. 58, no. 12, pp. 5438–5450, 2011.

[27] G. A. Barnett, N. Flyer, and L. J. Wicker, “An rbf-fd polynomial method
based on polyharmonic splines for the navier-stokes equations: Com-
parisons on different node layouts,” arXiv preprint arXiv:1509.02615,
2015.

www.ijacsa.thesai.org 702 | P a g e

