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Abstract—Extraction of potential electromyography (EMG) 

features has become one of the important roles in EMG pattern 

recognition. In this paper, two EMG features, namely, enhanced 

wavelength (EWL) and enhanced mean absolute value (EMAV) 

are proposed. The EWL and EMAV are the modified version of 

wavelength (WL) and mean absolute value (MAV), which aims to 

enhance the prediction accuracy for the classification of hand 

movements. Initially, the proposed features are extracted from 

the EMG signals via discrete wavelet transform (DWT). The 

extracted features are then fed into the machine learning 

algorithm for classification process. Four popular machine 

learning algorithms include k-nearest neighbor (KNN), linear 

discriminate analysis (LDA), Naïve Bayes (NB) and support 

vector machine (SVM) are used in evaluation. To examine the 

effectiveness of EWL and EMAV, several conventional EMG 

features are used in performance comparison. In addition, the 

efficacy of EWL and EMAV when combine with other features 

are also investigated. Based on the results obtained, the 

combination of EWL and EMAV with other features can 

improve the classification performance. Thus, EWL and EMAV 

can be considered as valuable tools for rehabilitation and clinical 

applications. 
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I. INTRODUCTION 

As a biomedical signal, electromyography (EMG) signal is 
playing an important role in developing the human machine 
interaction devices. Naturally, EMG signal recorded from the 
muscle contraction contains rich muscle information, which is 
beneficial in describing the muscle behavior and condition, as 
well as the hand movement [1], [2]. In recent days, the 
myoelectric control has been received much attentions from the 
biomedical researchers. The correlation between amplitude and 
motion grants the EMG signal to become one of the most 
powerful sources in controlling the prosthesis [3]. 

Thanks to current technology, the usage of pattern 
recognition based myoelectric control has become viable. 
Needless to say, the type of classifier does not significantly 
affect the classification performance, while the quality of 
extracted features has shown a great impact in EMG signals 
classification [4]. Without loss of generality, feature extraction 
is a technique to extract the valuable information from the 
signal itself, which should contain much information as 
possible [4], [5]. Feature extraction can be categorized into 
time domain (TD), frequency domain (FD) and time-frequency 
domain (TFD). Among the EMG features, TD features are the 
most commonly used. In a past study, Hudgins et al. [6] 

introduced five EMG features for pattern recognition. The 
authors indicated that proposed features are good in 
discriminating the EMG patterns. Later, Khushaba et al. [7] 
developed a subset of features based on time-dependent 
spectral moments to classify the multiple hand movements at 
different limb positions. Moreover, Samuel et al. [8] proposed 
three new EMG features for arm movements classification. The 
author showed that proposed features outperformed other 
conventional features in EMG pattern recognition. However, 
TD features assume the EMG data from stationary signals and 
there is no frequency information provided [9]. On one hand, 
FD features only contains spectral information, in which the 
time information is limited. For these reasons, the TFD features 
are utilized in this work. 

In the past studies, time-frequency methods such as short 
time Fourier transform (STFT) and wavelet transform (WT) 
are widely used in EMG signal processing [10]–[12]. However, 
STFT cannot provide satisfactory performance due to its fixed 
window size [13], [14]. From the previous works, it is reported 
that spectrogram or short time Fourier transform (STFT) was 
not very effective in EMG pattern recognition system [10], 
[13]. As compared to STFT, wavelet transform (WT) provides 
changeable time and frequency resolution, which is more 
formidable for extracting the high quality signal information 
[14]. In this regard, we focus on WT in current work. 

Generally, WT decomposes the signal into detail and 
approximation coefficients at different sub-bands, in which the 
time information at different frequency ranges can be obtained 
[14]. Previous works indicated that the features extracted based 
on discrete wavelet transform (DWT) were showing good 
discriminate power in describing the target concept. 
Phinyomark et al. [15] extracted the mean absolute value 
(MAV) feature via DWT transformation for patterns 
classification. Doulah et al. [16] applied the DWT and root 
mean square (RMS) feature for neuromuscular diseases 
classification. Moreover, Xing et al. [9] proposed the wavelet 
packet node energy as the features for EMG pattern 
recognition. Previous findings showed that the feature 
extraction based on WT transformation was more capable in 
achieving a high classification performance. 

Among the existing EMG features, wavelength (WL) and 
mean absolute value (MAV) are the most frequently used. This 
is mainly due to their efficiency and simplicity in EMG pattern 
recognition [1], [15]. Based on WL and MAV features, we 
propose the enhanced wavelength (EWL) and enhanced mean 
absolute value (EMAV) features in this paper. The proposed 
features are tested by using the EMG data acquired from the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 6, 2019 

84 | P a g e  

www.ijacsa.thesai.org 

publicly access EMG database. Four popular machine learning 
algorithms include k-nearest neighbor (KNN), Naïve Bayes 
(NB), linear discriminate analysis (LDA) and support vector 
machine (SVM) are used in evaluation. In addition, several 
conventional EMG features are used in performance 
comparison. Moreover, the effectiveness of EWL and EMAV 
when combine with other features are also investigated. The 
experimental results show that EWL and EMAV can be 
valuable tools for rehabilitation and clinical applications. 

The organization of paper as follows: Section II describes 
the proposed EMG pattern recognition system. Meanwhile, the 
proposed feature extraction methods are also presented. 
Section III discusses the experimental results. At last, the 
conclusion is pointed in Section IV. 

II. MATERIAL AND METHOD 

Fig. 1 illustrates the flow diagram of proposed EMG 
pattern recognition system. Firstly, the EMG signals are 
acquired from the publicly access EMG database. Afterward, 
DWT is applied to decompose the signals into multiresolution 
wavelet coefficients. Next, the features are extracted from each 
coefficient to form an EMG feature set. The feature set that 
consists of several features are then fed into the classifiers 
(machine learning algorithms) for the classification of six hand 
movement tasks. 

A. EMG Data 

The EMG data is acquired from the sEMG for Basic Hand 
Movements Data Set via UCI Machine Learning Repository 
[17]. Note that only the first database is utilized in this work. 
This dataset consists of the EMG signals of six different hand 
movement tasks recorded from five healthy subjects (two 
males and three females). In the experiment, two channels were 
used in the process of recording. The subject was instructed to 
perform each hand movement for 6 seconds. Additionally, each 
movement was repeated for 30 times, and the EMG signals 
were sampled at 500 Hz [18]. The hand movement tasks are 
listed in Table I. 

 

Fig. 1. Flow Diagram of Proposed EMG Pattern Recognition System. 

TABLE I.  LISTED HAND MOVEMENTS 

No Hand movement task 

1 Spherical 

2 Tip 

3 Palmar 

4 Lateral 

5 Cylindrical 

6 Hook 

B. Discrete Wavelet Transform 

Basically, EMG signal is presented in time domain (TD). 
However, in TD, the frequency and spectral information are 
limited. Thus, the time-frequency method is applied in this 
research. Due to the efficiency and reliable of discrete wavelet 
transform (DWT) in biomedical signal processing, the DWT 
has become our major focus in this work. Briefly, DWT 
decomposes the EMG signals into multiresolution wavelet 
coefficients, which exhibits the signal in both time and 
frequency representations. By this way, the extracted features 
contain the time information at different frequency sub-bands 
[19]. This in turn will improve the time-frequency information, 
thus leading to high prediction accuracy. 

The wavelet decomposition involves two digital filters, 
which are low-pass and high-pass filters. Mathematically, the 
first decomposition level of DWT can be expressed as: 

[ ] [ ] [2 ]
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             (2) 

where x[n] represents the signal, D[k] is the detail and A[k] 
is the approximation. Note that detail and approximation are 
the outputs of high pass and low pass filters, respectively. The 
decomposition process is repeated until the desired level is 
satisfied [11], [20]. According to the findings in [21], the DWT 
with Biorthogonal 3.3 at fourth decomposition level is utilized 
in this paper. An illustration of wavelet decomposition of DWT 
at fourth decomposition level is shown in Fig. 2. 

C. Conventional Feature Extraction 

Feature extraction is a process that reforms the raw EMG 
data into a reduced expression set of features. A quality feature 
shall comprise of meaningful information that can best 
describe the target concept in the classification process [22]. In 
this study, 14 popular and commonly used EMG features are 
utilized. These features are selected due to their simplicity and 
promising performances in previous works. 

Mean absolute value (MAV) is one of the most popular 
EMG features, and it is defined as the average of the 
summation of absolute value of signal [6], [23]. MAV can be 
expressed as: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 
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Fig. 2. Wavelet Decomposition of DWT at Fourth Decomposition Level. 

Wavelength (WL) is another popular EMG feature, and it 
can be calculated by simplifying the cumulative length of 
waveform  summation [6], [24]. The WL can be defined as: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Zero crossing (ZC) is an EMG feature that measures the 
frequency information [6], [23]. Mathematically, ZC can be 
expressed as: 
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where x is the wavelet coefficient, T is the threshold value 
and L is the length of coefficient. 

Slope sign change (SSC) is a traditional EMG feature that 
determines the number of times in which the number of 
waveform changes sign [6], [23]. SSC can be calculated as: 
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where x is the wavelet coefficient, T is the threshold value 
and L is the length of coefficient. 

Average amplitude change (AAC) is another popular EMG 
feature, and it can be formulated as [24]: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Log detector (LD) is a feature that is good at estimating the 
exerted force, and it can be defined as [25]: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Root mean square (RMS) is one of the popular features 
which is useful in describing the muscle information [26]. In 
mathematics, RMS can be calculated as: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Difference absolute standard deviation value (DASDV) is 
another frequently used EMG feature, and it can be expressed 
as [26]: 

 
1 2

11DASDV
1

L

i ii
x x

L










          (10) 

where x is the wavelet coefficient and L is the length of 
coefficient. 

Myopulse percentage rate (MYOP) is defined as the mean 
of Myopulse output in which the absolute value of EMG signal 
exceeds the pre-defined threshold value [24]. MYOP can be 
given as follows: 
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where x is the wavelet coefficient, T is the threshold value 
and L is the length of coefficient. 

Willison amplitude (WA) is an EMG feature that acts as an 
indicator of the firing of motor unit potentials, and it can be 
computed as [25]: 
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where x is the wavelet coefficient, T is the threshold value 
and L is the length of coefficient. 

Simple square integral (SSI) is defined as the summation of 
square values of EMG signal amplitude, and it can be 
computed as [24]: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Variance of EMG signal (VAR) is good at measuring the 
signal power, and it can be expressed as [25]: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Modified mean absolute value (MMAV) is an extension of 
MAV feature by assigning the weight window function. 
Mathematically, MMAV can be computed as [24]: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

Modified mean absolute value 2 (MMAV2) is another 
extension of MAV feature by assigning the continuous weight 
window function, and it can be expressed as [24]: 
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where x is the wavelet coefficient and L is the length of 
coefficient. 

D. Proposed Enhanced Feature Extraction 

In this paper, two features namely enhanced mean absolute 
value (EMAV) and enhanced wavelength (EWL) are proposed 
for EMG signals classification. In the first step, the motivation 
of this work is briefly explained. Fig. 3 demonstrates an 
example of EMG signal. As can be seen, most of the 
information is found within the middle region of the signal. On 
one hand, the signal presented at the early and final stages are 
less informative due to slow reaction of the subject in the 
experiment. 

To overcome the issues above, EMAV and EWL features 
are proposed. The proposed features are formulated as follows: 

 

Fig. 3. Sample of EMG Signal. 

Enhanced Mean Absolute Value (EMAV) 
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Enhanced Wavelength (EWL) 
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where x is the wavelet coefficient and L is the length of the 
coefficient. As can be seen in Eq. (17) and (18), the parameter 
p is used to identify the influence of sample within the signal. 
In EMAV and EWL, a greater number of p is utilized for 20% 
to 80% of regions. This is because by strengthening the 
information content at the middle region, more valuable 
information can be obtained. In this way, the quality of features 
can be improved. Furthermore, it is seen that EMAV and EWL 
are the extension of MAV and WL with simple modification, 
and thus no much additional computational time is required in 
the evaluation. 

E. Machine Learning Algorithm 

After feature extraction, the EMG feature set is built. Four 
popular machine learning algorithms include k-nearest 
neighbor (KNN), Naïve Bayes (NB), linear discriminate 
analysis (LDA) and support vector machine (SVM) are 
employed to evaluate the effectiveness of proposed features in 
EMG pattern recognition. These machine learning algorithms 
are chosen due to their promising performances in previous 
works. 

KNN is one of the famous learning algorithms, which 
performs faster than other modern algorithms in classification 
tasks [27]. Briefly, KNN is categorized into learning and 
classification phases. The former gathers the training data for 
training work, whereas the latter predicts the test data with all 
the training data according to the k most similar training data 
[23]. In this work, the k-value of KNN is set at 1. 
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NB is a simple machine learning algorithm, and it is good 
at measuring the density of the dataset. Generally, NB employs 
the Bayes theorem to determine the probability of data by 
assuming all the features are independent [28]. It predicts the 
most probable class by examining the probability of test 
features. In this paper, NB with Gaussian kernel distribution is 
utilized. 

LDA is the most robustness learning algorithm in EMG 
studies. Additionally, LDA is high speed training and 
computationally less expensive [29]. In LDA, the data is 
assumed to be normally distributed with equal covariance 
matrices. The main idea of LDA is to discriminate the observed 
features to the target class in which the posteriori probability 
can be maximized [25]. In this study, the LDA with pseudo-
linear function is utilized. 

SVM is a well-known and powerful learning algorithm in 
EMG pattern recognition. The general idea of SVM is to seek 
out the hyperplane that partitions the data into desired class in 
which the data is transformed into high dimensional space [30]. 
However, SVM is designed for binary class, but not the multi-
class problems. Therefore, the SVM with one-versus-all 
approach and radial basis kernel (RBF) function is applied in 
this paper [31]. 

III. RESULTS AND DISCUSSIONS 

Remark, the features are extracted from the EMG signals 
via DWT transformation. For each feature type, 16 features (1 
feature × 2 channels × 8 coefficients) are extracted from each 
movement from each subject. Afterward, the extracted features 
are fed into the KNN, NB, LDA and SVM for the classification 
process. In this work, 10-folds cross-validation method is 
applied. In 10-folds cross-validation manner, the data is equally 
divided into 10 folds, where each fold is used for testing in 
succession, and the remainder 9 folds are used to train the 
classifier. Finally, the mean accuracy obtained from 10 folds is 
recorded. 

In the first part of the experiment, the performance of single 
feature (EWL and EMAV) is examined, and the result is 
compared with other 14 conventional EMG features. Table II 
outlines the average accuracy of 16 features over five subjects. 
Note that the best result for each classifier is bolded. From 
Table II, the average accuracy achieved by the proposed 
features (EMAV and EWL) were much better than other 
conventional features for all learning algorithms. From the 
result obtained, it can be inferred that EMAV and EWL are 
powerful features in EMG signals classification. 

Among the KNN, NB, LDA and SVM, the optimal 
learning algorithm is found to be LDA, which contributed the 
highest classification accuracy in this work. Inspecting the 
result on LDA, it is seen that EMAV and EWL contributed 
competitive performance in current work. Consequently, EWL 
and EMAV scored high average accuracy of 95.11% and 
96.89%. The result obtained indicates that EMAV and EWL 
features were able to provide promising performance in this 
research. 

In the second part of the experiment, the efficacy of the 
combination of EWL and EMAV with other features is 
investigated. Table III demonstrates the average accuracy of 14 

different feature combinations over five subjects. In this table, 
the best result for each classifier is highlighted with bold text. 
As can be observe, instead of using a single feature, the 
combination of EWL and EMAV with other features can 
effectively improve the prediction accuracy. By applying LDA, 
it is seen that the combination of EWL+EMAV+MAV+WL 
contributed the optimal average accuracy in differentiating the 
six different hand movements. Moreover, it is observed that 
EMAV+EWL+ZC+SSC achieved the best average accuracy 
when KNN, NB and SVM are utilized. On the whole, it can be 
inferred that the combinations of EMAV and EWL with other 
features were beneficial in improving the classification 
performance of EMG pattern recognition system. 

Based on the result obtained, the best average accuracy is 
achieved by using the proposed combined EMG feature set 
(EWL+EMAV+MAV+WL) with LDA classifier, 97.56%. In 
comparison with other conventional feature sets, the proposed 
feature set is highly capable in discriminating the EMG 
patterns, which leads to better classification result. On the other 
hand, the experimental results show the superiority of LDA 
against KNN, NB and SVM. This might because the extracted 
features consist of high linearity, thus resulting in high 
prediction accuracy. 

TABLE II.  AVERAGE ACCURACY OF 16 FEATURES OVER 5 SUBJECTS 

Feature 
Average accuracy (%) 

KNN LDA SVM NB 

MAV 94.56 96.33 95.11 93.22 

WL 94.56 94.56 95.89 93.78 

ZC 94.22 95.11 95.00 92.56 

SSC 83.89 87.22 89.00 83.67 

AAC 92.56 94.56 94.44 93.78 

LD 90.22 91.78 92.78 91.56 

RMS 94.00 95.67 95.11 93.78 

DASDV 93.56 95.89 95.11 93.22 

MYOP 81.00 86.33 86.89 84.33 

WA 75.67 81.56 79.67 80.78 

SSI 93.00 90.00 94.78 92.44 

VAR 90.56 90.00 92.44 92.44 

MMAV 94.33 95.44 95.44 93.00 

MMAV2 91.44 93.56 93.56 92.11 

EWL 95.00 95.11 96.22 93.56 

EMAV 94.67 96.89 96.11 93.89 

TABLE III.  AVERAGE ACCURACY OF 14 FEATURE COMBINATIONS OVER 5 

SUBJECTS 

Feature combination 
Average accuracy (%) 

KNN LDA SVM NB 

EMAV+EWL 95.00 96.89 96.22 94.56 

EMAV+EWL+MAV+WL 94.44 97.56 96.22 94.22 

EMAV+EWL+SSC+ZC 96.00 95.22 97.22 96.56 

EMAV+EWL+MYOP+WA 95.22 95.11 96.33 93.89 

EMAV+EWL+RMS+DASDV 95.00 96.67 96.22 94.78 

WL+MAV+SSC+ZC 95.33 96.11 96.78 96.44 

MYOP+WA+SSI 93.00 89.78 94.67 93.67 

MAV+WL+MYOP+WA 94.67 95.33 96.11 93.67 

MAV+MMAV+MMAV2 94.22 94.56 95.67 93.67 

AAC+LD+RMS+DASDV 94.22 96.11 95.22 94.00 

WL+MAV 94.56 96.33 95.89 94.11 

AAC+LD+MYOP+WA 77.00 94.22 81.00 92.78 

SSI+VAR+MMAV+MMAV2 93.00 95.44 94.67 93.56 

MYOP+WA 75.78 85.78 79.67 86.67 
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Fig. 4. Confusion Matrix of Combined Feature Set 

(EMAV+EWL+MAV+WL) with LDA over 5 Subjects (%). 

Furthermore, the result of class-wise accuracy (accuracy of 
each hand movement task) is discussed. Fig. 4 illustrates the 
confusion matrix of proposed combined feature set 
(EMAV+EWL+MAV+WL) with LDA over five subjects. 
Note that the number 1 to 6 in both axes represents the hand 
movement types. From Fig. 4, it is observed that the tip 
movement (2nd hand movement task) has been perfectly 
recognized (99.32%), followed by cylindrical movement 
(97.96%). The results obtained evidently show the efficacy of 
EWL and EMAV in EMG signals classification. Hence, EWL 
and EMAV features can be appropriate choices for EMG 
feature extraction in clinical and rehabilitation applications. 

IV. CONCLUSION 

The quality of feature is one of the important factors that 
can greatly affect the accuracy in EMG signals classification. 
In this paper, two modified versions of WL and MAV features, 
namely EWL and EMAV are proposed for efficient EMG 
signals classification. The proposed features are tested with the 
EMG data of five healthy subjects, and the results are further 
compared with other conventional EMG features. In addition, 
the performance of the combinations of EWL and EMAV with 
other features are also investigated. Our results showed that the 
best classification performance was achieved by the LDA and 
combined feature set (EWL+EMAV+MAV+WL). In short, 
EWL and EMAV can be the valuable tools in EMG pattern 
recognition. 

There are several limitations in this work. First, only five 
combinations of feature sets (with EMAV and EWL) are 
applied. However, it is worth noting that the combination of 
EMAV and EWAL with other EMG features can be also 
considered for performance enhancement. Second, the scope of 
this study is limited to one time-frequency method, DWT. 
However, other popular time-frequency methods such as 
wavelet packet transform (WPT) and empirical mode 
decomposition (EMD) are also applicable to EMG signal 
processing. In the future, the EWL and EMAV can be 
extracted directly from EMG signals without performing the 
transformation. Therefore, more effective EMG pattern 
recognition system can be developed in future work. 
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