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Abstract—The task of elaborating accurate test suites for pro-
gram testing can be an extensive computational work. Mutation
testing is not immune to the problem of being a computational
and time-consuming task so that it has found relief in the use of
heuristic techniques. The use of Genetic Algorithms in mutation
testing has proved to be useful for probing test suites, but it has
mainly been enclosed only in the field of imperative programming
paradigms. Therefore, we decided to test the feasibility of using
Genetic Algorithms for performing mutation testing in functional
programming environments. We tested our proposal by making a
graph representations of four different functional programs and
applied a Genetic Algorithm to generate a population of mutant
programs. We found that it is possible to obtain a set of mutants
that could find flaws in test suites in functional programming
languages. Additionally, we encountered that when a source code
increases its number of instructions it was simpler for a genetic
algorithm to find a mutant that can avoid all of the test cases.

Keywords—Mutation testing; heuristics; functional program-
ming

I. INTRODUCTION

Usually, when a programmer develops a software, it re-
quires that when this code is executed; the obtained answers
are correct given the right set of inputs. However, this required
performance is sometimes not achieved, due to incorrect an-
swers given when the execution of the program is completed.
The main reason for this so-called abnormal behavior of an
application is due to the presence of flaws within the code.
In a way to perform an extensive search for these flaws is to
elaborate a group of tests cases; in which a program should
return the correct answers established by them. The elaboration
of these tests cases is not a trivial task because it requires a
certain level of detail to try to catch a flaw in the program
tested. Because of this, it is needed a form to evaluate the
quality of these test cases. An important part to consider when
developing a test case is that this should detect if a program
behaves abnormally when specific inputs are entered. A naive
way to perform the quality of a test case would be to cause
intentional flaws in a program and to observe if the answer that
this faulty program returns is the same as the original program.
We usually called this flawed program a mutant. In the case
that a mutant and a original program return different outputs
when dealing with the same input that is in a test case, we say
that test case has killed the mutant. In the opposite case we can
say that the mutant has survived. This mutant generation can
be performed by using techniques based on heuristics, such
as using Genetic Algorithms. We found two things related
to the use of heuristics in mutation testing: a) The different
methods for mutation generation using Genetic Algorithms

are efficient in terms of searching in an ample solution space
and, b) Even though, Heuristics has been used for mutation
testing in imperative languages, their use for testing functional
programs was scarce. This last characteristic could be due that
programs made by using functional paradigms are less prone
to flaws, this because of the formal or mathematical aspects
of their constructs. We came up with the research question if
that strength of the functional paradigm could also be present
in impure versions of functional programming languages such
as in Scheme. It is worthy of mentioning that an impure
functional language is the one that has some imperative within
it. With this research question in mind, we wanted to test how
well perform mutation testing in functional paradigms. This
article is divided in the following sections: In Section II, we
made a brief introduction to test, mutation testing and Genetic
Algorithms. In Section III, we developed our genetic operators
and fitness function; along with a graphical conversion of the
code that will be exposed to these genetic operators. In Section
IV, we show our results obtained by testing our technique in
the implementation of different functional programs, ending
with the conclusions of this research work.

II. BACKGROUND AND RELATED WORK

A. Software Testing

Now-a-days, software development is an activity that is
present in many aspects of the daily routines and activities
in which the human being is immersed. Some of these tasks
could be reasonably trivial such as processing pictures or
processing documents, while others could perform critic tasks
as controlling an airplane. This is the main reason why a simple
error in the software could affect a considerable number of
users and stakeholders. Nevertheless, the software should not
contain errors or behave in unexpected ways deviated from
their regular tasks. There exists a certain number of factors
that could affect the software behavior brought up from their
implementation part. The field of software design tries to
discover these factors in a structured and detailed process that
is oriented to the development of tests. These test could allow
us to prove the validity of the implemented software [1].

One way of testing if a program behaves correctly is to
prove it by using a technique known as mutation testing.
A mutant is program altered that, when exposes to a set of
different inputs, we can observe if, by behaving in a different
or anomalous way, a set of test cases could detect this defective
program. A simple way to understand this technique is shown
in Fig. 1.

We can observe in Fig. 1 that we start with the source
code of a program that we would like to test. Considering
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Fig. 1. Relationship between the Mutated programs and the Test Cases

this initial code one can generate modified versions of the
same program called mutants. Therefore, a mutant suffers
inner modifications of their original code, and after these
changes, they are exposed to a set of test cases. The test
cases will serve to prove if they are capable of finding errors
in this mutated program. This verification process follows
the criteria that a test case should be able of detecting
anomalous behaviors of a code. If the mutated program,
when is exposed to a test case, returns an output different to
the one that the original program returns; this would mean
that the test case was able to detect this error. Therefore,
we can say that the mutant is killed. The problem arises
when both, the original and the mutated program, returns the
same answer that was given by the test case. In the situation
mentioned above, we can say that the mutant survives. The
main reason for this behavior is because the test case was
unable to detect an unusual mode, and therefore the test cases
should be improved. An important issue to mention is that,
in the generation of mutants, we should consider generating
fully-functioning mutants instead of non-executable ones. An
interesting point of view is expressed in the book of Paul
Ammann and Jeff Offutt [1], where the authors mention that
in the test cases, irrelevant if their manual or automatically
generated, they are tested to verify the output of a program.
In consequence, if there is an erroneous output, the program
should be corrected, and the mutation process is performed
in the same fashion as we described before. At this point,
we believe that it will be valuable to mention a set of formal
definitions that should hold in the process of killing mutants:

Definition 1: Given a mutant m ∈ M such that m is a
valid mutant and m is derived from the ground string p. Then
if the answer(m) 6= answer(p) given a test t, t kills m if
the first condition holds.

Note: According to Paul Ammann and Jeff Offutt [1],
a ground string is defined as a source code without any
alteration.

The authors also mention that a mutant should uphold the
following conditions:

a) Reachability: This feature refers that when we test a
mutant, the test case should be able to reach until the point
where we mutated an instruction.
b) Infection: An infection occurs when a reached mutated

instruction will generate a change in the state of a program.
The state of a program, in this scenario, is similar to
the concept given in the different paradigms in which a
programming language could be enclosed.
c) Propagation: Once the mutant is executed, the program
could output an erroneous output.

The process of killing mutants is the one that will allow
us to determine the effectivity of a test case, for this purpose
there exist a metric named the mutation score and it can be
defined as follows:

mutation score =
|deleted mutants|

|non− equivalent mutants|
(1)

According to equation (1), a perfect metric will hold a value
of one, but this theoretical value can be complicated to obtain;
so it would be better to work with threshold values.

There exists, also, a special kind of mutants called of
equivalent type. An equivalent mutant is the one that returns
the same answer as an unmodified program when they are
exposed to a set of test cases. In summary, it does not
exist a set of test cases that can find differences between
the mutated program and the original program [2]. Some
authors, such as Budd and Angluin [3], mentions that this
is an irresoluble problem; therefore, it does not exist an
efficient or at least known-way that could detect a set of
mutants that are equivalents. Other authors like Offutt and
Pan [4] also mention the problem of the creation of equivalent
mutants. These authors followed a restriction-based system
considering a variant of the Feasible Path Problem (FTP).
The three conditions that a mutant should uphold mentioned
by Paul Ammann and Jeff Offutt [1] are also defined by other
researchers such as Botacci [5], but with subtle modifications.
For example, this author considers that the features that
should be present are:

a) Reachability.
b) Necessity, according to these criteria if we compare the
original program P with a mutated line on a mutated program
M, there should exist a difference in the state of execution of
a program.
c) Sufficiency, this feature determines that the output of P and
M should be distinct.

Mutation testing is a vast and evolving area of study, that
has changed from simple code modifications to complex ones
to examine the strength of our test suites. The reader interested
in a complete survey about this subject is encouraged to review
the research work of Papadakis, Kintis, Zhang, Jia, and Le
Traon [11] In the research work of Le, Amin, Gopinath and
Groce [10] is mentioned the fact that mutation testing has been
primarily applied to imperative programming. Nevertheless
due to the relevance that is having this paradigm in some
fields such as Big Data, Data Science and with the inclusion
of functional paradigm constructs in imperative languages, the
interest of performing mutation testing in functional languages
was envisioned as an exciting research field. The authors
mentioned previously developed a software tool denominated
MuCheck that performed mutation testing in a functional
paradigm by using Haskell as the chosen language. It is worthy
of mentioning that Haskell belongs to the family of pure func-
tional languages, while in our research, we have considered
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Scheme, which is categorized as an impure one. An impure
functional language is the one that despite belonging to the
functional paradigm; it has some characteristics that are present
in other paradigms, such as imperative constructs. The reason
for choosing this impure functional language was because
Scheme, represented actually by the Racket programming
language, has applications in different real-world applications.
Furthermore, Racket or Scheme is considered a programming
language that it could raise the development of the Language-
Oriented Programming (LOP). A LOP language is the one
that would allow developers to use a programming language
that could help them to design programming languages ori-
ented to suit their needs, so eventually, it fulfills the need
of using different programming languages constructs in one
host programming language by allowing the programmer to
develop their personalized programming language [12]. The
reader interested in this particular characteristic can review
the following link: https://beautifulracket.com/

B. Genetic Algorithms

The Genetic Algorithms (GAs) are a technique of searching
and optimization based on heuristics. These are clear contra-
position of other methods based on calculus or in dynamic
programming. One of the main reasons for their usage is
that they perform appropriately in higher dimensions where
the problem known as the curse of dimensionality, could be
present. Previous techniques based on non-guided searches or
randomly generated have existed before the appearance of the
GAs, but with the limitation that they could get stuck in a local
optimum [6].

Components of a GA and Genetic Operators

In this section, we will describe some components and
operators that are commonly used on the GAs. We should
consider that the literature about this topic is diverse, but
we will focus our work in the research made by Goldberg
[6], Mitchell [7] and Sivanandam [8]. Among their principal
components are the chromosome, part that allows forming a
population; and a fitness function that will select the best
individuals by following a set of Genetic Operators. There
exist two types of operators that are work jointly with the
population and the fitness functions. The operator of Selection
allows us to chose a couple of parents for generating a new
individual [8]. The techniques for the selection of individuals
are diverse, but most of them are centered into probabilistic
or stochastic methods. According to Sivanandam [8], there
exists what is called a pressure selection, which is a trick
that allows one individual to be chosen over another one.
Another type of operator is called Reproduction, and according
to Holland [9] it is a function that allows forming a new
population, considering the selection criteria performed by the
fitness function. For reproducing a couple of individuals, they
use two functions more. The first one selects randomly two
parts of each chromosome to be exchanged with one another
in a process called Crossover. After this process and before a
new couple of chromosomes are about to be put into the pool
of individuals, an operator of mutation can be present. The
operation of mutation what it does is to select one portion of
each chromosome and randomly, with a very small probability,
changes its value one value for another. The importance of
this operator is that it will allow, in some cases, to push the

Fig. 2. Relationship between the Mutated programs and the Test Cases

chromosomes to be replaced for subtle modifications of them
and to permit a diversification into the search space.

III. METHODOLOGY

A. Class Diagram

We have developed a set of classes with the sole goal
of parsing our source code. It also helps to define other
constituents such as functions and parameters, and operations
that would aid in converting our source code into a graph
representation. The graph representation would serve then for
the mutant generation, which at the end will form part of the
population for our genetic Algorithm. Our schemata of classes
present the following components:

Program: It represents the code analyzed or its mutation.
It contains data of type string which stores the name, a list of
graphs that represents the defined functions and a list of nodes
which corresponds to the called functions.

Graph: Represents the definition of a un function. It
contains data of type string for storing its name, a list also of
type string that contains its parameters and a node that points
to the actions to be performed.

Node: It can represent a parameter. In the way we program
our classes a node can also be a function that is why this class
has a list of nodes that represents the parameters of a function.
It contains an attribute of type operation and a string data type
that stores the name of the parameter in the case that it does
not correspond to a function.

Operation: Represents the name of the function that is
being executed.

In Fig. 2, we can observe the class diagram of our solution.

B. Algorithms

We have defined the following algorithms for our solution:

Algorithm: Parser code for function
search.

if character!= EOF
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while character = \" or character = \\n"
or character = \)"

if scan(character) = EOF
return

if character = \(\
scan(character)
word <- obtain_word(character)
if word = \define"

graph <- parse_function(character)
program.funciones.push(graph)
parse(character, program)

else
num <- 0
character <- \(\
node <- parse_code(character, num)
node.operation.name <- word
program.codigo.push(node)
parse(character, program)

else if character = \ ’ "
num <- 0
node <- parse_code(character, num)
node.operation.name <- \ ‘ \
program.codigo.push(node)
parse(character, program)

Algorithm: Code parser. Adds the parameters
or arguments of a function

num++
while character = \ \ or character = \\n"

scan(character)
if character = \(\

scan(character)
if character = \(\

node.operation.name <- \ \
else

node.operation.name <-
obtain_word(character)

while character ?= \)"
while character = \ \
or character = \\n"

scan(character)
node.parameters.
push(parse_code(character, num))

scan(character)
else if character = \ ‘ \

node.operation.name <- \ ‘ \
scan(character)
while character = \ \ or character= \\n"

scan(character)
if character = \(\

scan(character)
while character ?= \)"

while character = \ \ or
character = \\n"

scan(character)
node.parameters.push
(parse_code(character,num))

scan(character)
else

node.parameters_final <-

obtain_word(character)
else
node.parameters_final <-
obtain_word(character)

return node

Algorithm: Function parser. Creates a graph
and inputs the information of the declared
function

while character = \ \ or character = \\n"
scan(character)
if character = \(\
scan(character)
graph.name <- obtain_word(character)
while ( character!= \)"
string <- obtain_word(character)
graph.parameters.push(string)

scan(character)
else
graph.name <- obtain_word(character)

num <- 0
graph.code <- parse_code(character, num)
graph.nodes_quantity <- num
return graph

For the part of the Genetic operators that we used, we
defined the following algorithms:

Algorithm: Obtain word. Returns a string
with the posterior word to the character
that was input as a parameter.

list l
if operation = \list" || operation=\vector"
|| operation = \ ’ "
if operation = \list" || operation=\ ‘ \
l.push_back(\vector")

else
l.push_back(\list")

else if operation = \car" || operation=\cdr"
l.push_back(\car")
l.push_back(\cdr")
l.remove(operation)

else if operation = \+" || operation = \-" ||
operation = \*" ||

operation = \/"
l.push_back(\+")
l.push_back(\-")
l.push_back(\*")
l.push_back(\/")
l.remove(operation)

else if operation = \<" || operation = \>"
|| operation = \<=" ||

operation = \>="
l.push_back(\<")
l.push_back(\>")
l.push_back(\<=")
l.push_back(\>=")
l.remove(operation)

else if operation = \and" || operation = \or"
l.push_back(\and")
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l.push_back(\or")
l.remove(operation)

else
return 0

m <- random(l.size)
operation <- l[m]
mutated <- 1
return l

Algorithm: Program crossover. Extracts parts
of a program and exchanges them.

m <- random(program1.functions.size)
function1 <- program1.functions[m]
function2 <- program2.functions[m]
destination1 <-random(function1.nodes.size)
destination2 <-random(function2.nodes.size)
intercambiar(destination1, destination2)

C. Genetic Operators

Because we worked with the functional paradigm, we chose
the following operators or instructions to be exchanged. This
process is performed within the mutation step of a program.

1) Fitness Function: The Fitness or Adaptation function is
the one in charge of selecting the best individuals among a
population of entities in a given generation of a GA. We have
defined the following items and equations for this section:

T = quantity of tests

en = correct answer for the n test (value of 1 or 0)

tn = quantity of mutants not detected by test n

m = quantity of mutants

cn = it counts the results for the n test,
irrelevant if the answer is correct or not

Na = quantity of nodes in the actual program

Ni = quantity of nodes in the original program

These parts have served to formulate the following equa-
tions, that we have preferred to call them criteria:

Criteria 1:∑T
n=1

[
en
(
1− 7tn

10m

)]
∗ 10

This equation counts the number of tests that left the mutant
undetected. Approximately, 70 percent of the score is given to
the test that detected a certain amount of mutants. The highest
score is given to the test that picked most of the remaining
mutants. The value of 7/10 is for giving more weight to those
mutants that evade the tests.

Criteria 2:∑T
n=1 (cn) ∗

1
T

It counts the number of answers given by a mutant,
irrelevant if these are correct or not.

Criteria 3:(
1− |Na−Ni|

3Ni

)

It measures how much has varied the number of nodes
of the mutant with regard to the original program. Less
variation means a higher score. This criterion is used for
neglect programs with a mutation threshold higher than what
could be considered an useful mutation.

When we combine the criteria above mentioned we would
end up with the following fitness function:∑T

n=1

[
en
(
1− 7tn

10m

)]
∗ 10 +

∑T
n=1 (cn) ∗

1
T +(

1− |Na−Ni|
3Ni

)
Once that we have defined our algorithms and operators to

be used in our Genetic Algorithm we proceed to the imple-
mentation of our proposal. We have tested our program with
three different types of programs, made under the functional
paradigm and using Scheme as a programming tool. The
programs tested were a) a sorting function using quicksort, b) a
function that solves a quadratic equation, and c) two functions
that implement the Prim and Kruskal algorithms for obtaining
minimum weighted spanning trees. We will describe the results
of our experimentation in the following section.

IV. RESULTS

At the moment of executing our program with the target
source codes; it starts to search for an opening bracket in the
source code. If this is found the next instruction is analyzed and
if it corresponds to the term define; a graph that represents this
function is created along with its corresponding parameters.
This procedure is done in two steps: a) we obtain the name or
the parameters of a function, and b) we collect the statements
or calling to other programs if this is the case. With these,
we create a node that stores all the information of a function
and is ready to be mutated. It is worthy of mentioning that
with the graph obtained from a program, we generate several
copies and each of these copies is mutated according to the
operators defined in Section 3.3. Each mutated program or
mutant is executed with all the tests and, later, a score is
assigned by using our fitness function. When we end up with
this procedure, we keep 20 percent of the mutants with a
higher score, crossing them form generating new individuals.
The process mentioned above is repeated until we reached the
number of programs that we defined beforehand as the number
of individuals in each generation. For all the three programs
we have chosen the following parameters:

• Number of mutants or individuals by generation: 100

• Number of tests: 3

• Generations: 80

A. Quicksort

The original code is the following:

Quicksort: Original source code

#lang racket

(define (partition compare l1)
(cond

((null? l1) ’())
((compare (car l1)) (cons (car l1)
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TABLE I. NUMBER OF TESTS EVADED BY THE QUICKSORT MUTANT

Generation Altered Nodes Evaded Tests Score
Mutant 1 1 33 2 21.02
Mutant 2 3 33 2 20.51
Mutant 3 2 33 2 20.25

(partition compare (cdr l1))))
(else (partition compare (cdr l1))
)))

(define (quicksort l1)
(cond

((null? l1) ’())
(else (let ((pivot (car l1)))

(append (append (quicksort
(partition (lambda (x)(<x pivot))
l1))
(partition(lambda(x)(=x pivot)) l1))
(quicksort (partition (lambda (x)
(> x pivot)) l1))))
)))

(quicksort (read))
(sleep 5)

In Fig. 3, we can observe the number of generations that
our GA had to pass for reaching a stable score. In Table I, we
can see that we managed only to evade two of the test cases
given. In this situation, we can argue that while the original
program contains less number of code lines, this would be less
likely to obtain a useful mutant program. The mutated code is
the following:

Quicksort: Mutated version.

(define (partition compare l1 )
( cond ( ( null? l1 ) ’( ) )

( ( compare ( car l1 ) ) (cons(
car l1 ) ( partition compare
( cdr l1 ) ) ) )
( else ( partition compare(cdr l1)
) ) ) )

(define (quicksort l1 )
( cond ( ( null? l1 ) ’( ) )

( else (let ((pivot ( car l1)))
( append ( append ( quicksort
( partition ( lambda ( x )
(>x pivot) )l1)) --modified line
partition ( lambda ( x )
( = x pivot ) ) l1 ) )
(quicksort(partition(lambda(x)
( > x pivot ) ) l1 ) ) ) ) ) ) )

( quicksort ( read ) )

and in Fig. 4 we can observe the graph generated of a
mutant version of Quicksort.

Fig. 3. Number of generations performed by the GA for the Quicksort
program

Fig. 4. Generated graph sample of a mutated version of Quicksort

B. Quadratic Equation

In this example, we tried to generate mutant versions of a
quadratic equation solver. We can see in Table II, the different
test cases with their corresponding correct outputs that should
be returned by each mutated program. The approximate run-
ning time for the generation of mutants was roughly 10 hours,
and a version of the original program is the following:

Quadratic Equation Solver: Original source code.
#lang racket
(define (calc-disc a b c)
(+ (expt b 2) (* -1 (* 4 a c))))

(define (quad-eq a b c)
(if (< (calc-disc a b c) 0)

(begin
false
)

(begin
(if (= (calc-disc a b c) 0)

(/ (* -1 b) (* 2 a))

www.ijacsa.thesai.org 543 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

TABLE II. INPUTS AND OUTPUTS OF THE THREE DISTINCT TEST CASES
TO BE USED IN THE QUADRATIC EQUATION SOLVER.

Test 0 Test 1 Test 2

Input
0.5
0.5
0.125

1
1
9

8
20
2

Output -0.5 #f -0.10435
-2.39564

Fig. 5. Scores obtained in each of the generations

(values (calc-eq a b (sqrt
(calc-disc a b c)))
(calc-eq a b (* -1 (sqrt
(calc-disc a b c)))))

))))

(define (calc-eq a b d)
(/ (+ (* -1 b) d)(* 2 a)))

(quad-eq (read) (read) (read))

In Fig. 5 and Table III, we can observe that the generation
in which we obtained a mutant that bypassed the three test
cases appeared on generation 19. The presence of this mutant
means that the test case was not able to find unusual situations
in a flawed version of the program. This implies that the test
suit requires improvements or to cover a more considerable
amount of probable cases that would allow the mutant to be
detected.

TABLE III. NUMBER OF TESTS EVADED BY THE QUADRATIC EQUATION
MUTANT SOLVER

Generation Altered Nodes Evaded Tests Score
Mutant 1 20 7,19 3 23.4392
Mutant 2 21 7,19 3 22.1092
Mutant 3 19 7,19 3 21.3392

The source code of the mutant that managed to evaded the
three test cases is the following:

Quadratic Equation Solver: Mutated Version.

#lang racket
(define (calc-disc a b c )

( + ( expt b 2 ) ( * -1 ( * 4 a c ) ) ) )

TABLE IV. INPUTS AND OUTPUTS VALUES FOR THE GENERATION OF A
TEST SUITE USING THE ALGORITHMS OF PRIM AND KRUSKAL

Test 0 Test 1 Test 2 Test 3

Input

((4 0 1) (4 0 2)
(6 0 3) (6 0 4)
(2 1 2)(8 2 3)
(9 3 4))

((75 0 2) (9 0 1)
(95 1 2) (19 1 3)
(42 1 4) (51 2 3)
(31 3 4))

((13 0 3) (24 0 1)
(22 0 4)(13 0 2)
(22 1 2)(13 1 3)
(13 1 4) (19 2 3)
(14 2 4) (19 3 4))

((10 0 1) (10 1 2)
(8 1 6) (13 1 7)
(8 2 7) (132 8)
(10 2 3) (10 3 4)
(8 3 8) (10 5 6)
(10 6 7) (10 7 8)
(10 8 9))

Output

’((0 1)
(0 3) (0 4)
(1 2) (1 0)
(2 1) (3 0)
(4 0))

’((0 1)
(1 3) (1 0) (2 3)
(3 1)(3 2) (3 4)
(4 3))

’((0 3)(0 2)
(1 3) (1 4)
(2 0) (3 1)
(3 0) (4 1))

’((0 1) (1 6) (1 0)
(2 7) (3 4) (3 8)
(4 3) (5 6) (6 1)
(6 5) (7 2) (8 9)
(8 3) (9 8))

Fig. 6. Scores obtained in each of the generations

(define (quad-eq a b c )
( if ( < ( calc-disc a b c ) -1 )

( begin false )
( begin

(if ( = ( calc-disc a b c ) 0)
( * -1 b ) --missing (* 2 a)
( values ( calc-eq a b
( sqrt ( calc-disc a b c )))
( calc-eq a b ( * -1
( sqrt ( calc-disc a b c )))
) ) ) ) ) )

(define (calc-eq a b d )( / ( + ( * -1 b )d)
( * 2 a ) ) )

( quad-eq ( read ) ( read ) ( read ) )

, and the generated graph of the mutant can be observed
in Fig. 6:
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C. Prim and Kruskal

As the latest test for our proposal, we applied our technique
for the generation of mutants of two well-known algorithms
such as Prim and Kruskal. For these two algorithms, we
decided to prove how many tests were evaded from a test suit
of four items. We generated approximately 100 mutants, and
our GA ran for 80 generations. The average time for obtaining
useful mutants was roughly about 20 hours. In Table IV, we
can observe the corresponding inputs and the right outputs that
should be obtained when executing these algorithms.

TABLE V. DESCRIPTION OF THE MUTANT THAT MANAGED TO AVOID THE
THREE TEST CASES FOR THE ALGORITHM OF PRIM

Generation Number Altered Nodes Evaded Tests Score
Mutant 1 15 9, 10, 11, 12, 13, 21, 25 3 29.2684

Fig. 7. Scores obtained in each of the generations

In Fig. 7, we can observe the number of generations that
had to pass until our GA converged to a stable value for the
Prim case. In Table V, we can see the data from a mutant that
was not detected by the three cases of the test suite and was
found in generation number 15.

The original source of the implementation of the Prim
algorithm is the following:

Prim Algorithm source code: Original version.

#lang racket
(require graph)

(define grafoP(weighted-graph/undirected null))

(define (mayor valor lista)
(if (empty? lista)

valor
(if (> (car valor) (caar lista))

(mayor valor (cdr lista))
(mayor (car lista) (cdr lista)))))

(define (orden x y)
(if (= (length y) 0)

x
(orden (cons (mayor ’(-1 -1 -1) y)x)

(remove (mayor ’(-1 -1 -1) y)
y))))

(define ordenar (lambda (lista)
(orden ’() lista)))

(define (agregarVecinos grafoP lista nodo)
(if (empty? lista)

’()
(if (or (= (cadar lista) nodo) (=
(caddar lista) nodo))

(if (and (= (cadar lista) nodo)
(not (has-vertex? grafoP
(caddar lista))))
(cons (list (caar lista)
(caddar lista) nodo)

(agregarVecinos grafoP
(cdr lista) nodo))

(if (and (= (caddar lista)
nodo) (not (has-vertex?
grafoP (cadar lista))))

(cons (list (caar lista)
(cadar lista) nodo)
(agregarVecinos grafoP
(cdr lista) nodo))

(agregarVecinos grafoP
(cdr lista) nodo)))

(agregarVecinos grafoP (cdr lista)
nodo))))

(define (prim grafoP nodos temporal nodo
primero)
(if (equal? primero #t)

(let ((aux(remove-duplicates(ordenar
(agregarVecinos grafoP
nodos nodo)))))

(begin
(add-edge! grafoP (cadar aux)
(caddar aux) (caar aux))
(prim grafoP nodos
(remove-duplicates
(ordenar
(append (cdr aux)
(agregarVecinos grafoP
nodos (cadar aux))))) nodo #f)))

(if (empty? temporal)
(get-edges grafoP)
(let ((aux (remove-duplicates
(ordenar (append temporal
(agregarVecinos grafoP nodos
(cadar temporal)))))))
(if (not (has-vertex? grafoP
(cadar aux)))

(begin
(add-edge! grafoP (cadar
aux)(caddar aux)(caar aux))
(prim grafoP nodos(cdr aux)
nodo #f))

(prim grafoP nodos (cdr aux)
nodo #f))))))

(define nodos (read))
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Fig. 8. Graph generated for the mutated version of the Prim algorithm

(prim grafoP nodos ’() 0 #t)

and a section of the mutated version of the source code
with the portions changed commented:

Prim Algorihtm source code: Mutated Version

#lang racket
(define grafoP ( weighted-graph/undirected
null ) )

(define (mayor valor lista )( if ( empty?
lista )

valor (if ( > ( car valor )(caar
lista ) )
( mayor valor ( cdr lista ) )
( mayor ( car lista )
( cdr lista ) ) ) ) )

(define (orden x y )( if ( = ( length y )0)
x ( orden

( cons ( mayor ’( -1 -1 -1 ) y ) x)
( remove ( mayor ’( -1 -1 y ) y ) y)
--modified line) ) )

(define ordenar ( lambda ( lista )
( orden ’( ) lista ) ) )

The generated graph of the mutant can be observed in Fig.
8.

When we tested an implementation of the Kruskal algo-
rithm we also found a mutant that, with sublet modifications,
was able to evade all the test cases defined. The source code
of our implementation was:

Kruskal implemention: original source code

#lang racket

(define nodos1 (read))

(define grafoK (weighted-graph/undirected
null))

(define (mayor valor lista)
(if (empty? lista)

valor
(if (> (car valor) (caar lista))

(mayor valor (cdr lista))
(mayor (car lista) (cdr lista)
))))

(define (orden x y)
(if (= (length y) 0)

x
(orden (cons (mayor ’(-1 -1 -1) y)x)
(remove (mayor ’(-1 -1 -1) y) y))))

(define ordenar (lambda (lista)
(orden ’() lista)))

(define ciclo (lambda (v1 v2 grafo)
(if (and (has-vertex? grafo v1)
(has-vertex? grafo v2))
(let ((aux1 (get-neighbors grafo v1))
(aux2 (get-neighbors grafo v2)))
(if (and (equal? (member v2 aux1) #f)
(equal? (member v1 aux2) #f))

#t
#f))
#f)))

(define kruskalAux (lambda (grafoK nodos
funcionCiclo primero)

(if (equal? primero #t)
(begin
(add-edge! grafoK (cadar nodos)
(caddar nodos) (caar nodos))
(kruskalAux grafoK (cdr nodos)
funcionCiclo #f))
(if (empty? nodos)

(get-edges grafoK)
(if (equal? (funcionCiclo
(cadar nodos)
(caddar nodos) grafoK) #f)

(begin
(add-edge! grafoK (cadar
nodos) (caddar nodos)
(caar nodos))
(kruskalAux grafoK (cdr
nodos) funcionCiclo #f))
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(kruskalAux grafoK (cdr
nodos) funcionCiclo
#f))))))

(define (kruskal grafoK nodos)
(kruskalAux grafoK (ordenar nodos)ciclo #t))

(require graph)

(kruskal grafoK nodos1)

and the mutated version was the following, notice that we
have only included the portion of the source code that was
mutated:

Kruskal implementation: Mutated version

#lang racket

(define ciclo
( lambda ( v1 v2 grafo )

( if ( and ( has-vertex? grafo v1 ) (
has-vertex? grafo v2 ) )

( let ( ( aux1 ( get-neighbors
grafo v1 ) )
(aux2 ( get-neighbors grafo v2)))

( if ( or ( equal? --mutated line
( member v2 aux1 ) #f )

( equal? ( member v1 aux2 ) #f )
) #t #f ) ) #f ) ) )

(define (kruskal grafoK nodos )( kruskalAux
grafoK( ordenar nodos ) ciclo grafoK ) )
--mutated line

In Fig. 9 we have shown a graph of the mutated version of
the implementation of the Kruskal algorithm, while in Table
VI, we depict the number of generations that had to pass for
our GA to reach a convergence point. Also, we show which
nodes were altered and the final score of the mutant obtained.

TABLE VI. DESCRIPTION OF THE MUTANT THAT MANAGED TO AVOID
THE THREE TEST CASES FOR THE ALGORITHM OF KRUSKAL

Generation Number Altered Nodes Evaded Tests Score
Mutant 1 10 6,24 4 38.64

We can derive some discussion about the results obtained
from the three programs that we tested. In the case of the
Quicksort, we could argue that the test set evaluates all the
probable paths of the mutated codes. Therefore, and because it
does not have so many lines of code that could be mutated, then
the tests successfully detect them. For the Quadratic equation
code, we found a similar case that when we test the Quicksort
one, the limit number of lines of code and the inclusion of
a mutated math operator (/*(2 a)) it did not alter the result
when compared to a test. Consequently, we can conclude that
compact source codes will be less prone to exhibit a variety of
mutations when applied a heuristic technique. For the case of
the Prim and Kruskal algorithm, which were form by moderate
lines of code, we found subtle modifications present on the
mutated codes, that bypassed some test cases on our test suit.

Fig. 9. Graph generated for the mutated version of the Kruskal algorithm

V. DISCUSSION

Mutation testing techniques have been broadly used for
testing a source code based on imperative programming, while
research oriented to perform mutation testing on functional
paradigms is rarely explored [11] survey). We argue that
a primary reason could be that pure functional languages
have a rigorous and formal way to develop programs in
these environments, making them less prone to flaws due to
their mathematical nature. Pure functional languages, such
Haskell, do not endorse some constructs that are present
in imperative programming languages, such as side-effects
presented by a change of state in a program, but impure
functional languages can exhibit these characteristics. Impure
functional programming languages, for example, Racket, has
increased the interest in new paradigms such as the LOP way
of programming that can be used for deploy Domain Specific
Languages within a chosen language (eDSL) applications or
software that consolidate different programming solutions into
a host programming language [12]. Therefore, we believe
that even though the LOP paradigm could make more suited
and tailored applications developed by programmers, it will
be necessary to test these developed programs, and mutation
testing joined with heuristics could be a valuable starting point
to detect probable flaws in our developed software products
based on this new paradigm.

VI. CONCLUSIONS

We have presented a set of proofs for the implementation
or generation of mutants that can be applied for examining test
suites, oriented to functional programs by using the Scheme
programming language. We were able to determine that as
long as the lines of codes increase, the task of generating
mutants by using heuristics, the generation of mutants is
achievable such that test suites could not detect them. The
use of mutation testing employing heuristics, such as Genetic
Algorithms, allows the tester to cover a more extensive broad
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of possibilities in the generation of mutants that help in
detecting flaws into the test suites.
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