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Abstract—Recommender systems are built with the aim to
reduce the cognitive load on the user. An efficient recommender
system should ensure that a user spends minimal time in
the process. Conversational Case-Based Recommender Systems
(CCBR-RSs) depend on the feedback provided by the user to
learn about the preferences of the user. Our goal is to use
the feedback provided by the user effectively by exploiting the
interplay among the products to build an efficient CCBR-RS. In
this work, we propose two ways towards achieving that goal. In
the first method, we utilize the higher order similarity and trade-
off relationship among the products to propagate the evidence
obtained through user feedback. In our second method, we utilize
the diversity among cases/products along with the similarity
and trade-off relationship to make the best use of the feedback
provided by the user.
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I. INTRODUCTION

The way product recommendation is handled by a recom-
mender system in most of the on-line websites is very different
from how a sales executive would deal with a customer in a
store. Though a large amount of data is mined everyday, as
rightly mentioned in [5], in some domains where a specific
user is expected to buy a product once in a lifetime say
for example ‘housing domain’ or ‘a luxury car domain’,
collaborative systems fail due to lack of data about the user. In
contrast to that, knowledge-based recommender systems like
the CCBR-RSs are known to handle cold start conditions [6]
with ease and work more like their human counterparts. Case-
Based Reasoning Recommender systems (CBR-RSs) uses the
notion of similarity among cases to approximate the utility of
a product to users. Products are represented as feature value
pairs. The user is allowed to express their preference by stating
one or more feature values. For example, in a camera domain,
the user’s query may be ‘10 MP resolution’. A CBR-RS uses
the similarity measure to find all products whose resolution is
similar to ‘10 MP’. Sometimes it could be possible that no
recommendations are made as the products don’t match the
query exactly [3]. The advantage with CBR-RS is that even if
there are no cameras with exactly ‘10 MP’ resolution, cameras
with resolution similar to ‘10 MP’ will be retrieved. A global
similarity measure based on feature level similarity is defined
using domain knowledge.

A Single-shot CBR-RS stops with recommending products
to a user based on their initial query. If the user is not
satisfied with the recommendation she has to give a new

query to the system. A CCBR-RS helps the user navigate
the product space. It engages the user in two phases: a) The
feedback phase, where the feedback regarding the products
recommended to the user is received, and b) The recommenda-
tion phase, where the system recommends appropriate products
based on the user query/feedback. We will refer to the set of
products recommended in the recommendation phase as the
Recommendation set (RS). The system learns the preferences
of the user incrementally at every interaction with the user
and recommends based on the learned preferences. A CCBR-
RS aims to reduce the time a user spends on the system by
making the interaction with the user effective and reducing
the number of interaction cycles. Traditionally CCBR-RSs
reported in literature works on modelling the user in a better
way to improve the efficiency of the system. Our work tries
to achieve the goal by capturing the rich interplay among the
products in the domain.

The authors in Evidence-Based Recommendation (EBR)
[2] propose a novel view of the feedback provided by the user
in CCBR-RSs. A product in the domain needs evidence that it
would be preferred by the user before it could be included in
RS. The feedback given by the user plays the role of attributing
evidence to each product in the domain. We cannot expect the
user to give feedback on each product in the domain, so the
evidence from feedback provided by the user on a minimal set
of products are propagated to the rest of the products in the
domain. We extend the idea of evidence propagation to include
higher order propagation by posing the evidence propagation as
a random surfer model. The work by authors in [14] focuses on
bringing out the advantage in utilizing the trade-off relationship
among products. They argue that trade-off is the relationship
that is particular of the products in the domain and is not with
respect to the user query. McSherry in his work [11] brings
out the idea of using compromise (the relationship of a product
with respect to the user query) in improving the success rate
of a CBR-RS. As the second part of our work, we combine the
best of both the static trade-off relationship among products
and the dynamic compromise relationship between the user
query and the products to bring out the idea of utilizing the
collective evidence of the RS and build an efficient CCBR-RS
in contrast to EBR which deals with evidence of individual
products. We evaluate our methods on three datasets and report
the results in comparison to the base works.

In the next Section, we introduce the background for our
work: This is followed by the related works in Section III.
The details of our approach are presented in Section IV. This
is followed by the evaluation and results in Section V and we
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conclude in Section VI.

II. BACKGROUND

In this section, we go into the details of the background
and set the context for our work before we move on to the
related works.

A. Case Representation and Approximation of Utility

We work in the context were the cases/products are from
the same domain. For example a camera domain has only
cameras in it. Each product, is represented as a fixed set
of features/attributes with values corresponding to each of
the features. In domains like motorcycle, the features of the
domain can be categorized into More is Better (MIB) and Less
is Better (LIB) [12]. For example, the feature ‘Mileage’ is
an MIB feature. Given two motorcycles with similar feature
values, people often tend to choose the motorcycle with higher
‘mileage’. In contrast, ‘price’ is an LIB feature. Given two
motorcycles with similar feature values, people often tend to
choose the motorcycle with lower ‘price’. If the query is ‘5000
$’ motorcycle, then any motorcycle with the price less than or
equal to ‘5000 $’ may be deemed useful to the user. The higher
the price above ‘5000 $’ the lower the utility. Had the query
been ‘100 horse power’(MIB feature), then any motorcycle
with more or equal horse power would be deemed useful to the
user and lesser the value the less useful it is. The feature values
are normalised appropriately such that for an MIB feature the
highest value is set to 1 and the lowest value is set to 0; for
an LIB feature the highest value is set to 0 and the lowest
value is set to 1. The score a product would receive is given
in equation below where Qi stands for query value of feature
i and Pi stands for the value of feature i of product P.

lsim(Qi, Pi) =


1, if Pi ≥ Qi

Pi

Qi
, otherwise

(1)

A global similarity measure based on a Multi-attribute utility
theory (MAUT) [7] is used to approximate utility. The simi-
larity of a product to another product is the average of feature
level similarities. If Q is the query and P is the product then
the similarity between them is given in the equation below,
where lsim is as given in (1).

sim(Q,P ) =

∑
i∈Attributes

lsim(Qi, Pi)

|Attributes|
(2)

Among a pair of products A and B, if Ax is greater than
Bx for an MIB feature x, then product A is said to dominate
product B with respect to feature x. Similarly, for an LIB
feature y, product A is said to dominate product B with respect
to feature y if Ay is less than By .

B. Preference based Feedback

The feedback provided by the user in each interaction cycle
is used to modify the query for the next interaction cycle. User
ratings [15], critiquing [4] and preference based feedback [9]
are the common ways in which feedback is obtained from the
user. Preference-based feedback (PBF) poses a lesser cognitive
load on the user compared to the other feedback mechanisms

[16]. In PBF, the user picks one product out of the k products
recommended to her as her product of preference. The PBF is
treated as the query in the next interaction cycle. The various
ways in which PBF is used is explained in Section III. We
restrict our focus to CCBR-RS with PBF.

C. Random Surfer Model

In the first part of our work, we use the idea of utilizing
higher order relationship among the products to enhance [2].
We solve our problem by posing it as a random surfer model.
Assume a hypothetical cyclist Alice who keeps touring with
her cycle with no specific destination. In the hypothetical
world she lives, all roads are one way, no roads intersect
and there is exactly one restaurant at the junction of roads
and nowhere else. She keeps travelling on the road and when
she encounters a junction of roads, she rests a while in the
restaurant and chooses one of the roads randomly and keeps
travelling. Occasionally, if she is bored she gets teleported
with her bike from a restaurant to some random restaurant
and starts touring again. Given a restaurant in her world, what
is the probability that she would have visited the restaurant?
Let N be the number of restaurants, 1-d be the probability with
which she teleports, inNeighboursI of a restaurant I is the set
of restaurants such that for each restaurant X in the set there is
a road from X to I. outNeighboursI of a restaurant I is the set
of restaurants such that for each restaurant X in the set there
is a road from I to X. The probability that restaurant I would
have been visited at time step t is given in the equation below.
At t=0, the probability that a restaurant is visited is 1/N. The
event of the Alice visiting each restaurant can be associated
with the flow of evidence to each product in the domain, the
details of which we will elaborate in Section IV.

p(I; t) =
(1− d)

N
+ d ∗

∑
J∈inNeighboursI

p(J ; t− 1)

|outNeighboursJ |
(3)

III. RELATED WORKS

A. Modelling User Preferences

More Like This (MLT) [9] is an early approach that uses
PBF for query expansion. The PBF in the current interaction
cycle becomes the query for the next interaction cycle. In
MLT all the feature values of the PBF are assumed to be
indicative of the preferences of the user. The authors in [9]
assert the fact that every attribute value of the PBF may not
be equally desirable to the user and they propose weighted
MLT (wMLT) that assigns weights to each of the features.
The weight is based on the uniqueness of the feature value.
For example, if the motorcycle preferred by the user is ‘Air
Cooled’ but the rest of the motorcycles in the RS are ‘Liquid
Cooled’ we can be more sure about the preference of the user
on that feature. The feature weights model the preferences
of the user and thus helps with the personalisation of the
recommendations. The work by authors in [13] points out
the drawback with learning feature weights independent of
the other features in the domain. For the example considered
above, one might have chosen ‘Air Cooled’ engine because the
motorcycle is the cheapest of the lot. Assigning higher weights
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TABLE I. PRODUCTS RECOMMENDED TO USER

price($) mileage (kmpl) top speed (kmph)
A 5000 10 120
B 5000 8 150
C 7000 6 250

to ‘Air Cooled’ engine without considering the cost would not
reflect the preferences of the user in an adequate manner. In
[13], the authors make an assumption that the utility of PBF
is greater than or equal to the utility of each of the rejected
products. They use a weighted MAUT based similarity model
as given in the equation below to model the utility of a product,
where wi is the weight given to feature i.

wSim(Q,P ) =

∑
i∈Attributes

wi ∗ lsim(Qi, Pi)

|Attributes|
(4)

Consider the example domain given in Table I. Let us
consider an instance where the user is recommended products
A, B and C, assume the user preferred A. We make an
assumption that the utility of A is greater or equal to the
utility of B and the utility of A is greater or equal to the
utility of C. The assumptions can be expressed as inequalities.
For illustration, the assumption that utility of A is greater than
or equal to the utility of B is expressed as an inequality which
is given in (5). In practice, the values are normalised and used
in the inequalities. The generalised inequality is given in (6).
The ∆s represent the difference in the values and wi represents
weight of the feature i. The sign corresponding to the weights
of LIB attributes is negative as shown in the equations. The
inequalities are solved for the feature weights. The number of
products recommended to the user is usually lesser than the
number of attributes in the domain and hence the solutions to
the feature weights form a convex region in the feature weights
space. We term the region of solutions as the preference region
of the user. One solution from the preference region is picked
as the feature weights.

−(5000− 5000)× wprice + (10− 8)× wmileage

+(120− 150)× wtopspeed ≥ 0
(5)

−wprice ×∆price + wmileage ×∆mileage

+wtopspeed ×∆topspeed ≥ 0
(6)

This model is termed Compromise Driven Preference Model
(CDPM). In our work, we do not attempt to model the user
by using feature weights.

B. Profiling Products in the Domain

The products preferred by the users themselves are repre-
sentative of the preferences of the user. The idea of profiling
the products even before the recommendation could start is
proposed by authors in [1]. They employ a method similar to
the one used by authors in [13] to characterize each product in
the domain. Their work argues that each product in the domain
has prospective buyers. The prospective buyers of the product
are modelled in the form of a region of feature weights in the
feature weights space. They assume, for every product, their
k most similar products as the competitors of the product. A
prospective buyer of a product would assume that the utility of

TABLE II. TRADE-OFF REPRESENTATION AND SIMILARITY BETWEEN
TRADE-OFFS

price($) mileage (kmpl) top speed (kmph)
A 5000 10 120
B 5000 8 150
C 7000 6 250
D 7500 6 275

TAB 0 1 -1
TAC 1 1 -1
TBD 1 1 -1

tSim(TAB , TAC ) (0+1+1)/3 = 0.66

the product of her desire is greater than or equal to the utility
of each of its competitors.

Similar to the work by the authors in [13], inequalities are
formed and solved for the feature weights. The solution to
the inequalities is a region in the feature weights space which
the authors term as dominance region of the product. In the
course of recommendation, the amount of overlap between the
dominance region of a product and the preference region of
the user is used to enrich the measure of utility of a product
to the given user. The authors show that using the score from
the overlap of the regions improve the efficiency of the CCBR-
RS. This work is based on the predicted preference of the user
and hence termed Predicted Preference Region-based Method
(PPRM). We do not pre-process our data as in this work.
No attempt is made to profile the individual products but the
theme that the products themselves are representative of the
preferences of the user is prevalent in our work too.

C. Trade-off based Recommendation

Consider the products from Table I. If the user query is
‘price: 5000 $’ and ‘top speed: 200 kmph.’ then there is no
product in the domain that satisfies all the requirements of the
user. If we consider product A, it fails to satisfy the ‘top speed’
requirement but satisfies the ‘price’ requirement. Likewise,
product C fails to satisfy ‘price’ but satisfies ‘top speed’. Since
we are not aware of the compromise a user would be willing
to make, say if we are allowed to show only two products at
a time then it is desirable to recommend products A and C
instead of products A and B. If products A and B are recom-
mended and if the user is not willing to compromise on ‘price’
then none of the products in the current recommendation cycle
satisfies the user. McSherry in [11] proposes to recommend
products with varied compromises (this is called Compromise
Driven Retrieval (CDR)) to improve the success rate of the
recommendation system.

Compromises capture the ability/inability of the products
to satisfy the requirements of the user. Even without taking
the user query into account, if we compare two products say
in our example products A and C, we can notice the distin-
guishing characteristics of each of the products. The MIB, LIB
categorization helps us define the dominance relation between
the features of any pair of products. Among the products A
and C, A dominates C with respect to the features ‘price’
and ‘mileage’ similarly C dominates A with respect to the
feature ‘top speed’. If one has to choose A over C she has
to compromise on ‘top speed’ for the gain in other features.
This relation among the product pairs is termed trade-offs by
authors in [14]. They define a representation for the trade-offs
and a measure of similarity for a pair of trade-offs.
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Table II shows the representation of the trade-offs TAB ,
TAC and TBD. A Trade-off represents the set of features one
has to compromise for the gain in another set of features in
choosing one product over the other. TAB represents that if one
has to accept A over B she has to compromise on the feature
‘top speed’ for the gain in ‘mileage’. The dominating feature in
the product that one would be willing to accept is represented
with a ‘1’ and the dominated feature with a ‘-1’, a feature that
neither dominates nor is dominated is represented by a ‘0’. The
similarity between a pair of trade-offs is proportional to the
count of the number of matching symbols in the given pair. If T
and S are the trade-offs the match/similarity between the trade-
offs is given in the equation below. 1() is an indicator function
that gives a value 1 if the symbols match and 0 otherwise.

tSim(T, S) =

∑
i∈Attributes

1(Ti = Si)

|Attributes|
(7)

The authors in [14] propose several methods, one of which
uses the trade-off choices made by the user in each interaction
cycle to identify the potential products of interest to the user
(MLT with Trade-off Matching MLT TM). In our work, we
combine the benefits of both the trade-off based relationship
and the diversity based on compromise to achieve better
efficiency.

D. Evidence-based Recommendation

In the work by authors in [2], the PBF given by the user
in every interaction cycle is used to account for the evidence
of the products in the domain. In a given interaction cycle,
only k products are shown to the user and the user prefers
only one product among them, then how is the evidence
propagated to other products in the domain? The similarity and
trade-off relation among the products is exploited to propagate
the evidence of the products. For example, if Jane says she
likes ‘lemon’ better than ‘apple’ it may be the case that
she likes ‘orange’ better than ‘apple’ too as both ‘lemon’
and ‘orange’ are citrus fruits. Though the feedback given
by Jane is only on ‘lemon’, the similarity relation between
‘lemon’ and ‘orange’ helps us to propagate the feedback on
‘lemon’ to ‘orange’. Here in the given example, ‘lemon’ is the
dominant product and ‘apple’ is the dominated product. The
dominance relation of PBF on the rest of the products in the
RS is propagated based on the hypothesis that the dominance
relation between two pairs of products are similar if they
involve similar dominant and dominated products, provided
the trade-off relations between the pairs are also similar. For
example, among the products in Table II the user prefers
product A over product C. It is highly likely that the user
would prefer product B over product D as products A and
B are similar (dominating products) and products C and D
are similar (dominated products) and the trade-off similarity
between TAC and TBD is high. We base our work on the idea
of EBR and provide significant extensions to the same.

IV. OUR APPROACH

As discussed previously, the motivation of this work is to
explore ideas on how EBR can be effectively used to improve
the efficiency of CCBR-RSs. We propose two broader themes

in this work. The first idea deals with higher order evidence
propagation. The second theme deals with collective evidence
of the RS as opposed to the evidence of individual products.

A. Higher order Evidence Propagation

In a CCBR-RS the preferences of the user should ideally
be aggregated across interaction cycles. In methods where the
preferences are modelled as feature weights, the weights reflect
the aggregated preferences. In EBR, the user given feedback
in an interaction cycle ascribes preferences to various degrees
to every product in the domain. The evidence for a product is
aggregated across interaction cycles by taking all the feedback
the user has provided into consideration. Imagine a directed
completely connected graph with each product as a node.
Each edge represents the action of the user choosing one node
(destination) over the other (source). The node preferred by
the user is called dominant node (destination node) and the
node that is preferred over is called dominated node (source
node). The dominant node and dominated node pair is termed
as the dominance relation pair. Each edge is associated with
a weight. Consider the nodes A and B. If there is an edge
from B to A, the weight of the edge from B to A denotes the
probability with which product A would be selected by the
user over product B. If we can assign weights to the edges of
the graph then we can find higher order dominance relationship
among products. Let us term the graph preference graph.

At each interaction cycle, we pose the problem as random
surfer model and find the probability that the random surfer
would be found at every node in the graph (the probability
that Alice would have visited a restaurant). In our work since
we assume a strongly connected graph, every node is equally
likely to be visited from a given node, but the weights that we
assign to the edges plays the role of assigning probabilities that
an edge will be traversed by the surfer. We can assume that
the roads in Alice’s world are of different widths and Alice
chooses a road with probability proportional to the width of the
road. The modified formulation is given in the equation below,
where the probability that a road from restaurant J to I would
be taken is represented as wJI . p(I; t) is the probability that a
node I is visited at time step t. We keep finding the probabilities
of the nodes for successive iterations in an iterative way. If
at a time step, the sum of the changes in the probabilities
of the nodes of the graph with respect to the previous time
step is below a threshold we stop the iterative process and the
nodes/products with the top k probabilities are recommended
to the user. In our set up, the higher the weights of the edges
leading to a node from other nodes the higher the probability
that the random surfer would visit that node. If a particular
product dominates other products to a greater extent then the
probability of that product is expected to be high. Based on
(3), we have the following formulation:

p(I; t) =
(1− d)

N
+d∗

∑
J∈inNeighboursI

wJI ∗ p(J ; t− 1)∑
L∈outNeighboursJ

wJL

(8)

Assigning edge weights: In our work we made the weight
of an edge depend on three quantities a) the similarity of the
destination node to the products already preferred by the user
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TABLE III. PRODUCT-PRODUCT SIMILARITY

A B C D E
A 1.0 0.5 0.6 0.7 0.5
B 0.5 1.0 0.5 0.5 0.4
C 0.6 0.5 1.0 0.7 0.9
D 0.7 0.5 0.7 1.0 0.9
E 0.5 0.4 0.9 0.9 1.0

in previous interaction cycles; b) the similarity of the source
node to the user rejected products; c) the similarity of the trade-
off one has to make in choosing the destination node over the
source to the trade-offs the user has made in all the previous
interaction cycles. We form k − 1 dominance relation pairs
by pairing PBF with each of the rejected products in every
interaction cycle. Let UDR (User Dominance Relations) be
the set of all the dominance relations that we have aggregated
from the user through PBF, UPP (User Preferred Products)
be the set all the PBFs the user has provided and URP (User
Rejected Products) be the set of all products that are dominated
by any of the products from UPP . The edge weights are
computed based on (9), where wSD denotes the weight of the
edge from the Source node (S) to Destination node (D), Rd

and Rr denotes the dominant product and dominated/rejected
product respectively in the relation R. We term our method
HEBR (Higher-order EBR).

wSD = α ∗ (

∑
M∈UPP

sim(M,D)

|UPP |
+

∑
N∈URP

sim(N,S)

|URP |
)

+(1− α) ∗ (

∑
R∈UDR

tSim(TRdRr
, TDS)

|UDR|
)

(9)

Illustration: Consider domain where we have 5 products
A, B, C, D, and E. Let us assume products A and B are shown
to the user and the user has preferred A over B. Now we need
to recommend products based on the feedback from the user.
Let us construct the preference graph from the data we have.
The product-product similarity matrix is given in Table III.
The trade-off similarity of every pair of edge with the user
made trade-off (A over B) is computed and let us assume it is
as given in Table IV. The weights of the edges are computed
based on (9). Let d = 0.85, α = 0.9 and at t = 0 each product is
considered to be equally likely. We need to order the product
C, D and E in the domain so that they can be recommended to
the user. The scores for the products based on EBR are [0.525,
0.590, 0.455] corresponding to C, D and E. The scores based
on HEBR for C, D and E are [0.188, 0.180, 0.194]. HEBR
places E in the first place even though products C and D are
more similar to the PBF (A) than E is to the PBF. E is highly
similar to C and D so the evidence from C and D propagate
to E making it highly probable. (We cannot talk just in terms
of similarity with PBF alone, but we use it for the sake of
clarity.)

Step by step recommendation process: The following are
the steps in HEBR:

Step 1: The preferences of the user are expressed in terms
of query Q. Q has one or more values corresponding to the

TABLE IV. TSIM OF PRODUCT-PRODUCT TRADE-OFF WITH
TRADE-OFF TAB

A B C D E
A 0.0 0.6 0.5 0.4 0.7
B 0.4 0.0 0.7 0.6 0.5
C 0.5 0.3 0.0 0.3 0.2
D 0.6 0.5 0.7 0.0 0.3
E 0.3 0.5 0.8 0.7 0.0

features in the domain.

Step 2: Products are ranked based on (2). The top k
ranked products are recommended to the user. The user picks
a product as PBF and continues her recommendation process
or accepts one of the recommended products.

Step 3: PBF is added to the set UPP . Every product
other than PBF in the RS is added to the set URP . k − 1
pairs corresponding to k − 1 rejected products are matched
with the dominant product PBF and are added to the set UDR.

Step 4: A strongly connected graph ‘preference graph’ G
with all the products as nodes is constructed and the weights
of the edges are assigned based on (9).

Step 5: The probability of nodes in the graph G are
updated based on (8) iteratively for several time steps till the
sum of the difference in the probabilities of the nodes from
one iteration to the next iteration is below a fixed threshold.

Step 6: The products with top k probability values are
recommended to the user.

Step 7: The user picks her PBF and continues the
recommendation process (back to Step 3) or accepts one of
the recommended products

B. Evidence for Successful Recommendation

A successful recommendation depends on the contribution
of individual products as well as the collective contribution of
the products. In EBR, the RS is filled with products that have
higher evidence from the feedback provided by the user. The
utility of the RS is approximated by the sum of the evidence
scores of all the constituent products. The interaction among
the products in the RS is not taken into consideration in this
view. The earliest work from the literature that considers the
interplay among products in RS is MLT with Adaptive Selec-
tion (MLT AS) [10]. The authors categorize the interaction
cycles into ‘Refine phase’ and ‘Refocus phase’. In ‘Refine
phase’ the products are recommended based on only similarity,
in ‘Refocus phase’ diverse products are recommended to the
user based on bounded greedy approach [17]. They show that
the efficiency of the system can be improved by methodically
introducing diversity. Though the similarity of products in
the ‘Refocus phase’ is not maximized, the efficiency of the
system is expected to improve by taking into account the
collective utility of the RS. We base our work on MLT TM.
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We explain how MLT TM can be understood in terms of
evidence maximization and enrich the method to include the
effect of interaction among the products with the help of the
compromise criterion.

MLT TM in the light of EBR: Consider the example
products given in Table II. Products A and B have good
fuel efficiency but lose out on power. Irrespective of the user
query, just by analysing the products, one can characterize the
preferences of the user who would buy each of the products.
Similar to the idea used in PPRM, a prospective buyer of
a sports motorcycle would prefer ‘top speed’ feature more
than the fuel efficiency feature. Instead of using the trade-off
relations to learn feature weights, MLT TM uses the features
themselves to model a given user and recommend products
that would better serve her need. EBR records evidence in
the level of products whereas in MLT TM the evidence is
aggregated in terms of features. In Table II if products C and
B are shown to user and the user prefers product C then the
fact that feature ‘top speed’ is preferred over features ‘price’
and ‘mileage’ (TCB) is used as evidence for promoting product
D because the comparison of D with B also yields the same
trade-off ‘top speed’ over ‘mileage’ and ‘price’ (TDB). In EBR
the dominance relations are used to propagate the evidence. In
MLT TM, the trade-offs are used to propagate the evidence
among products.

Evidence of the recommendation set: Compromises are
subjective to the user. McSherry asserts that the compromises a
user would be willing to make is not known in advance and is
independent of the feature preferences of the user. CDR aims
to improve the success of the system by suggesting products
that are diverse with respect to the compromises they offer
with respect to the user query. We propose a revised utility
approximation in MLT TM that accommodates the interaction
among the products in terms of compromises they offer to
model the effective evidence of the RS in a better manner. We
formulate two methods to realize our idea.

Greedy Evidence Maximization (GEM): In GEM, prod-
ucts are added incrementally to the RS. There are three criteria
for inclusion of a product in the RS. The first criterion is
similarity. If a product is more similar to the query then it is
more evident that it would satisfy the requirements of the user.
The second criterion is trade-off. The user preferred product
in a given interaction cycle is compared against the rejected
products and the corresponding trade-offs are recorded. The
hypothesis in MLT TM is that a product would be useful to
the given user if it makes similar trade-offs as the PBF with the
user rejected products. The trade-off evidence score is given in
(10), where C is the candidate product that we are evaluating
to be included in the RS, Rejected List is the set of products
in the RS other than PBF, the user preferred product PBF is
represented as P.

tradE(C,P ) =

∑
X∈RejectedList tSim(TCX , TPX)

|RejectedList|
(10)

The third criterion is different from the first two criteria. It is
based on compromises. We formulate the criterion such that
it ensures maximization of the utility of the RS as opposed to
individual products. The Compromise Set is the set of features
with respect to which the candidate product C compromises on
the PBF/query. It is as given in (11). The compromise distance

in (12) measures the dissimilarity in the compromise sets of a
pair of products (C1, C2) with respect to the query product P.
The compromise evidence compE measures the utility of C if
it is added to the RS. Since the RS is filled incrementally when
there is no product in RS the value of compE is taken as zero.
compE measures the average dissimilarity in the compromises
made by the candidate C with respect to the rest of the products
included in the RS. We want the dissimilarity score to be
high so that the products included in the RS have varied
compromises with respect to the query. The varied compromise
choices provided by the products in RS improves the utility of
RS as a whole.
CS(C,P ) = {i|i ∈ Attributes and P dominates

C with respect to i} (11)

compDist(C1, C2, P ) = 1− CS(C1, P ) ∩ CS(C2, P )

CS(C1, P ) ∪ CS(C2, P )
(12)

compE(C,P,RS) =

∑
R∈RS

compDist(C,R, P )

|RS|
(13)

Each product in the domain is evaluated based on the
combined score of the three criteria as given in (14). The
product with the highest cScore is included in the RS. The
products in RS are included in a greedy manner incrementally
rather than finding the set of products that maximizes the
cScore of the products in RS.

cScore(C,P,RS) = α ∗ sim(P,C) + β ∗ tradE(C,P )

+γ ∗ compE(C,P,RS)
(14)

Greedy Evidence Maximization Bounded (GEMB): In
GEM each product in the domain needs to be evaluated k times
as the products are added incrementally. Instead of evaluating
all the products in the domain every time before including a
product in RS, in GEMB a) we set a bound B b) we sort
the products based on similarity and trade-off evidence and
evaluate only the top B products for inclusion in RS. This
provides a good speed-up of the system with some loss in
efficiency.

Step by step recommendation process: The following are
the steps for the two methods:

Step 1 and 2: Same as in HEBR

Step 2a (Only for GEM): All the products in the domain
are selected for further evaluation.

Step 2b (Only for GEMB): The products in the domain
are sorted based on the sum of sim and tradE scores, the top
B products are selected for further evaluation.

Step 3: The products are evaluated based on cScore and
the product with the highest score is added to the RS.

Step 4: While the RS has less than k products repeat Step 3.
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Step 5: The user picks her PBF (PBF becomes the new
query) and continues the recommendation process (back to
Step 2a or 2b based on the method used) or accepts one of
the recommended products

Handling nominal attributes: The nominal attributes are
treated in the same way in all the methods proposed in this
work (HEBR, GEM and GEMB). In the similarity calculation
step, we give a value 1 if the attribute value matches, else
we give the value 0. In trade-off representation, if both the
products have the same attribute values we assign the symbol
‘0’ else we assign ‘1’. While considering for compromises,
if the attribute values are same then we consider it as ‘no
compromise’ else it is assumed to have compromised.

V. EVALUATION AND RESULTS

We evaluate our methods with the standard evaluation
procedure followed in CCBR-RSs literature [8]. It is widely
used in CCBR-RS literature ([8], [9], [13], [1], [14]). We take
three real-world datasets namely Camera, PC and Used Cars
, each of which has 210, 120 and 956 cases respectively.
All the datasets have numeric and nominal attributes. The
numeric attributes of our domain are categorized into MIB or
LIB features. In Camera domain, among numeric attributes
‘price’ and ‘weight’ are categorized as LIB and the rest
are categorized as MIB. In Used Cars dataset, the attributes
‘price’ and ‘miles’ are categorized as LIB and the others are
categorized as MIB. In PC dataset ‘price’ is the only LIB
attribute.

A. Leave-one-out Evaluation Procedure

We simulate an artificial user. We assume that one of the
products in the domain ideally suits all the preferences of the
user. The ideal product is removed from the domain (left-out
product). We identify a product in the domain that is most
similar to the left out product and set it as the ‘Target product’.
The left-out product is used to generate the initial query for the
artificial user. A randomly chosen subset of the attribute values
of the left-out product is made as the initial query of the user.
We generate three levels of queries namely hard, medium and
easy. The level of hardness is based on the number of attribute
values included in the initial query. A hard query has only 1
attribute value, a medium query has 3 and an easy query has
5 attribute values of the left-out product.

In feedback phase, if the artificial user encounters the ‘Tar-
get’ product in the RS the recommendation process stops and
the number of interaction cycles taken to identify the product
of interest is recorded else the product that is most similar to
the left-out product is selected from the RS as the PBF. The
PBF becomes the query for the next interaction cycle. The
product to be left out is selected randomly from the domain
and the Target product is fixed, the 3 levels of queries are
generated from the left-out product and the recommendation
process is simulated using the artificial user. This process is
repeated 1000 times in each of the domains used for evaluation.
The average number of cycles taken to reach the ‘Target’
product is calculated separately for each of the levels (hard,
medium and easy) of queries. We compare HEBR against EBR

1http://www.mycbr-project.org/download.html

to evaluate the effect of higher-order evidence propagation.
The GEM and GEMB methods are compared against MLT
TM to evaluate the effect of maximizing the evidence of
RS considering the interaction among products. We have also
compared our methods against MLT and MLT-AS.

B. Results

Tables V, VI and VII display the comparison of HEBR
against EBR along with MLT and MLT AS. Tables VIII, IX
and X display the comparison of GEM and GEMB against
EBR along with MLT and MLT AS. The 1000 queries in each
query level (hard, medium and easy) are split into 10 partitions
of 100 queries per partition and the difference in averages are
tested for statistical significance (paired t-test with p< 0.05).
The results in bold are significantly better than the rest.

TABLE V. EFFICIENCY IN PC DATASET (THE LESSER THE AVERAGE
CYCLE LENGTH THE BETTER)

Query Size MLT MLT AS EBR HEBR
1 8.29 6.09 4.08 3.76
3 6.14 4.22 3.20 3.28
5 3.67 2.19 1.97 2.31

TABLE VI. EFFICIENCY IN CAMERA DATASET (THE LESSER THE
AVERAGE CYCLE LENGTH THE BETTER)

Query Size MLT MLT AS EBR HEBR
1 11.41 6.90 5.13 4.72
3 9.54 5.89 4.64 4.51
5 6.42 4.04 3.59 3.83

TABLE VII. EFFICIENCY IN CAR DATASET (THE LESSER THE AVERAGE
CYCLE LENGTH THE BETTER)

Query Size MLT MLT AS EBR HEBR
1 24.42 14.32 9.28 7.68
3 19.18 10.91 7.55 7.45
5 15.12 8.08 5.85 6.58

TABLE VIII. EFFICIENCY IN PC DATASET (THE LESSER THE AVERAGE
CYCLE LENGTH THE BETTER)

Query Size MLT MLT AS MLT TM GEM GEMB
1 8.29 6.09 5.50 4.72 4.20
3 6.14 4.22 3.96 3.52 3.31
5 3.67 2.19 2.19 1.99 2.01

TABLE IX. EFFICIENCY IN CAMERA DATASET (THE LESSER THE
AVERAGE CYCLE LENGTH THE BETTER)

Query Size MLT MLT AS MLT TM GEM GEMB
1 11.41 6.90 6.28 4.99 5.00
3 9.54 5.89 5.45 4.66 4.64
5 6.42 4.04 3.94 3.41 3.64

TABLE X. EFFICIENCY IN CAR DATASET (THE LESSER THE AVERAGE
CYCLE LENGTH THE BETTER)

Query Size MLT MLT AS MLT TM GEM GEMB
1 24.42 14.32 12.14 10.47 11.57
3 19.18 10.91 9.64 8.15 9.26
5 15.12 8.08 7.53 6.20 7.07

C. Discussion

HEBR performs better than EBR for hard queries in all the
three datasets but on easier queries, the higher order evidence
propagation degrade the efficiency. The performance of HEBR
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on medium level queries seems to be on par with EBR. The
number of cycles needed for hard queries is high so with more
feedback the efficiency improvement is high, in contrast with
lesser feedback the noise from the preference graph dominates
the feedback leading to the depreciation in efficiency. For hard
queries, HEBR reduces the cycle length by 7.8%, 7.9% and
17% in PC, Camera and Used Car datasets, respectively.

GEM performs better than MLT TM in all the datasets for
all the query sizes. The performance of GEMB is found to be
statistically better than MLT TM in PC and Camera datasets, in
Used Car dataset alone GEMB performs only as good as MLT
TM. In Used car dataset alone, though the averages of GEMB
seems to be better than MLT TM they are not significantly
better. The time GEMB takes for execution is in the order of
MLT TM but with better performance. If the execution time is
critical then GEMB offers marginally good performance in a
significantly lesser time when compared against GEM. GEM
outperforms GEMB in most of the cases but takes more time
to execute when compared against GEMB. Using GEM the
reduction in average cycle length for hard, medium and easy
queries in PC dataset is is 14%, 11% and 9% respectively,
in Camera dataset it is 20%, 14% and 13% and in Used Car
dataset the numbers are 13%, 15% and 17%, respectively.

HEBR is expected to perform better than EBR for all query
levels but it only performs well in the hard queries. The prop-
agation of noise could be the reason for the same. We cannot
expect the users to make informed decisions throughout the
recommendation process. HEBR can be extended to account
for the noise in the feedback provided by the user. The strength
of CBR-RS lies in its ability to explain why a recommendation
has been made. Explanations add to the trust of a recommen-
dation system. The work in its current form fails to utilize
the explanatory potential of CBR-RS. Our future work would
include explanations along with the recommendations made to
enhance the value of the recommendation system as a whole.

VI. CONCLUSION

We have proposed two themes as an extension to the EBR.
The first one is propagation of higher order evidence. The
second explains MLT TM in the light of EBR and deals with
handling the interaction among products in the RS to enhance
evidence maximization. The works are compared against the
state of art in the area. The results suggest the effectiveness of
our approach in improving the efficiency of state-of-the-art.
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