
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

119 | P a g e

www.ijacsa.thesai.org

Communication and Computation Aware Task

Scheduling Framework Toward Exascale Computing

Suhelah Sandokji1, Fathy Eassa2

Faculty of Computing and Information Technology

KAU, Jeddah, Saudi Arabia

Abstract—The race for Exascale Computing has naturally led

computer architecture to transit from the multicore era and into

the heterogeneous era. Exascale Computing within the

heterogenous environment necessarily use the best-fit scheduling

and resource utilization improvement. Task scheduling is the

main critical aspect in managing the challenges of Exascale in the

heterogenous computing environment. In this paper, a

Communication and Computation Aware task scheduler

framework (CCATSF) is introduced. The CCATSF framework

consists of four parts; the first of which is the resource monitor,

the second is the resources manager, the third is the task

scheduler and the fourth is the dispatcher. The framework is

based on a new hybrid task scheduling algorithm for a

heterogenous computing environment. Our results are based on

the random job generator that we implemented, and they

indicate that the CCATSF framework, based on the proposed

dynamic variant heterogenous early finish time (DVR-HEFT)

algorithm is able to reduce the scheduler's makespan and

increase the efficiency without increasing the algorithm's time

complicity.

Keywords—Exascale computing; resource utilization; hybrid

task scheduling; heterogeneous computing environment; task

scheduler framework

I. INTRODUCTION

Scientific research these days requires the use of huge
computation-intensive applications, which increasingly
demand efficient and on-time executing high-performance
computing systems (HPCS). The next generation of HPCS, in
the near future, is Exascale Computing. Recently, the Tianhe-3
prototype that can perform at one exaFLOPS has completed
acceptance testing for China’s Ministry of Science and
Technology [1]. Exascale era is clearly coming soon.
Computing at exascale level and beyond involves many
challenges; the main ones of which are scalability and
heterogeneity. Programs will need to control billions of
threads, running on different types of cores with different styles
of architecture. This in turn will cause different parts of the
system to run at different speeds. Applications will need to
reduce communication and memory usage relative to the
amount of computing; failures will be more frequent, possibly
including silent errors. In these situations, good power
management and error handling will become essential.
Generally, to successfully achieve an exaflopic cluster, every
aspect should be optimized, from hardware to execution
instructions and tasks, all parts of these extraordinary systems
must be improved [2].

Fig. 1 illustrates the roadmap for Exascale Computing. In
2013, Titan in the USA and Tsubame KFC Tokyo Tech were
the biggest supercomputers. They were 2.5GFlops/W and
4.5GFlops/W, respectively [3] in time they both use
heterogeneous computing, as both were utilizing K20 GPU, but
Tsubame KFC have several advantages on Titan.

One of which is changing the ratio CPU/ GPU, as energy
consumption mostly goes more to the GPU and less to the
CPU. Therefore, such techniques that leverage the available
resources are desired. Thus, one way of thinking to reach
exascale is the improvements that are 20PFlops, 10Wand
107threads so as by 2023, it will have been duplicated 50times
to get 1000GFlops besides only duplicating the power
consumption twice. Hence, power efficiency must go up to 25
times of the 2013 range [3]. This efficiency is derived from
process technology, better hardware and software architecture
and circuits, in addition to utilizing, parallelize and improving
the thread from 107 to 1010 [3,4].

The matter that motivates researchers to leverage the
heterogeneous PUs (multi CPU cores combined with any
many-core accelerator such as GPUs or GFPA) collaboration
to achieve high-performance computing. This way, we can
benefit from the advantages of each and leverage the intelligent
combination of both so as to achieve exascale performance and
power consumption. Heterogeneous computing systems (HCS)
are considered by many researchers the Exascale Computing
system outrigger [3,4]. In an HCS, a various types of
computing nodes, that are characterized by unrelated
capabilities and equipped with spectrum types of computation
units, are all interconnected via a highspeed network. The
benefit of using different computing units (CU) types that each
type of the heterogenous CU satisfies one type of application
either memory or computing intensive application, see Fig. 2.
The most efficient way to achieve the benefit of the spectrum
types of the computing resources is best fit scheduling.

The efficient scheduling framework is capable of
partitioning a job into small tasks, scheduling them on the HCS
processing units in an efficiency way which achieves the
minimum time-span and uses resources efficiently, in order for
the job to be executed [3,4]. Mapping the tasks into the best-fit
computing resources is the aim of task scheduling and
allocating algorithms. As we note in [3,4], task scheduling is
the mean critical aspect in managing these challenges. Also we
found that the inappropriate scheduling of tasks on the
computing resources offsets the profit of parallelization.
Furthermore, inefficient scheduling algorithms compromise the
benefit of efficient high-performance hardware devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

120 | P a g e

www.ijacsa.thesai.org

Fig. 1. The Road Map for Exascale.

Fig. 2. Heterogenous Computing Advantages.

To solve the problems of scheduling and allocation, the
scheduling algorithms aim to minimize the executing time of
the application via properly allocating the tasks to the
processors achieving the earliest finish execution time in a way
that utilizes the parallelism of the resources efficiently. It also
minimizes the overhead preprocessing computing of the
scheduling algorithm itself. Therefore, in our previous work,
we introduce the new hybrid scheduling algorithm dynamic
variant heterogenous early finish time (DVR HEFT) [5,6].

In this paper, we continue our research and experiments on
DVR HEFT algorithm by introducing and implementing the
framework of Communication and Computation Aware task
scheduler framework (CCATSF). The CCATSF framework
consists of four parts, the first of which is the resource monitor,
the second is the task scheduler, the third is the dispatcher and
the fourth part is the resource manager. First, the resource
monitor explores the resources in the system dynamically,
collects the computing resources metadata, and updates the
metadata in a continuous manner. The task-scheduler schedules
the tasks based on an improved version of the Heterogeneous
Earliest Finish Time (HEFT) heuristic, a directed acyclic graph
(DAG) scheduling algorithm. The third part is the dispatcher.
This module allocates the tasks to the available resources based
on the output of the scheduler layer. Finally, the resource
manager manages the scheduler system and the heterogenous
computing resources. In this paper, we continue our research
in improving the HEFT algorithm.

This paper contributes to the following aspects:

1) A Communication And Computation Aware task

scheduler framework (CCATSF) software architecture is

introduced.

2) The intersection of using DVR-HEFT: a new algorithm

with the proposed framework for scheduling and allocating

tasks on heterogenous resources is introduces. DVR-HEFT

tackles the disadvantages of previous static algorithms by

combining the improved HEFT algorithm using dynamic

algorithm, the new algorithm considers optimizing the

performance of heterogenous computing and the power

consumption as well.

The next section illustrates the task scheduling problem
formulation, followed by a background review of state-of-the-
art algorithms. Following that, the proposed CCATSF
framework and the proposed DVR HEFT algorithm are
discussed. The random job generator implemented to generate
the experiment's DAGs is also explained. Then our
experiments are analyzed in detail, and the results received,
using the Radom job generator is discussed.

II. RELATED WORK

A. Task Scheduling Problem

We addressed the static scheduling for single application's
tasks on Set P of processors in a heterogeneous system. The
following is assumed:

1) There are P available processors to schedule the tasks

of the job.

2) During the job execution, the processors are not shared.

3) No overhead at runtime as the system and job

parameters are known at the compile time, which makes

starting with static algorithm phase more desired.

The application tasks are usually represented using directed
acyclic graph DAG, G = (V, E), where Set V is the nodes/tasks
of the graph and Set E is the edges/communication cost of
connected tasks. For all edges of Set E, there exists a weight.
Example for DAG is illustrated in Fig. 3 and Table I. The
edges weight represents the required precedence between the
two tasks. The precedence is the predecessor’s tasks that
should be finished prior to the execution of the pointed task.

TABLE. I. EXAMPLE DAG

Tasks P1 P2 P3

T1 21 20 35

T2 21 17 17

T3 31 27 42

 T4 6 10 4

T5 29 27 35

T6 26 17 24

T7 13 24 29

T8 29 23 36

T9 15 21 8

T10 13 16 33

Heterogenous
computing

Computing intensive

application

+Memory intensive
application

GPU

Huge number of cores

Low frequency

Small cache

Computing intensive
application

CPU

Big Cache size

Few number of cores

Memory intensive

application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

121 | P a g e

www.ijacsa.thesai.org

Fig. 3. Example for DAG Schedule.

Fig. 4. Classification for DAG Task Scheduling.

There are two objectives the schedule algorithm has to
achieve: 1) Employing the scheduler to order the tasks in a
form which fulfills the precedence’s requirements. 2) Fitting
each task to the most appropriate and suitable processing unit
available. First, we review the state-of-the-art algorithms which
were our target in this study considering previous problems,
then we introduce the proposed improvement algorithm.

B. State-of-the-Art Frameworks and Task Scheduling

Algorithms

In Fig. 4 we classified the DAG scheduling algorithms.
This figure illustrates that the scheduler algorithms are divided
into two types: static [7-24] and dynamic. The static has two
subtypes: heuristic based [7-9, 15-24] and guided random
search based [10-14]. The figure also illustrates the different
types of each of the latter two subtypes.

In our research we focused on heuristic based algorithms.
The heuristic based are in turn divided into three types: task
duplication [22,23,24], clustering [15,16,19,20,21] and list
scheduling [7,8,9,17,18]. In our research we focus on the list

scheduling [7,8,9]. There are many algorithms classified as list
scheduling algorithm, the most cited types are:

 Heterogeneous Earliest Finish Time (HEFT) algorithm
[7].

 Lookahead scheduling algorithm [8].

 Predict Earliest Finish Time (PEFT) [9].

Therefore, we based on them for the evaluation of our
work.

Here we illustrate with more details the state-of-the-art list
scheduling algorithm HEFT that we improved.

C. Heterogeneous Earliest Finish Time (HEFT) Algorithm

HEFT algorithm as well as PEFT and lookahead algorithm
involves two stages [7]: 1) Prioritizing the tasks, and
2) Selecting the processor units. In the first stage of HEFT
algorithm, the upward rank of tasks is computed for
prioritizing the tasks. As HEFT algorithm is
communication/computation aware algorithm, an upward rank
of tasks is calculated using the corresponding communication
and computation costs. For each task, the upward rank
represents the biggest path from the starting task to the exit
task. The output of the first step is a list of tasks organized in a
decreasing order based on their upward rank values. In the
second stage, the tasks are allocated to an appropriate processor
which minimizes the early finish time for each task. Using an
insertion-based policy, HEFT algorithm fits tasks in the earliest
idle time slot between two scheduled tasks on a processing
unit, HEFT time complexity is (|𝑉|2𝑝) The proposed DVR
HEFT algorithm improves the HEFT algorithm as it is
communication and computation aware.

III. PROPOSED COMMUNICATION AND COMPUTATION

AWARE TASK SCHEDULER FRAMEWORK (CCATSF)

A Communication and Computation Aware task scheduler
framework (CCATSF) is introduced in Fig. 5 and 6.

A. The Proposed CCATSF Framework Objectives

The objective of this work is the following:

1) We propose a task-scheduling technique for Exascale

Computing that overcome the previous task scheduling

frameworks weaknesses. The previous limitations are load

balancing in a heterogenous environment, resources

underutilization, fair resource mapping in the constrain of

reduce communication and energy consuming. The proposed

framework is based on reducing the communications and the

computations time.

2) We aim to use the DVR HEFT algorithm to implement

hybrid scheduling frame work to schedule and allocate tasks

on CPUs-GPUs architectures.

B. The Proposed CCATSF Framework Architecture

A Communication and Computation Aware task scheduler
framework (CCATSF) architecture layers are illustrated in
Fig. 6. The CCATSF framework consists of four sections. Each
of four sections consists of several sub modules. The first of
which is the resource monitor, the second is the resource

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

122 | P a g e

www.ijacsa.thesai.org

manager, the third is the task scheduler and the fourth is the
dispatcher or allocator. The resource monitor includes two
modules: the monitor that explores the resources in the system
dynamically, and the collector that collects the computing
resources metadata and updates the metadata in a continuous
manner. The resources manager included two subsections; the
resource selector and the resource collaborator. The task-
scheduler get the resources meta data and the tasks metadata,
that are used to schedule the tasks based on an improved
version of the Heterogeneous Earliest Finish Time (HEFT)
heuristic, a directed acyclic graph (DAG) scheduling
algorithm. HEFT algorithm, which is compatible efficiently for
heterogeneous systems, improved without increasing the time
complexity. The proposed DVR HEFT algorithm in run time

utilizes the monitor module which will keep track with the
cores status and save the processor's meta-data updated
continuously. If any of the processers is idle, the new task will
be mapped to the idle processor that satisfies the insertion
policy constraints. If there is no idle processor, the task -via the
dispatcher module- is inserted as the tail of one of the
processor’s queue which achieved the earliest execution time.
When there is more than one processor choice, the algorithm
computes for each processor pi, the actual early finish time of
the task then it is inserted as tail of the pi ready queue of the
processor which achieved earliest finish time would be chosen.
Another feature is that it keeps turning the processors to the
lowest energy consumption if they have no ready tasks in their
queues, thus improving energy expenditure.

Fig. 5. CCATSF Framework Data-Flow Graph.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

123 | P a g e

www.ijacsa.thesai.org

C. The Proposed CCATSF Framework Modules and Data

Structure

Here are some more details regarding the modules and the
data structured used in resources metadata as follows:

 Node (node-id, processor-type, operating-system,
environment-id)

 CPU (processor-type, speed, no-of-cores, status, node-
id)

 GPU (processor-type, speed, no-of-cores, status, node-
id)

 Memory (type, size, status, node-id)

The proposed CCAFST framework contains several
modules and submodules. Fig. 5 illustrates the dataflow
between these modules and submodules in the framework. The
system first receives the DAG tasks from the decompose layer
which is out of the scope of this paper. The modules in the
decompose layer convert the application into linked list
represents a directed acyclic graph. Following the framework
modules:

 CPU task spawner: Receives tasks from user and task
meta data such as CPU code of the task and GPU code,
successors, predecessors, communication time, and
other related graph dependency task meta data. It
receives tasks from the user as a directed acyclic graph
(DAG) that determines the parallel and sequential tasks
and related dependencies. In our case, the system user is
the programmer. It initializes the task by creating an
object-type work unit filling the work unit parameters
such as task ID, task status, input size, output size, and
memory size, CPU code, GPU code. The output of this
module is the work unit which encapsulates the task and
the meta data.

 Que/deque engine: Receives work unit from "CPU task
spawner" and enqueues the work unit in the data
structure queue. A task is deleted from queue once the
execution of the task and its children finishes. It
produces ready-task table, the CPU. The algorithm has
a loop; if a new task arrives, it is included in the
updated version of the task table.

 Scheduler: The scheduler receives the task ID as input,
the related metadata and the available resources
metadata. This module has many other sub modules
used based on the algorithm DVR-HEFT. Then it does
the mapping between the tasks and the resources by
applying the DVR HEFT algorithm. DAG is a graph
that defines the tasks and the dependences as nodes and
communication cost as edges. The scheduler input is
DAG and the output is the list of tasks and related
resources-ID that are passed to allocator.

 Allocator: The allocator consists of a number of
modules that allocate the tasks into resources based on
scheduler output. It requests the queue engine to send
the work units of the tasks that are listed in the task
table. The allocator uses a system calling APIs of the
target operating system. At the run time the allocator

software modules cooperate with the scheduler software
modules to apply the proposed dynamic algorithms
work share and work steal. The algorithms would be
implemented as dynamic library.

 Resources meta data collectors: These modules collect
the meta data of the resources in the system number,
type of processors, architecture memory size, speed of
processor, and all other meta data required for
specifications of processors. All the meta data are
continuously updated collaborating with the assist of
the resources monitor and stores in processor data
structure. It includes many software modules for
collecting the available resources meta data. There is a
module for each platform that calls the API function of
the target operating system for collecting meta data of
the resources of the target machine to be stored in the
metadata of resources. Each sub-module collects the
metadata of available resources and sends them to a
metadata manipulator module.

 Resources monitor: Collaborates with resources
collectors as we mentioned before. In addition, the
monitor keeps track of the resources’ status. The
resources’ status is either idle, busy or fail.

 Resources selector: The resource selector determines
the available resources (idle or low-load) and their
status based on output of resources monitor.

 Resources collaborator: Collaborates between the
executed resources to reduce the results that are passed
later to the user.

Fig. 6. CCATSF Framework Architecture Layers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

124 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED DVR HEFT ALGORITHM

In this part, the algorithm that our proposed framework is
based on is introduced. The algorithm consists of two parts:
static and dynamic.

A. The Static Part

In the static part, the input is DAG. As all static algorithms,
the first stage computes the priority of the tasks. When
prioritizing tasks in HEFT algorithm, the upward ranking of
tasks is considered. The upward rank, ru(i), of a task i is
defined recursively using the following equation:

ranku (i)={f(wi
i
)+max

∀j∈Si
(avr(ci,j)+ranku(j))} (1)

where wi defined the task's i computation cost, Si , the task's
i immediate successors set. C i,j is the task I — task j
communication cost. Assumption: when i and j allocated on the
same machine, communication cost is zero.

The function f(wii) produces the task weight value. This
value is dependent on the task's computation cost on each
processor. In the HEFT algorithm, f(Wi) function is calculated
using the average of the computation time on each machine.

 f(Wi) = avr.(wp1,wp2,….wpn-1,wpn) (2)

Such that P={p1,p2,..pn} where P is the set of processors.

Nevertheless, in a heterogeneous environment, typically,
the values in which the weights are based on cannot be
considered as constant. This is related to the indeterministic
behavior of the HPC environment resources. Similarly, the
values that weigh the nodes also cannot be constant. Therefore,
the computation cost of the task may vary, depending on the
efficiency and the performance of the machine on which the
task runs. Consequently, in the heterogeneous setting, there is a
variety of different approaches to compute the node's weight,
Thus, the scheme to compute the weight of a node Wi could be
obtained as ad hock choice that may, in some cases, improve
the execution time, but does not necessarily improve other
cases [5,25]. Consequently, we obtained three schemes for
computing the upward rank of the tasks.

1) We weigh the tasks based on the average of their

corresponding execution time across all machines, similar to

heft algorithm, Eq. (1).

f(Wi) = avr.(wp1,wp2,….wpn-1,wpn) (2)

2) It can also be obtained using the best case.

f(Wi) = Min(wp1,wp2,….wpn-1,wpn) (3)

3) weigh using the worst case.

f(Wi) = Max(wp1,wp2,….wpn-1,wpn) (4)

Each one of the schemas of equations (2), (3), (4) give a
different order task list. As a result, when having multiple
choices of rank function (and the values it returns), the quality
of the schedule produced would improve [5,25]. Thus, we
suggest that the performance of HEFT can be improved by
considering the three variant upward rank in the stage of
prioritizing the tasks [5,6]. Then we check the make span of the

schedules produced by each scheme and take the shortest make
span's schedule list and set it as the selected schedule. This
may slightly increase the cost of the algorithm, but it is a trade-
off worth making. In order to improve the execution time of
the algorithm, we simultaneously calculated the variant upward
rank of the tasks using the three schemes then apply the second
HEFT stage of selecting the resource. We then choose the
optimum schedule between them, i.e. the schedule that gives
the earliest finish time for the exit task. By utilizing the parallel
computing for this preprocessor calculation, the algorithm time
complexity will not be compromised.

Algorithm1: pseudocode DVR-HEFT algorithm

1. 1.DVR HEFT Algorithm

2. Define wi,EFT,taskID,ranku,P,t
3. Input int ranku,wi,EFT,PID,taskID
4. Output mapping PID,taskID
5. Begin algorithm
6. #the static part of the algorithm
7. for each task compute tasks ranku
8. f(wi)=Min(wp1..wpn)
9. rank tasks using the ranku as list1
10. for each task compute tasks ranku f(wi)=Max(wp1:wpn)

rank tasks using the ranku as list2
11. for each task compute tasks ranku f(wi)= avr.(wp1:wpn)

rank tasks using the ranku as list 3
12. End Do parallel
13. For all generated rank tasks list: list1, list2, list3 do
14. while there are unscheduled tasks do
15. t ← unscheduled task with highest ranku
16. For each pi∈ P //P set of the processors
17. schedule t on Pi using HEFT
18. End For ,
19. End while
20. compute EFT of exit task// this step generate EFT 1 for

//list1,EFT2for list2,EFT3 for list3 .
21. selected scheduler find min(EFT1,EFT2,EFT3)
22. end for
23. Turn to low energy consume mode
24. End for
25. End algorithm

B. The Dynamic Part

The second part of the algorithm is the dynamic part. In
some cases, tasks are submitted at the run time as in real time
systems and irregular workload. In practice, however, the
properties of computing nodes can change dynamically,
especially in situations where the worker nodes are shared with
other system users [26].

In this case, dynamic algorithm is required. In comparison
with static scheduling, dynamic task scheduling makes
decisions regarding task assignments at run time, allowing
computation to adapt to changes in the computing
environment, such as the processing power on a particular node
being preempted by other system users, as the scale of the
application under scheduling which hugely increased the need
for robust dynamic algorithm is not a trivial matter. In [26], the
researchers pointed out that static algorithm do not always
negatively affect performance. In fact, static features may

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

125 | P a g e

www.ijacsa.thesai.org

improve dynamic algorithms while dynamic features may
optimize static algorithms. Therefore, we combine VR-HEFT
algorithm with features that enable the scheduler to receive
tasks at run time and schedule them efficiently.

At the run time, each processor has a tasks list. When the
task dependency is satisfied, the task is queued in a processor's
queue named "ready tasks queue" to be later dispatched onto
the cores. The tasks are inserted using the insertion police used
in HEFT algorithm [7]. If a new task is received at the run
time, how does the algorithm schedule it? This point is
explained with more details when we discuss the framework
software architecture and modules. The algorithm in run time
as we mentioned before, keeps track with the cores status and
saves the processor's meta-data updated continuously. If any of
the processers is idle, the new task will be mapped to the idle
processor that satisfies the insertion policy constraints. If there
is no idle processor, the task is inserted as the tail of one of the
processor’s queue which achieved the earliest execution time.
When there is more than one processor choice, the algorithm
computes for each processor pi the actual early finish time of
the task then it is inserted as tail of the pi ready queue of the
processor which achieved earliest finish time would be chosen.
Another feature is turning the processors that are idle, to the
lowest energy consuming mode. When there is new task that
needs to be allocated to that node, the resources monitor return
it back to active mode which optimizes energy efficiency.

V. EXPERIMENT AND RESULTS

We conduct several experiments to evaluate the proposed
Framework based on the proposed algorithm DRV HEFT
algorithm. Also, we compare DVR HEFT algorithm against the
state-of-the-art list algorithms, HEFT-in the traditional form-,
Lookahead and PEFT in three sets of experiments using three
metrics [7] makespan, scheduling length ratio (SLR) and
efficiency. We first present the comparison metrics used for the
performance evaluation.

A. Comparison Metrics

The comparison metrics are make-span, scheduling length
ratio (SLR) and efficiency.

1) Make-span: First comparison metrics is the makespan

which means the total time for the scheduling algorithm. It can

be computed by finding the max actual finish time for the exit

task in the application

Make-span = max (AFT(t exit))

2) Scheduling length ratio: In addition to make-span we

used the scheduling length ratio (SLR) which is better to

compare DAGs with very different topologies.

SLR is defined as follows [7]:

(,)min ()
i MIN jn CP P P i j

makespan
SLR

w

In SLR, the denominator is the minimum computation cost
of the critical path tasks (CPMIN), where there is no make span
less than (CPMIN). Thus, the best algorithm is the algorithm
with the lowest SLR.

3) Efficiency: In the broad case, we calculate efficiency

by dividing the speedup over the number of processors used in

each run, where the Speedup is the ratio of the sequential

execution time to the parallel execution time (i.e., the make

span). By assigning all tasks to a single processor the

computation time of all the tasks is minimized.

 𝑝 𝑝

 𝑝

The sequential execution time is obtained using the
following equation [7].

 𝑝 𝑝

𝑝

(i.e., the speed up= the make span of schedule).toolbar.

B. Experiment Setup and Random Graph Generator

This is on progress research. Therefore, we conduct the
experiment on the DAG task scheduling algorithm VR-HEFT,
using a simulator. We implemented a random DAG generator
that generates graphs characterized as follows:

 Single entry and exit nodes.

 Graphs have multiple levels that are created gradually.
Each level randomly contains a range from 2 to half the
remaining nodes.

The following parameters define the DAG shape:

 : the number of tasks in the DAG.

 : Fat determines the width and height of the DAG. By
the width of the DAG, we choose the number of the concurrent
executed tasks, whereas by the height, we decide the DAG's
number of levels density Density defines the number of edges
between each two levels: high values indicate a high number of
connections in time and low values mean a lower number of
edges.

Consistency: Consistency determines the regularity of the
number of nodes in each level: high values indicate similar
number and low values mean dissimilar numbers.

Tasks Size range: Task’s Size range determines the range in
between the task’s size.

In our study, we created a wide variety of DAG structures,
assigning several values to some parameters in the DAG
generator to compute the communication and communication
cost. Here, we list these parameters that are used, and the
values used

𝐶𝐶𝑅 (Communication to Computation Ratio): ratio
between two summations the edge’s weights and nodes’
weights in a DAG;

𝛽 (range of computation cost percentage on processors).

The heterogeneity factor for processor speeds. A lower of 𝛽
value shows that the computation costs for a task is almost
equivalent among processors, whereas a higher value means
different computation costs between processors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

126 | P a g e

www.ijacsa.thesai.org

In the experiments, we used the following parameters to
generate random graphs:

 = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100,200,300,400,500]

 = [0.1, 0.4, 0.8]

𝐶𝐶𝑅 = [0.5, 1, 10]

𝛽 = [0.1, 0.5, 1]

Processors = [4, 8, 16, 32]

Task size range = [40-100, 350-500]

The previous parameters produced different graphs based
on their various combinations. The four algorithms Lookahead,
PEFT, traditional HEFT, and DVR-HEFT the improved
version of HEF were implemented. Next, we present the
experiments that we conducted and their results.

C. Experiments for the Comparative Study

1) Experiment 1: In the experiment 1, we measured the

makespan of each generated graph using the four algorithms,

then we got the average makespan as a function of the number

of nodes in the DAG. Then we computed the SLR for the four

algorithms. Fig. 7 and 8 shows the average of SLR.

We found that the proposed DVR-HEFT algorithm is better
than HEFT by an average of 13 percent continuously until the
number of tasks was 60 then it increased to 15 percent and
again decreased to less than 7 percent until the number of tasks
was 500 where it reached 5 percent. In contrast to Lookahead
(another algorithm that improved HEFT) we found that
lookahead is better than DVR-HEFT until 40 nodes then they
are both are equal and after 80 nodes DVR-HEFT has even
better performance. The worst performance of Lookahead is at
500 nodes

2) Experiment 2: The goal of the second experiment is to

find the SLR as a function of CCR Fig. 9, we found that the

performance improvement increased when the communication

is increased specially when the CCR ratio is more than 1; as

the DVR HEFT algorithm is communication aware. We also

found that DVR HEFT is similar to both PEFT and HEFT,

while they are better than Lookahead if the communication is

little (0.5). The DVR HEFT performance is improved by 3

percent compared to the HEFT algorithm when the

communication to computation ratio (CCR) is more than 0.5.

However, when the CCR is 10, DVR HEFT, PEFT and

Lookahead all similarly improve the performance HEFT in an

equal degree in average.

3) Experiment 3: In Experiment 3 we computed the

efficiency when we use different number of processors.

Fig. 10 and 11 illustrate the results of this experiment. We

found that DVR-HEFT improve the efficiency as a function of

the number of the processors similar to Lookahead algorithm

and superior to PEFT and HEFT that is less in efficiency than

DVR-HEFT. The efficiency of the algorithm is based on the

performance and the number of processors utilized in the

computation. If we improve the efficiency and the load

balanced, the performance will not necessary improve.

Lookahead improves the load balance more than PEFT,

therefore it improves efficiency even though the performance

of PEFT is better. DVR HEFT improves both efficiency and

performance at the same time. Next, we discuss the results.

Fig. 7. Average SLR as Function of DAG Size.

Fig. 8. Average SLR as Function of DAG Size.

Fig. 9. Average of SLR as a Function of CCR.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

127 | P a g e

www.ijacsa.thesai.org

Fig. 10. Average of Efficiency as a Function of Number of Processor.

Fig. 11. Average of Efficiency as a Function of Number of Processors.

4) Discussion results: Several experiments have been

conducted to evaluate the DVR-HEFT algorithm; the

proposed bio-objective hybrid scheduling algorithm that the

proposed CCATSF framework is based upon. CCATSF

framework is a hybrid task scheduling framework. The

experiments show that DVR-HEFT improves HEFT algorithm

better than the previous HEFT improving algorithms with

lowest quadratic time complexity. Exascale Computing

environment requires task scheduling for thousands of tasks,

hence, we propose DVR HEFT as a hybrid algorithm to

prioritize tasks and schedule them by mapping them to

available resources based on the earliest finish time. It also

schedules tasks at runtime to idle cores, and in case there is no

ready tasks, it turns the processors status to the lowest energy

consumption. Beside the scheduling module, our proposed

CCATSF framework involves other modules for allocating

tasks on the processor unit resources. As future work, we will

implement several algorithms for allocating that suitable for

Exascale computing.

As this research is still on progress, we evaluated our
algorithm based on the random job generator. We generated
jobs or graphs that involve a huge number of tasks such as 500
tasks and more. Such type of jobs is suitable for achieving the
number of tasks that are comparable to Exascale computing

scalability. We conducted these experiments that emphasized
the important effect of the task size and number in the
application under execution on the performance of the
algorithm. It also stresses on the effect of the communication
that our proposed algorithm was able to overcome. As future
work we will evaluate CCATSF based on the real applications
to justify the reliability of both the DVR HEFT algorithm and
the CCATSF framework.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce the task scheduler CCATSF
framework. The framework is implemented based on a new
hybrid DAG scheduling algorithm; Dynamic Variant Rank
HEFT (DVR-HEFT) algorithm. The aim of this in-progress
research is to propose a task scheduler framework that is
applicable to manage the Exascale computing complexity in
terms of scalability and heterogeneity. We first improve HEFT,
one of most cited state-of-the-art scheduling algorithms by
introducing the hybrid DVR-HEFT algorithm. Then we
proposed the task scheduler framework CCATSF based on the
proposed DVR HEFT algorithm. Our optimization is based on
decreasing the communication and computation time.
Consequently, we are able to decrease the energy consumption.
The framework is also able to decrease the energy consumption
by improving the utilization of resources. Several experiments
have been conducted based on a random job generator to
evaluate the CCATSF framework and compare the DVR HEFT
algorithm to HEFT and some of the state-of-the-art static DAG
scheduling algorithms. The results show that DVR-HEFT
improves HEFT algorithm and is superior to Lookahead
algorithm especially when the number of tasks is more than
100, which Exascale systems requires. Performance using
DVR HEFT algorithm increased by an average of 13 %
continuously until the number of tasks was 60 then it increased
to 15 percent and again decreased to less than 7 percent until
the number of tasks was 500 where it reached 5 percent. We
concluded that DVR-HEFT improves HEFT algorithm better
than the previous HEFT improving algorithms with lowest
quadratic time complexity. If we consider scheduling tasks for
Exascale Computing environment, thousands of tasks are
expected. For that reason, our next step in our in-progress
research is to evaluate the task-allocating module algorithms of
the CCATSF framework using real applications on more
scalable and heterogenous resources.

ACKNOWLEDGMENTS

This Paper contains the results and findings of a research
project that is funded by King Abdulaziz City for Science and
Technology (KACST) (Grant no.1-17-02-009-0012).

REFERENCES

[1] https://medium.com/syncedreview/one-billion-billion-tianhe-3-exascale-
supercomputer-prototype-passes-tests-7d30aa97aca2.

[2] William Gropp, Marc Snir, "Programming for Exascale Computers",
Computing in Science & Engineering, vol.15, no. 6, pp. 27-35, Nov.-
Dec. 2013.

[3] Suhelah Sandokji and Fathy Eassa, “Task Scheduling Frameworks for
Heterogeneous Computing Toward Exascale” International Journal of
Advanced Computer Science and Applications(IJACSA), 9(10), 2018.
http://dx.doi.org/10.14569/IJACSA.2018.091029.

[4] S. Sandokji, F. Eassa, M. Fadel, "A survey of techniques for warp
scheduling in GPUs," 2015 IEEE Seventh International Conference on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

128 | P a g e

www.ijacsa.thesai.org

Intelligent Computing and Information Systems (ICICIS), Cairo, 2015,
pp. 600-606.

[5] S. Sandokji, F. Eassa "Dynamic Variant Rank HEFT Task Scheduling
algorithm"16th International Conference On Learning and Technology
Conference 2019(LT19)Jeddah KSA.2019.

[6] S. Sandokji, F. Eassa Communication/Computation aware Task
Scheduling Framework for heterogenoeus Computing"accepted in
Journal of King Abdulaziz University Computing and Information
Technology Sciences.

[7] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,”IEEE
Trans. Parallel and Distributed Systems, vol. 13, no. 3,pp. 260-274, Mar.
2002.

[8] L.F. Bittencourt, R. Sakellariou, and E.R.M. Madeira, “DAG Scheduling
Using a Lookahead Variant of the Heterogeneous Earliest Finish Time
Algorithm,” Proc. 18th Euromicro Int’l Conf.Parallel, Distributed and
Network-Based Processing (PDP ’10), pp. 27-34, 2010.

[9] Hamid Arabnejad and Jorge G Barbosa. 2014. List scheduling algorithm
for heterogeneous systems by an optimistic cost table. IEEE
Transactions on Parallel and Distributed Systems 25, 3(2014), 682–694.

[10] Fraser, A. S., 1957, Simulation of genetic systems by automatic digital
computers. II: Effects of linkage on rates under selection, Austral. J.
Biol. Sci.10:492–499.

[11] John McCall,Genetic algorithms for modelling and optimisation,Journal
of Computational and Applied Mathematics,Volume 184, Issue
1,2005,Pages 205-222,ISSN 0377-0427.

[12] Van Laarhoven, Peter JM, and Emile HL Aarts. "Simulated annealing."
Simulated annealing: Theory and applications. Springer, Dordrecht,
1987. 7-15.

[13] Schaffer, J. David. "Some effects of selection procedures on hyperplane
sampling by genetic algorithms." Genetic algorithms and simulated
annealing (1987): 89-103.

[14] Moscato, Pablo, and Andrea Schaerf. "Local search techniques for
scheduling problems." Notes of the tutorial given at the 13th European
Conference on Artificial Intelligence, ECAI. 1998.

[15] Yu-Kwong Kwok and Ishfaq Ahmad. 1996. Dynamic critical-path
scheduling: An effective technique for allocating task graphs to
multiprocessors. IEEE transactions on parallel and distributed systems 7,
5 (1996), 506–521.

[16] B. Cirou and E. Jeannot, “Triplet: A Clustering Scheduling Algorithm
for Heterogeneous Systems,” Proc. Int’l Conf. Parallel Processing
Workshops, pp. 231-236, 2001.

[17] C. Boeres, J.V. Filho, and V.E.F. Rebello, “A Cluster-Based Strategy for
Scheduling Task on Heterogeneous Processors,” Proc. 16th Symp.
Computer Architecture and High Performance Computing,pp. 214-221,
2004.

[18] M-Y Wu and Daniel D Gajski. 1990. Hypertool: A programming aid for
message-passing systems. IEEE transactions on parallel and distributed
systems 1, 3 (1990), 330–343.

[19] Tao Yang and Apostolos Gerasoulis. 1994. DSC: Scheduling parallel
tasks on an unbounded number of processors. IEEE Transactions on
Parallel and Distributed Systems 5, 9 (1994),951–967.

[20] Hidehiro Kanemitsu, Masaki Hanada, and Hidenori Nakazato. 2016.
Clustering-based task scheduling in a large number of heterogeneous
processors. IEEE Transactions on Parallel and Distributed Systems 27,
11 (2016), 3144–3157.

[21] Vivek Sarkar. 1987. Partitioning and scheduling parallel programs for
execution on multiprocessors. Technical Report. Stanford Univ., CA
(USA).

[22] Menglan Hu, Jun Luo, Yang Wang, and Bharadwaj Veeravalli. 2017.
Adaptive Scheduling of Task Graphs with Dynamic Resilience. IEEE
Trans. Comput. 66, 1 (2017), 17–23.

[23] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms
for allocating directed task graphs to multiprocessors. ACM Computing
Surveys (CSUR) 31, 4 (1999), 406–471.

[24] Xiaoyong Tang, Kenli Li, Guiping Liao, and Renfa Li. 2010. List
scheduling with duplication for heterogeneous computing systems.
Journal of parallel and distributed computing 70, 4 (2010), 323–329.

[25] Zhao, Henan, and Rizos Sakellariou. "An experimental investigation
into the rank function of the heterogeneous earliest finish time
scheduling algorithm." European Conference on Parallel Processing.
Springer, Berlin, Heidelberg, 2003.

[26] E. Agullo, O. Beaumont, L. Eyraud-Dubois and S. Kumar, "Are Static
Schedules so Bad? A Case Study on Cholesky Factorization," 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Chicago, IL, 2016, pp. 1021-1030.doi:
10.1109/IPDPS.2016.90.

