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Abstract—The race for Exascale Computing has naturally led 

computer architecture to transit from the multicore era and into 

the heterogeneous era. Exascale Computing within the 

heterogenous environment necessarily use the best-fit scheduling 

and resource utilization improvement. Task scheduling is the 

main critical aspect in managing the challenges of Exascale in the 

heterogenous computing environment. In this paper, a 

Communication and Computation Aware task scheduler 

framework (CCATSF) is introduced. The CCATSF framework 

consists of four parts; the first of which is the resource monitor, 

the second is the resources manager, the third is the task 

scheduler and the fourth is the dispatcher. The framework is 

based on a new hybrid task scheduling algorithm for a 

heterogenous computing environment. Our results are based on 

the random job generator that we implemented, and they 

indicate that the CCATSF framework, based on the proposed 

dynamic variant heterogenous early finish time (DVR-HEFT) 

algorithm is able to reduce the scheduler's makespan and 

increase the efficiency without increasing the algorithm's time 

complicity. 

Keywords—Exascale computing; resource utilization; hybrid 

task scheduling; heterogeneous computing environment; task 

scheduler framework 

I. INTRODUCTION 

Scientific research these days requires the use of huge 
computation-intensive applications, which increasingly 
demand efficient and on-time executing high-performance 
computing systems (HPCS). The next generation of HPCS, in 
the near future, is Exascale Computing. Recently, the Tianhe-3 
prototype that can perform at one exaFLOPS has completed 
acceptance testing for China’s Ministry of Science and 
Technology [1]. Exascale era is clearly coming soon. 
Computing at exascale level and beyond involves many 
challenges; the main ones of which are scalability and 
heterogeneity. Programs will need to control billions of 
threads, running on different types of cores with different styles 
of architecture. This in turn will cause different parts of the 
system to run at different speeds. Applications will need to 
reduce communication and memory usage relative to the 
amount of computing; failures will be more frequent, possibly 
including silent errors. In these situations, good power 
management and error handling will become essential. 
Generally, to successfully achieve an exaflopic cluster, every 
aspect should be optimized, from hardware to execution 
instructions and tasks, all parts of these extraordinary systems 
must be improved [2]. 

Fig. 1 illustrates the roadmap for Exascale Computing. In 
2013, Titan in the USA and Tsubame KFC Tokyo Tech were 
the biggest supercomputers. They were 2.5GFlops/W and 
4.5GFlops/W, respectively [3] in time they both use 
heterogeneous computing, as both were utilizing K20 GPU, but 
Tsubame KFC have several advantages on Titan. 

One of which is changing the ratio CPU/ GPU, as energy 
consumption mostly goes more to the GPU and less to the 
CPU. Therefore, such techniques that leverage the available 
resources are desired. Thus, one way of thinking to reach 
exascale is the improvements that are 20PFlops, 10Wand 
107threads so as by 2023, it will have been duplicated 50times 
to get 1000GFlops besides only duplicating the power 
consumption twice. Hence, power efficiency must go up to 25 
times of the 2013 range [3]. This efficiency is derived from 
process technology, better hardware and software architecture 
and circuits, in addition to utilizing, parallelize and improving 
the thread from 107 to 1010 [3,4]. 

The matter that motivates researchers to leverage the 
heterogeneous PUs (multi CPU cores combined with any 
many-core accelerator such as GPUs or GFPA) collaboration 
to achieve high-performance computing. This way, we can 
benefit from the advantages of each and leverage the intelligent 
combination of both so as to achieve exascale performance and 
power consumption. Heterogeneous computing systems (HCS) 
are considered by many researchers the Exascale Computing 
system outrigger [3,4]. In an HCS, a various types of 
computing nodes, that are characterized by unrelated 
capabilities and equipped with spectrum types of computation 
units, are all interconnected via a highspeed network. The 
benefit of using different computing units (CU) types that each 
type of the heterogenous CU satisfies one type of application 
either memory or computing intensive application, see Fig. 2. 
The most efficient way to achieve the benefit of the spectrum 
types of the computing resources is best fit scheduling. 

The efficient scheduling framework is capable of 
partitioning a job into small tasks, scheduling them on the HCS 
processing units in an efficiency way which achieves the 
minimum time-span and uses resources efficiently, in order for 
the job to be executed [3,4]. Mapping the tasks into the best-fit 
computing resources is the aim of task scheduling and 
allocating algorithms. As we note in [3,4], task scheduling is 
the mean critical aspect in managing these challenges. Also we 
found that the inappropriate scheduling of tasks on the 
computing resources offsets the profit of parallelization. 
Furthermore, inefficient scheduling algorithms compromise the 
benefit of efficient high-performance hardware devices. 
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Fig. 1. The Road Map for Exascale. 

 

Fig. 2. Heterogenous Computing Advantages. 

To solve the problems of scheduling and allocation, the 
scheduling algorithms aim to minimize the executing time of 
the application via properly allocating the tasks to the 
processors achieving the earliest finish execution time in a way 
that utilizes the parallelism of the resources efficiently. It also 
minimizes the overhead preprocessing computing of the 
scheduling algorithm itself. Therefore, in our previous work, 
we introduce the new hybrid scheduling algorithm dynamic 
variant heterogenous early finish time (DVR HEFT) [5,6]. 

In this paper, we continue our research and experiments on 
DVR HEFT algorithm by introducing and implementing the 
framework of Communication and Computation Aware task 
scheduler framework (CCATSF). The CCATSF framework 
consists of four parts, the first of which is the resource monitor, 
the second is the task scheduler, the third is the dispatcher and 
the fourth part is the resource manager.  First, the resource 
monitor explores the resources in the system dynamically, 
collects the computing resources metadata, and updates the 
metadata in a continuous manner. The task-scheduler schedules 
the tasks based on an improved version of the Heterogeneous 
Earliest Finish Time (HEFT) heuristic, a directed acyclic graph 
(DAG) scheduling algorithm. The third part is the dispatcher. 
This module allocates the tasks to the available resources based 
on the output of the scheduler layer. Finally, the resource 
manager manages the scheduler system and the heterogenous 
computing resources.  In this paper, we continue our research 
in improving the HEFT algorithm. 

This paper contributes to the following aspects: 

1) A Communication And Computation Aware task 

scheduler framework (CCATSF) software architecture is 

introduced. 

2) The intersection of using DVR-HEFT: a new algorithm 

with the proposed framework for scheduling and allocating 

tasks on heterogenous resources is introduces. DVR-HEFT 

tackles the disadvantages of previous static algorithms by 

combining the improved HEFT algorithm using dynamic 

algorithm, the new algorithm considers optimizing the 

performance of heterogenous computing and the power 

consumption as well. 

The next section illustrates the task scheduling problem 
formulation, followed by a background review of state-of-the-
art algorithms. Following that, the proposed CCATSF 
framework and the proposed DVR HEFT algorithm are 
discussed. The random job generator implemented to generate 
the experiment's DAGs is also explained.  Then our 
experiments are analyzed in detail, and the results received, 
using the Radom job generator is discussed. 

II. RELATED WORK 

A. Task Scheduling Problem 

We addressed the static scheduling for single application's 
tasks on Set P of processors in a heterogeneous system. The 
following is assumed: 

1) There are P available processors to schedule the tasks 

of the job. 

2) During the job execution, the processors are not shared. 

3) No overhead at runtime as the system and job 

parameters are known at the compile time, which makes 

starting with static algorithm phase more desired. 

The application tasks are usually represented using directed 
acyclic graph DAG, G = (V, E), where Set V is the nodes/tasks 
of the graph and Set E is the edges/communication cost of 
connected tasks. For all edges of Set E, there exists a weight. 
Example for DAG is illustrated in Fig. 3 and Table I. The 
edges weight represents the required precedence between the 
two tasks. The precedence is the predecessor’s tasks that 
should be finished prior to the execution of the pointed task. 

TABLE. I. EXAMPLE DAG 

Tasks P1 P2 P3 

T1 21 20  35 

T2 21 17 17 

T3 31 27 42 

  T4 6 10  4 

T5 29 27  35 

T6 26 17  24 

T7 13 24  29 

T8 29 23   36 

T9 15 21  8 

T10 13 16  33 

 

 

Heterogenous 
computing  

Computing intensive  

application  

+Memory intensive 
application  

 

 

GPU 

Huge number of cores 

Low frequency 

Small cache 

Computing intensive 
application  

CPU 

Big Cache size 

Few number of cores  

Memory intensive  

application   



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

121 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 3. Example for DAG Schedule. 

 

Fig. 4. Classification for DAG Task Scheduling. 

There are two objectives the schedule algorithm has to 
achieve: 1) Employing the scheduler to order the tasks in a 
form which fulfills the precedence’s requirements. 2) Fitting 
each task to the most appropriate and suitable processing unit 
available. First, we review the state-of-the-art algorithms which 
were our target in this study considering previous problems, 
then we introduce the proposed improvement algorithm. 

B. State-of-the-Art Frameworks and  Task Scheduling 

Algorithms 

In Fig. 4 we classified the DAG scheduling algorithms. 
This figure illustrates that the scheduler algorithms are divided 
into two types: static [7-24] and dynamic. The static has two 
subtypes: heuristic based [7-9, 15-24] and guided random 
search based [10-14]. The figure also illustrates the different 
types of each of the latter two subtypes. 

In our research we focused on heuristic based algorithms. 
The heuristic based are in turn divided into three types: task 
duplication [22,23,24], clustering [15,16,19,20,21] and list 
scheduling [7,8,9,17,18]. In our research we focus on the list 

scheduling [7,8,9]. There are many algorithms classified as list 
scheduling algorithm, the most cited types are: 

 Heterogeneous Earliest Finish Time (HEFT) algorithm 
[7]. 

 Lookahead scheduling algorithm [8]. 

 Predict Earliest Finish Time (PEFT) [9]. 

Therefore, we based on them for the evaluation of our 
work. 

Here we illustrate with more details the state-of-the-art list 
scheduling algorithm HEFT that we improved. 

C. Heterogeneous Earliest Finish Time (HEFT) Algorithm 

HEFT algorithm as well as PEFT and lookahead algorithm 
involves two stages [7]: 1) Prioritizing the tasks, and 
2) Selecting the processor units. In the first stage of HEFT 
algorithm, the upward rank of tasks is computed for 
prioritizing the tasks. As HEFT algorithm is 
communication/computation aware algorithm, an upward rank 
of tasks is calculated using the corresponding communication 
and computation costs. For each task, the upward rank 
represents the biggest path from the starting task to the exit 
task. The output of the first step is a list of tasks organized in a 
decreasing order based on their upward rank values. In the 
second stage, the tasks are allocated to an appropriate processor 
which minimizes the early finish time for each task. Using an 
insertion-based policy, HEFT algorithm fits tasks in the earliest 
idle time slot between two scheduled tasks on a processing 
unit, HEFT time complexity is (|𝑉|2𝑝)  The proposed DVR 
HEFT algorithm improves the HEFT algorithm as it is 
communication and computation aware. 

III. PROPOSED COMMUNICATION AND COMPUTATION 

AWARE TASK SCHEDULER FRAMEWORK (CCATSF) 

A Communication and Computation Aware task scheduler 
framework (CCATSF) is introduced in Fig. 5 and 6. 

A. The Proposed CCATSF Framework Objectives 

The objective of this work is the following: 

1) We propose a task-scheduling technique for Exascale 

Computing that overcome the previous task scheduling 

frameworks weaknesses. The previous limitations are load 

balancing in a heterogenous environment, resources 

underutilization, fair resource mapping in the constrain of 

reduce communication and energy consuming. The proposed 

framework is based on reducing the communications and the 

computations time. 

2) We aim to use the DVR HEFT algorithm to implement 

hybrid scheduling frame work to schedule and allocate tasks 

on CPUs-GPUs architectures. 

B. The Proposed CCATSF Framework Architecture 

A Communication and Computation Aware task scheduler 
framework (CCATSF) architecture layers are illustrated in 
Fig. 6. The CCATSF framework consists of four sections. Each 
of four sections consists of several sub modules.  The first of 
which is the resource monitor, the second is the resource 
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manager, the third is the task scheduler and the fourth is the 
dispatcher or allocator. The resource monitor includes two 
modules: the monitor that explores the resources in the system 
dynamically, and the collector that collects the computing 
resources metadata and updates the metadata in a continuous 
manner. The resources manager included two subsections; the 
resource selector and the resource collaborator. The task-
scheduler get the resources meta data and the tasks metadata, 
that are used to schedule the tasks based on an improved 
version of the Heterogeneous Earliest Finish Time (HEFT) 
heuristic, a directed acyclic graph (DAG) scheduling 
algorithm. HEFT algorithm, which is compatible efficiently for 
heterogeneous systems, improved without increasing the time 
complexity. The proposed DVR HEFT algorithm in run time 

utilizes the monitor module which will keep track with the 
cores status and save the processor's meta-data updated 
continuously. If any of the processers is idle, the new task will 
be mapped to the idle processor that satisfies the insertion 
policy constraints. If there is no idle processor, the task -via the 
dispatcher module- is inserted as the tail of one of the 
processor’s queue which achieved the earliest execution time. 
When there is more than one processor choice, the algorithm 
computes for each processor pi, the actual early finish time of 
the task then it is inserted as tail of the pi ready queue of the 
processor which achieved earliest finish time would be chosen. 
Another feature is that it keeps turning the processors to the 
lowest energy consumption if they have no ready tasks in their 
queues, thus improving energy expenditure. 

 

Fig. 5. CCATSF Framework Data-Flow Graph.
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C. The Proposed CCATSF Framework Modules and Data 

Structure 

Here are some more details regarding the modules and the 
data structured used in resources metadata as follows: 

 Node (node-id, processor-type, operating-system, 
environment-id) 

 CPU (processor-type, speed, no-of-cores, status, node-
id) 

 GPU (processor-type, speed, no-of-cores, status, node-
id) 

 Memory (type, size, status, node-id) 

The proposed CCAFST framework contains several 
modules and submodules. Fig. 5 illustrates the dataflow 
between these modules and submodules in the framework. The 
system first receives the DAG tasks from the decompose layer 
which is out of the scope of this paper. The modules in the 
decompose layer convert the application into linked list 
represents a directed acyclic graph. Following the framework 
modules: 

 CPU task spawner: Receives tasks from user and task 
meta data such as CPU code of the task and GPU code, 
successors, predecessors, communication time, and 
other related graph dependency task meta data. It 
receives tasks from the user as a directed acyclic graph 
(DAG) that determines the parallel and sequential tasks 
and related dependencies. In our case, the system user is 
the programmer. It initializes the task by creating an 
object-type work unit filling the work unit parameters 
such as task ID, task status, input size, output size, and 
memory size, CPU code, GPU code. The output of this 
module is the work unit which encapsulates the task and 
the meta data. 

 Que/deque engine: Receives work unit from "CPU task 
spawner" and enqueues the work unit in the data 
structure queue. A task is deleted from queue once the 
execution of the task and its children finishes. It 
produces ready-task table, the CPU. The algorithm has 
a loop; if a new task arrives, it is included in the 
updated version of the task table. 

 Scheduler: The scheduler receives the task ID as input, 
the related metadata and the available resources 
metadata. This module has many other sub modules 
used based on the algorithm DVR-HEFT. Then it does 
the mapping between the tasks and the resources by 
applying the DVR HEFT algorithm. DAG is a graph 
that defines the tasks and the dependences as nodes and 
communication cost as edges. The scheduler input is 
DAG and the output is the list of tasks and related 
resources-ID that are passed to allocator. 

 Allocator: The allocator consists of a number of 
modules that allocate the tasks into resources based on 
scheduler output. It requests the queue engine to send 
the work units of the tasks that are listed in the task 
table. The allocator uses a system calling APIs of the 
target operating system. At the run time the allocator 

software modules cooperate with the scheduler software 
modules to apply the proposed dynamic algorithms 
work share and work steal. The algorithms would be 
implemented as dynamic library. 

 Resources meta data collectors: These modules collect 
the meta data of the resources in the system number, 
type of processors, architecture memory size, speed of 
processor, and all other meta data required for 
specifications of processors. All the meta data are 
continuously updated collaborating with the assist of 
the resources monitor and stores in processor data 
structure. It includes many software modules for 
collecting the available resources meta data. There is a 
module for each platform that calls the API function of 
the target operating system for collecting meta data of 
the resources of the target machine to be stored in the 
metadata of resources. Each sub-module collects the 
metadata of available resources and sends them to a 
metadata manipulator module. 

 Resources monitor: Collaborates with resources 
collectors as we mentioned before. In addition, the 
monitor keeps track of the resources’ status. The 
resources’ status is either idle, busy or fail. 

 Resources selector: The resource selector determines 
the available resources (idle or low-load) and their 
status based on output of resources monitor. 

 Resources collaborator: Collaborates between the 
executed resources to reduce the results that are passed 
later to the user. 

 

Fig. 6. CCATSF Framework Architecture Layers. 
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IV. PROPOSED DVR HEFT ALGORITHM 

In this part, the algorithm that our proposed framework is 
based on is introduced. The algorithm consists of two parts: 
static and dynamic. 

A. The Static Part 

In the static part, the input is DAG. As all static algorithms, 
the first stage computes the priority of the tasks. When 
prioritizing tasks in HEFT algorithm, the upward ranking of 
tasks is considered. The upward rank, ru(i), of a task i is 
defined recursively using the following equation: 

ranku (i)={f(wi
i 
)+max

∀j∈Si
(avr(ci,j)+ranku(j))}          (1) 

where wi defined the task's i computation cost, Si , the task's 
i immediate successors set. C i,j is the  task I — task j 
communication cost. Assumption: when i and j allocated on the 
same machine, communication cost is zero. 

The function f(wii) produces the task weight value. This 
value is dependent on the task's computation cost on each 
processor. In the HEFT algorithm, f(Wi) function is calculated 
using the average of the computation time on each machine. 

  f(Wi) = avr.(wp1,wp2,….wpn-1,wpn)            (2) 

Such that P={p1,p2,..pn} where P is the  set of processors. 

Nevertheless, in a heterogeneous environment, typically, 
the values in which the weights are based on cannot be 
considered as constant. This is related to the indeterministic 
behavior of the HPC environment resources. Similarly, the 
values that weigh the nodes also cannot be constant. Therefore, 
the computation cost of the task may vary, depending on the 
efficiency and the performance of the machine on which the 
task runs. Consequently, in the heterogeneous setting, there is a 
variety of different approaches to compute the node's weight, 
Thus, the scheme to compute the weight of a node Wi could be 
obtained as ad hock choice that may, in some cases, improve 
the execution time, but does not necessarily improve other 
cases [5,25]. Consequently, we obtained three schemes for 
computing the upward rank of the tasks. 

1) We weigh the tasks based on the average of their 

corresponding execution time across all machines, similar to 

heft algorithm, Eq. (1). 

f(Wi) = avr.(wp1,wp2,….wpn-1,wpn)            (2) 

2) It can also be obtained using the best case. 

f(Wi) = Min(wp1,wp2,….wpn-1,wpn )            (3) 

3) weigh using the worst case. 

f(Wi) = Max(wp1,wp2,….wpn-1,wpn)            (4) 

Each one of the schemas of equations (2), (3), (4) give a 
different order task list. As a result, when having multiple 
choices of rank function (and the values it returns), the quality 
of the schedule produced would improve [5,25]. Thus, we 
suggest that the performance of HEFT can be improved by 
considering the three variant upward rank in the stage of 
prioritizing the tasks [5,6]. Then we check the make span of the 

schedules produced by each scheme and take the shortest make 
span's schedule list and set it as the selected schedule. This 
may slightly increase the cost of the algorithm, but it is a trade-
off worth making. In order to improve the execution time of 
the algorithm, we simultaneously calculated the variant upward 
rank of the tasks using the three schemes then apply the second 
HEFT stage of selecting the resource. We then choose the 
optimum schedule between them, i.e. the schedule that gives 
the earliest finish time for the exit task. By utilizing the parallel 
computing for this preprocessor calculation, the algorithm time 
complexity will not be compromised. 

Algorithm1: pseudocode DVR-HEFT algorithm 

1. 1.DVR HEFT Algorithm  

2. Define wi,EFT,taskID,ranku,P,t  
3. Input int ranku,wi,EFT,PID,taskID 
4. Output mapping PID,taskID 
5. Begin algorithm  
6. #the static part of the algorithm  
7. for each task compute tasks ranku 
8.  f(wi)=Min(wp1..wpn )  
9.  rank tasks using the ranku as list1 
10.   for each task compute tasks ranku f(wi)=Max(wp1:wpn) 

rank tasks using the ranku  as list2 
11.  for each task compute tasks ranku f(wi)= avr.(wp1:wpn ) 

rank tasks using the ranku as list 3 
12. End Do parallel 
13. For all generated rank tasks list: list1, list2, list3 do 
14. while there are unscheduled tasks do 
15.  t ← unscheduled task with highest ranku 
16. For each pi∈ P //P set of the processors 
17.  schedule t  on Pi using HEFT 
18. End For , 
19. End while 
20.  compute EFT of exit task// this step generate EFT 1 for 

//list1,EFT2for list2,EFT3 for list3 . 
21. selected scheduler find min(EFT1,EFT2,EFT3)  
22. end for 
23. Turn to low energy consume mode  
24. End for 
25. End algorithm 

B. The Dynamic Part 

The second part of the algorithm is the dynamic part. In 
some cases, tasks are submitted at the run time as in real time 
systems and irregular workload. In practice, however, the 
properties of computing nodes can change dynamically, 
especially in situations where the worker nodes are shared with 
other system users [26]. 

In this case, dynamic algorithm is required. In comparison 
with static scheduling, dynamic task scheduling makes 
decisions regarding task assignments at run time, allowing 
computation to adapt to changes in the computing 
environment, such as the processing power on a particular node 
being preempted by other system users, as the scale of the 
application under scheduling which hugely increased the need 
for robust dynamic algorithm is not a trivial matter. In [26], the 
researchers pointed out that static algorithm do not always 
negatively affect performance. In fact, static features may 
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improve dynamic algorithms while dynamic features may 
optimize static algorithms. Therefore, we combine VR-HEFT 
algorithm with features that enable the scheduler to receive 
tasks at run time and schedule them efficiently. 

At the run time, each processor has a tasks list. When the 
task dependency is satisfied, the task is queued in a processor's 
queue named "ready tasks queue" to be later dispatched onto 
the cores. The tasks are inserted using the insertion police used 
in HEFT algorithm [7]. If a new task is received at the run 
time, how does the algorithm schedule it? This point is 
explained with more details when we discuss the framework 
software architecture and modules. The algorithm in run time 
as we mentioned before, keeps track with the cores status and 
saves the processor's meta-data updated continuously. If any of 
the processers is idle, the new task will be mapped to the idle 
processor that satisfies the insertion policy constraints. If there 
is no idle processor, the task is inserted as the tail of one of the 
processor’s queue which achieved the earliest execution time. 
When there is more than one processor choice, the algorithm 
computes for each processor pi the actual early finish time of 
the task then it is inserted as tail of the pi ready queue of the 
processor which achieved earliest finish time would be chosen. 
Another feature is turning the processors that are idle, to the 
lowest energy consuming mode. When there is new task that 
needs to be allocated to that node, the resources monitor return 
it back to active mode which optimizes energy efficiency. 

V. EXPERIMENT AND RESULTS 

We conduct several experiments to evaluate the proposed 
Framework based on the proposed algorithm DRV HEFT 
algorithm. Also, we compare DVR HEFT algorithm against the 
state-of-the-art list algorithms, HEFT-in the traditional form-, 
Lookahead and PEFT in three sets of experiments using three 
metrics [7] makespan, scheduling length ratio (SLR) and 
efficiency. We first present the comparison metrics used for the 
performance evaluation. 

A. Comparison Metrics 

The comparison metrics are make-span, scheduling length 
ratio (SLR) and efficiency. 

1) Make-span: First comparison metrics is the makespan 

which means the total time for the scheduling algorithm. It can 

be computed by finding the max actual finish time for the exit 

task in the application  

Make-span = max (AFT( t exit)) 

2) Scheduling length ratio: In addition to make-span we 

used the scheduling length ratio (SLR) which is better to 

compare DAGs with very different topologies.  

SLR is defined as follows [7]: 

( , )min ( )
i MIN jn CP P P i j

makespan
SLR

w 




  

In SLR, the denominator is the minimum computation cost 
of the critical path tasks (CPMIN), where there is no make span 
less than (CPMIN). Thus, the best algorithm is the algorithm 
with the lowest SLR. 

3) Efficiency: In the broad case, we calculate efficiency 

by dividing the speedup over the number of processors used in 

each run, where the Speedup is the ratio of the sequential 

execution time to the parallel execution time (i.e., the make 

span). By assigning all tasks to a single processor the 

computation time of all the tasks is minimized. 

               
 𝑝     𝑝 

          𝑝                
 

The sequential execution time is obtained using the 
following equation [7]. 

 𝑝    𝑝  
                          

𝑝                       
 

(i.e., the speed up= the make span of schedule).toolbar. 

B. Experiment Setup and Random Graph Generator 

This is on progress research. Therefore, we conduct the 
experiment on the DAG task scheduling algorithm VR-HEFT, 
using a simulator. We implemented a random DAG generator 
that generates graphs characterized as follows: 

 Single entry and exit nodes. 

 Graphs have multiple levels that are created gradually. 
Each level randomly contains a range from 2 to half the 
remaining nodes. 

The following parameters define the DAG shape: 

 : the number of tasks in the DAG. 

   : Fat determines the width and height of the DAG. By 
the width of the DAG, we choose the number of the concurrent 
executed tasks, whereas by the height, we decide the DAG's 
number of levels density Density defines the number of edges 
between each two levels: high values indicate a high number of 
connections in time and low values mean a lower number of 
edges. 

Consistency: Consistency determines the regularity of the 
number of nodes in each level: high values indicate similar 
number and low values mean dissimilar numbers. 

Tasks Size range: Task’s Size range determines the range in 
between the task’s size. 

In our study, we created a wide variety of DAG structures, 
assigning several values to some parameters in the DAG 
generator to compute the communication and communication 
cost. Here, we list these parameters that are used, and the 
values used 

𝐶𝐶𝑅 (Communication to Computation Ratio): ratio 
between two summations the edge’s weights and nodes’ 
weights in a DAG; 

𝛽 (range of computation cost percentage on processors). 

The heterogeneity factor for processor speeds. A lower of 𝛽 
value shows that the computation costs for a task is almost 
equivalent among processors, whereas a higher value means 
different computation costs between processors. 
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In the experiments, we used the following parameters to 
generate random graphs: 

  = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100,200,300,400,500] 

    = [0.1, 0.4, 0.8] 

𝐶𝐶𝑅 = [0.5, 1, 10] 

𝛽 = [0.1, 0.5, 1] 

Processors = [4, 8, 16, 32] 

Task size range = [40-100, 350-500] 

The previous parameters produced different graphs based 
on their various combinations. The four algorithms Lookahead, 
PEFT, traditional HEFT, and DVR-HEFT the improved 
version of HEF were implemented. Next, we present the 
experiments that we conducted and their results. 

C. Experiments for the Comparative Study  

1) Experiment 1: In the experiment 1, we measured the 

makespan of each generated graph using the four algorithms, 

then we got the average makespan as a function of the number 

of nodes in the DAG. Then we computed the SLR for the four 

algorithms. Fig. 7 and 8 shows the average of SLR. 

We found that the proposed DVR-HEFT algorithm is better 
than HEFT by an average of 13 percent continuously until the 
number of tasks was 60 then it increased to 15 percent and 
again decreased to less than 7 percent until the number of tasks 
was 500 where it reached 5 percent. In contrast to Lookahead 
(another algorithm that improved HEFT) we found that 
lookahead is better than DVR-HEFT until 40 nodes then they 
are both are equal and after 80 nodes DVR-HEFT has even 
better performance. The worst performance of Lookahead is at 
500 nodes 

2) Experiment 2: The goal of the second experiment is to 

find the SLR as a function of CCR Fig. 9, we found that the 

performance improvement increased when the communication 

is increased specially when the CCR ratio is more than 1; as 

the DVR HEFT algorithm is communication aware. We also 

found that DVR HEFT is similar to both PEFT and HEFT, 

while they are better than Lookahead if the communication is 

little (0.5). The DVR HEFT performance is improved by 3 

percent compared to the HEFT algorithm when the 

communication to computation ratio (CCR) is more than 0.5. 

However, when the CCR is 10, DVR HEFT, PEFT and 

Lookahead all similarly improve the performance HEFT in an 

equal degree in average. 

3) Experiment 3: In Experiment 3 we computed the 

efficiency when we use different number of processors. 

Fig. 10 and 11 illustrate the results of this experiment. We 

found that DVR-HEFT improve the efficiency as a function of 

the number of the processors similar to Lookahead algorithm 

and superior to PEFT and HEFT that is less in efficiency than 

DVR-HEFT. The efficiency of the algorithm is based on the 

performance and the number of processors utilized in the 

computation. If we improve the efficiency and the load 

balanced, the performance will not necessary improve. 

Lookahead improves the load balance more than PEFT, 

therefore it improves efficiency even though the performance 

of PEFT is better. DVR HEFT improves both efficiency and 

performance at the same time. Next, we discuss the results. 

 

Fig. 7. Average SLR as Function of DAG Size. 

 

Fig. 8. Average SLR as Function of DAG Size. 

 

Fig. 9. Average of SLR as a Function of CCR. 
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Fig. 10. Average of Efficiency as a Function of Number of Processor. 

 

Fig. 11. Average of Efficiency as a Function of Number of Processors. 

4) Discussion results: Several experiments have been 

conducted to evaluate the DVR-HEFT algorithm; the 

proposed bio-objective hybrid scheduling algorithm that the 

proposed CCATSF framework is based upon. CCATSF 

framework is a hybrid task scheduling framework. The 

experiments show that DVR-HEFT improves HEFT algorithm 

better than the previous HEFT improving algorithms with 

lowest quadratic time complexity. Exascale Computing 

environment requires task scheduling for thousands of tasks, 

hence, we propose DVR HEFT as a hybrid algorithm to 

prioritize tasks and schedule them by mapping them to 

available resources based on the earliest finish time. It also 

schedules tasks at runtime to idle cores, and in case there is no 

ready tasks, it turns the processors status to the lowest energy 

consumption. Beside the scheduling module, our proposed 

CCATSF framework involves other modules for allocating 

tasks on the processor unit resources. As future work, we will 

implement several algorithms for allocating that suitable for 

Exascale computing. 

As this research is still on progress, we evaluated our 
algorithm based on the random job generator. We generated 
jobs or graphs that involve a huge number of tasks such as 500 
tasks and more. Such type of jobs is suitable for achieving the 
number of tasks that are comparable to Exascale computing 

scalability. We conducted these experiments that emphasized 
the important effect of the task size and number in the 
application under execution on the performance of the 
algorithm. It also stresses on the effect of the communication 
that our proposed algorithm was able to overcome. As future 
work we will evaluate CCATSF based on the real applications 
to justify the reliability of both the DVR HEFT algorithm and 
the CCATSF framework. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we introduce the task scheduler CCATSF 
framework. The framework is implemented based on a new 
hybrid DAG scheduling algorithm; Dynamic Variant Rank 
HEFT (DVR-HEFT) algorithm. The aim of this in-progress 
research is to propose a task scheduler framework that is 
applicable to manage the Exascale computing complexity in 
terms of scalability and heterogeneity. We first improve HEFT, 
one of most cited state-of-the-art scheduling algorithms by 
introducing the hybrid DVR-HEFT algorithm. Then we 
proposed the task scheduler framework CCATSF based on the 
proposed DVR HEFT algorithm. Our optimization is based on 
decreasing the communication and computation time. 
Consequently, we are able to decrease the energy consumption. 
The framework is also able to decrease the energy consumption 
by improving the utilization of resources. Several experiments 
have been conducted based on a random job generator to 
evaluate the CCATSF framework and compare the DVR HEFT 
algorithm to HEFT and some of the state-of-the-art static DAG 
scheduling algorithms. The results show that DVR-HEFT 
improves HEFT algorithm and is superior to Lookahead 
algorithm especially when the number of tasks is more than 
100, which Exascale systems requires. Performance using 
DVR HEFT algorithm increased by an average of 13 % 
continuously until the number of tasks was 60 then it increased 
to 15 percent and again decreased to less than 7 percent until 
the number of tasks was 500 where it reached 5 percent. We 
concluded that DVR-HEFT improves HEFT algorithm better 
than the previous HEFT improving algorithms with lowest 
quadratic time complexity. If we consider scheduling tasks for 
Exascale Computing environment, thousands of tasks are 
expected.  For that reason, our next step in our in-progress 
research is to evaluate the task-allocating module algorithms of 
the CCATSF framework using real applications on more 
scalable and heterogenous resources. 
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