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Abstract—Event-based system (EBS) has become popular 

because of its high flexibility, scalability, and adaptability. These 

advantages are enabled by its communication mechanism—

implicit invocation and implicit concurrency between 

components. The communication mechanism is based on non-

determinism in event processing, which can introduce inherent 

security vulnerabilities into a system referred to as event attacks. 

Event attack is a particular type of attack that can abuse, 

incapacitate, and damage a target system by exploiting the 

system's event-based communication model. It is hard to prevent 

event attacks because they are administered in a way that does 

not differ from ordinary event-based communication in general. 

While a number of techniques have focused on security threats in 

EBS, they do not appropriately resolve the event attack issues or 

suffer from inaccuracy in detecting and preventing event attacks. 

To address the risk of event attacks, I present a novel 

vulnerability detection technique for EBSs that are implemented 

by using message-oriented middleware platform. My technique 

has been evaluated on 25 open-source benchmark apps and eight 

real-world EBSs. The evaluation exhibited my technique's higher 

accuracy in detecting vulnerabilities on event attacks than 

existing techniques as well as its applicability to real-world EBSs. 

Keywords—Event-based system; program analysis; software 

security 

I. INTRODUCTION 

Event-based systems (EBSs) implemented by using MOM 
platforms are widely used.  They are implemented in various 
types of systems such as web apps or SOA-based systems by 
using different types of MOM platforms such as Prism-MW 
[1], Java Message Service [3], and Siena [10]. EBSs have 
become popular because of its high flexibility, scalability, and 
adaptability. These advantages are enabled by its reliance on 
implicit invocation and implicit concurrency.  Specifically, in 
EBSs, components may not know the consumers of the events 
they publish, nor do they necessarily know the producers of 
events they consume. However, this communication 
mechanism is based on non-determinism in event processing, 
which can introduce inherent security vulnerabilities into a 
system referred to as event attacks. For example, developers 
may build EBSs by utilizing externally developed components 
that contain malicious code, and users may use those EBSs 
comprising malicious components. For those cases, malicious 
components can launch unintended behaviors through event 
communication, such as eavesdropping on events to steal 
sensitive information or exploiting the information in events to 
hijack the system's functionalities. 

Existing system analysis techniques neither focus on event 
attacks nor correctly detect vulnerabilities across components 
[5,6,7,23]. Specifically, existing vulnerable-flow analysis 
techniques do not support implicit invocation between 
components and are not scalable to analyzing systems 
comprising large numbers of components [6,7,12]. While a 
large body of research has studied detecting vulnerabilities that 
expose Android apps to event attacks [9,11,12,13], they cannot 
be directly applied to other types of EBSs, because Android 
uses its system-specific communication model, APIs, and 
component life-cycles. Thus a generalized solution is required 
to protect other types of EBSs. 

To overcome aforementioned challenges and the 
shortcomings of the existing approaches, I designed a 
technique that automatically detects target EBS’s 
vulnerabilities that expose the system to event attacks. My 
solution statically inspects target EBS in order to identify 
security vulnerabilities that expose the system to event attacks. 
It performs vulnerable-flow analysis and pattern matching on 
event communication channels between components. My 
technique is distinguished from prior works because (1) it 
detects potential risks of event attack in EBSs more accurately 
than existing techniques, (2) it supports multiple types of 
MOM platform, and (3) it enables a scalable analysis of EBSs 
comprising a large number of components and methods. 

This paper makes the following contributions: (1) I 
proposed a novel technique that identifies security 
vulnerabilities from multiple types of EBSs; (2) I developed a 
prototype tool that implements the proposed technique; (3) I 
provided the results of evaluations that involve real-world 
EBSs and comparable techniques. Section 2 illustrates event 
attacks in EBSs, which motivate my research. Section 3 details 
my approach and Section 4 presents the evaluations of my 
technique. A discussion of related work is provided in Section 
5, and my conclusions are presented in Section 6. 

II. MOTIVATING EXAMPLE: WEB APPLICATIONS 

In this section, I will present a simplified example of event 
attack which can be launched on event-based web apps. Fig. 1 
and 2 illustrate eavesdropping attack.  An app App1 follows 
event-based communication model and is implemented by 
using Java Message Service [3], a Java MOM platform for 
message-based communication between components. App1 is 
corrupted to contain an unintended component Mal (in Fig. 2) 
so that event attacks can be launched. Fig. 1 and 2 show where 
App1’s vulnerability resides. In this app, all events are 
published through ―CustomTopic‖. 
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Fig. 1. Component Vic in App1. 

 

Fig. 2. Component Mal in App1. 

Component Vic in App1 (in Fig. 1) publishes an event e1 
through CustomTopic without any particular protection such as 
access restrictions. e1 has two attributes— one with the name 
―Name‖ (whose value is ―ReplyInfo‖) and one with the name 
―StringProperty‖ (whose value is ―Sensitive‖)—while 
containing sensitive information (i.e., s). By listening to 
―CustomTopic‖ and declaring attributes ―ReplyInfo‖ and 
―Sensitive‖, Mal can eavesdrop on the event sent from Vic and 
obtain the sensitive information. 

As shown in this example, since event attacks appear to be 
ordinary event interactions, existing malware inspection 
techniques, especially the techniques that rely on signature-
based detection [23], may not be able to detect event attacks.  
Moreover, since publishing and consuming events can be 
processed via ambiguous interfaces, existing flow-analysis 
techniques will be unable to accurately analyze implicit 
invocation between components. Furthermore, since routing 
event is performed in an invisible and non-deterministic way, it 
is difficult to expect when and where the event attacks are 
actually launched. 

III. SOLUTION 

My proposed solution basically considers three main 
challenges as follows: (1) ambiguous event communication 
channels: EBS’s inherent attributes hamper the extraction of 
event communication channels via which events are exchanged 
between components. Specifically, implicit invocation between 
components makes it difficult to determine where each event 
will flow into, and EBS’s event interfaces do not explicitly 
reveal the events to be consumed. Furthermore, depending on 

the types of MOM platform, different event interfaces can be 
used. To handle this, my technique leverages Eos [4], a 
technique that statically extracts event types and their attributes 
based on the characteristics of underlying MOM platform; (2) 
scalable flow analysis: To check whether sensitive data leaks 
or unintended access to sensitive functionality can be launched, 
control-/data-flow analysis on methods in each component is 
required. However, in case when an EBS comprises a large 
number of components and methods, flow analysis on every 
method in the EBS may not be scalable. According to prior 
research. [8], on average, EBSs contain over 35 methods to be 
analyzed, which could consume hours for a real-world EBS. 
Although several flow-analysis techniques have been proposed 
for Android apps [12,19], considering the fact that mobile 
platforms limit the size of apps, those techniques may not scale 
with large-scale EBSs containing methods with larger size and 
higher complexity. My technique provides a size reduction 
algorithm which enables its analysis to scale well with 
identifying vulnerabilities from large-scale EBSs; (3) 
inconstant distinction of components. Event attacks are 
launched across the components that have different trust level. 
Although Android uses a consistent mechanism for 
distinguishing among the trust levels of app components (i.e., 
each ―app‖ has different trust level), other EBSs may use 
different types of distinction depending on their system 
configuration. For example, the trust level of externally-
developed components can be different from that of component 
developed in-house. To handle this, my technique introduces 
the concept of trust boundaries. A trust boundary is defined as 
a unit for dividing components based on each component’s 

1    public class Vic { 

2     ... 

3    String s = getSensitiveInfo(); 

4    Topic topic = (Topic)ctx.lookup("CustomTopic"); 

5    TopicConnection con = factory.createTopicConnection(); 

6    TopicSession session = con.createTopicSession(false, Session.AUTO_ACKNOWLEDGE); 

7    TopicPublisher publisher = session.createPublisher(topic); 

8    Message e1 = session.createMessage(); 

9     e1.setJMSType("TextMessage"); 

10   e1.setName("ReplyInfo"); 

11   e1.setStringProperty("Sensitive", s); 

12   publisher.publish(e1); 

13   } 

1     public class Mal { 

2     ... 

3     String m; 

4     Topic topic = (Topic)ctx.lookup("CustomTopic"); 

5     TopicConnection con = factory.createTopicConnection(); 

6     TopicSession session = con.createTopicSession(false,Session.AUTO_ACKNOWLEDGE); 

7     TopicSubscriber subscriber = session.createSubscriber(topic); 

8     subscriber.setMessageListener(new MessageListener(){ 

9  protected void handleMessage(Message e2){ 

10   if (e2.getName().equals("ReplyInfo")){ 

11     m = e2.getStringProperty("Sensitive"); 

12   }}} 
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trust level. Components that have the same trust level belong to 
the same trust boundary, and a trust boundary can be set per 
each component as well as a group of components. 

My solution operates in three phases—Extraction, 
Reduction, and Identification—and uses three types of inputs: 
the target EBS's (1) implementation, (2) configuration, and (3) 
sensitive APIs. The configuration includes the information 
regarding the underlying MOM platform (i.e., the methods for 
event communication and the base class for events) and trust 
boundaries. The information of underlying MOM platform can 
be derived from the API specification of the platform, which 
only needs to be identified once per platform. Considering the 
existing platforms, such information has been publicly 
accessible. Trust boundaries can be easily derived by clustering 
components based on a developer's trust level regarding each 
component. While a set of sensitive APIs relies on the 
expectation that developers can provide accurately, it is fairly 
straightforward to identify them. Because so far as the 
components developed in-house are concerned, they might 
know particular APIs that handle important data or sensitive 
functionalities. Furthermore, even if a developer is not fully 
knowledgeable about the sensitive APIs in the target system, 
she can refer to the existing sets of APIs [2] which are 
generally considered as sensitive. According to the results of 
evaluation in Section 4, relying on setter and getter methods 
which are generally considered as sensitive, indicated a fairly 
high precision (=85.67%) in identifying vulnerabilities. In the 
remainder of this section, I will discuss each of three phases in 
detail. 

Extraction - In this phase, target system's implementation is 
inspected in order to extract two different information: (1) The 
first information includes published event types (PET) and 
consumed event types (CET) accessed by each component, 
which can be used to infer event communication channels 
between components [8]. By using static flow-analysis on the 

target system's implementation, every component's PET and 
CET are extracted along with corresponding attributes from the 
system implementation. In Fig. 1, an example of PET 
published at line 12 is {(Name: "ReplyInfo"), (StringProperty: 
"Sensitive")}; (2) The Second information is the location 
where each sensitive API is accessed or called. For each 
method in a given list of sensitive APIs, the components where 
the method is called are identified along with their location in 
the system implementation. 

Reduction-To identify vulnerable event communication 
channels, both inter- and intra-component flows are considered 
by combining the extracted event types with each component's 
control-flow graph (CFG). However considering a large-scale 
EBS, it may not be scalable to generate and traverse every 
component's CFG. To address this, we build an event flow 
graph (EFG), which provides a macro perspective of target 
EBS (see Fig. 3), and examines the EFG in order to prune the 
components that are unnecessary for subsequent analyses. 

In an EFG, components are connected by the edges that 
represent event communication channels between pairs of 
components. An edge is determined by matching PET and CET, 
while having a direction to which an event is being sent. For 
the component where a sensitive API is called, my solution 
checks if its sensitive API is reachable from or to its event 
interfaces—consuming event interface (CEI) and publishing 
event interface (PEI)—via its call graph (CG). If yes, the 
component is labeled as a sensitive component (see Fig. 3).  
The components that form an event communication channel 
across trust boundaries are labeled as boundary components. If 
a boundary component’s PEI for event communication across 
trust boundaries is reachable from its CEI or sensitive API via 
CG, its attribute is set to be outflow-boundary (OB). 
Conversely, if its CEI for event communication across trust 
boundaries is reachable to its PEI or sensitive API via CG, its 
attribute is set to be inflow-boundary (IB). 

 

Fig. 3. An Event Flow Graph. 
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Algorithm 1. Identification of Vulnerable Communication 
Channels 

Input:  G     an EFG 

Output: VulCF     a set of vulnerable event communication 

channels 

1    Let SG be a set of sensitive components in G 

2    Let OBG be a set of outflow-boundary components in G 

3    Let IBG be a set of inflow-boundary components in G 

4    Let SMc be a set of sensitive methods in a component c ∈  G 

5    Let l = [c1, c2, ... cn] be a list of connected components  

      from component c1 ∈  SG to component cn ∈  OBG  or  

      from component c1 ∈  IBG  to component cn ∈  SG 

6    Let t ∈  (PETc ∪ CETc) where ∀c ∈  G 

7    foreach l ∈  G do 

8         if  ((c1 ∈  SG) ∧  (cn ∈  OBG)) then 

9  foreach s ∈  SMc1  do 

10  t     identifyFlow(c1, s, PEIc1, ―out‖, l.remove(c1)) 

11  add getOutFlowChannel(t) to VulCF 

12       if ((cn ∈  SG) ∧  (c1 ∈  IBG)) then 

13   foreach s ∈  SMcn  do 

14  t     identifyFlow(cn, s, CEIcn , ―in‖, l.remove(cn)) 

15  add getInFlowChannel(t) to VulCF 

16    return VulCF 

My solution prunes the components that are not associated 
with vulnerable event communication. For example, in Fig. 3, 
component s1 publishes two different types of events (i.e., a 
and c) each of which initiates different subsequent event 
communication (i.e., b and d-e, respectively). Considering the 
fact that event attacks exploit (1) event communication across 
trust boundaries and (2) event communication that flows into 
or from sensitive APIs, event communication channels for c, d, 
and e are not essentially vulnerable to event attacks, because 
they are not involved in the event communication across trust 
boundaries. Thus, the components that are connected with 
those event channels are removed (i.e., components c1, c2, and 
c3) from EFG in order to reduce the overhead in subsequent 
flow analyses. 

Identification-Vulnerable event communication channels 
are identified by implementing Algorithm 1 on the pruned 
EFG. Algorithm 1 iterates over each list of connected 
components (i.e., l in G), which directs from a sensitive 
component to a boundary component or reverse (lines 7-15). 
Two cases are considered depending on the direction of l: 

(1) For l which directs from a sensitive component to an 
outflow-boundary component (lines 8-11), Algorithm 1 checks 
if an intra-component flow exists between a sensitive methods 
and PEI of c1 (=the starting component of l) by calling 
identifyFlow with the flag as "out" (line 10). To illustrate this 
case, consider the component Vic in Fig. 1. Since Vic is a 
sensitive component and an out-flow boundary component, 
Algorithm 1 checks if an intra-component flow exists between 
its sensitive method getSensitiveInfo and its PEI publish by 
calling identifyFlow. identifyFlow checks if a given component 
contains an intra-component flow between given two methods 
(i.e., m1: s and m2: PEIc1). In case when a given flag is "out", it 
inspects every node in the CFGs of m1 and m2, and checks if a 
node in m2 is dependent on a node in m1. If yes, it recursively 

checks an intra-component flow from CEIs to PEIs of 
subsequent components in l. If the flows exist throughout every 
component in l, it returns PET which can be published via m2; 
Otherwise it returns null. For the reverse case when flag is "in", 
it checks the flow from nodes in m2 to node in m1, and 
recursively identifies intra-component flows from PEIs to CEIs 
of subsequent components in l. If the flow exists through every 
component in l, it returns CET, which can be consumed via 
m1; Otherwise, it returns null. If identifyFlow returns PET (i.e., 
t) which is not null, Algorithm 1 identifies the event 
communication channel where the returned PET is published 
by calling getOutFLowChannel, and add the channel to VulCF, 
a set of vulnerable event communication channels (lines 10-
11). Coming back to the example in Section 2, since Vic 
contains an intra-component flow from getSensitiveInfo to 
publish, the PET (i.e., {(Name: "ReplyInfo"), (StringProperty: 
"Sensitive")}) will be returned by Algorithm 1. Finally, the 
communication channel between Vic and Mal will be added to 
VulCF. 

(2) The second case is for l which directs from an inflow-
boundary component to a sensitive component (lines 12-15). 
Algorithm 1 checks if an intra-component flow exists between 
a sensitive method s and CEI of cn (=the last component of l) 
by calling identifyFlow with the flag as "in" (line 14). If 
identifyFlow returns CET (i.e., t) which is not null, Algorithm 
1 identifies the event communication channel where the 
returned CET is consumed by calling getInFlowChannel, and 
add the channel to VulCF (line 15). 

My solution also performs pattern analysis on the event 
communication channels in EFG based on the previously 
identified patterns [9]. Four different patterns are considered as 
follows: (c: a component, T: a trust boundary, x   y: an event 
communication channel exists from x to y). 

(1) For components c1 and c2 ∈  T1, c3 ∈  T2; c1 = c2 = c3: 
(c3   c2) ∧  (c1   c2) 

(2) For components c1 and c2 ∈  T1, c3 ∈  T2; c1 = c2 = c3: 
(c1   c3) ∧  (c1   c2) 

(3) For components c1 ∈  T1; c2 and c3 ∈  T2; c1 = c2 = c3: 
(c1   c2) ∧  (c2   c3) ∧  ¬(c1   c3) 

(4) For components c1 and c2 ∈  T1, c3 ∈  T2; c1 = c2 = c3: 
(c1   c2) ∧  (c2   c3) ∧  ¬(c1   c3) 

The patterns are based on the assumption that event 
communication within the same trust boundary is intended 
access, but event communication across the boundaries can be 
unintended access from a malicious component. Specifically, 
in case of the pattern (1), c3   c2 can be spoofing. For the 
pattern (2), c1   c3 can be interception or eavesdropping. For 
the pattern (3) and (4), c1   c2   c3 can be confused deputy 
or collusion. If a given EFG contains event communication 
channels that match any of these patterns, the corresponding 
channel(s) to VulCP (i.e., a set for vulnerable event 
communication channels) are returned. Finally, all the 
identified event communication channels in VulCF and VulCP 
are returned. While the channels belonging to both sets can be 
considered as the most vulnerable, other ones also need to be 
inspected and protected in order to minimize the threats of 
event attacks in a target EBS. 
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IV. EVALUATION 

I have implemented the prototype of my solution as a 
stand-alone Java app which combines approximately 2,000 
newly written SLOC with the off-the-shelf tools, Eos [4] and 
Soot [21]. Eos is used in the extraction phase to extract PET 
and CET from target EBS. Soot is used to generate CGs and 
CFGs of the components within a target EBS. The prototype 
was empirically evaluated in terms of its accuracy, 
applicability, and performance in detecting vulnerabilities from 
a target EBS's byte-code. 

A. Accuracy 

This evaluation targeted vulnerability detection tools for 
web apps, because they fall under a particular type of EBS 
which can be implemented by using MOM platforms. Among 
the state-of-the-art static analysis tools for detecting security 
vulnerabilities in web apps, three tools were executable while 
supporting Java-based systems: Xanitizer [7], Owasp Orizon 
[6], and SonarQube [5]. I evaluated my prototype's accuracy in 
identifying vulnerable event communication channels by 
comparing its results against those three tools. 

Since existing test benchmarks for web apps neither target 
EBSs nor event attacks, I have created a test benchmark for 
evaluating security analysis techniques for EBSs. To minimize 
internal threats to the validity of results, I asked graduate 
students at USC to build a set of apps that implement event 
attacks based on the published literature [9]. They built 20 
distinct event-based apps by using two representative types of 
MOM platforms (10 apps for each): (1) Java Message Service 
[3], the widely adopted Java-oriented middleware; and (2) 
Prism-MW [1], a research-off-the-shelf middleware platform 
for distributed software systems. Every app was designed to 
contain a malicious component that had the sole purpose of 
launching an event attack. The benchmark also comprises five 
"trick" apps containing vulnerable but unreachable 
components, whose identification would be a false warning. 
This yielded a total of 25 event-based apps containing 20 
vulnerable event communication channels. 

I ran the three tools on my test benchmark and measured 
their (1) precision, i.e., identified vulnerabilities that were 
actually vulnerable to event attacks, and (2) recall, i.e., the ratio 
of identified vulnerabilities to all those exposed to event 
attacks. My prototype detected vulnerable event 
communication channels with 100% precision and recall, 
correctly ignoring all "trick" cases. However, other tools (i.e., 
Xanitizer, Owasp Orizon, and SonarQube) were unable to find 
any of the vulnerabilities related to event attacks from the 
benchmark. Specifically, Xanitizer did not return any 
vulnerability. While Owasp Orizon and SonarQube reported 
some security warnings (e.g., potential dangerous keyword in 
the method), they are not directly related to the vulnerabilities 
caused by event attacks. This is primarily because these three 
tools neither target event attacks nor support inter-component 
flow analysis. 

B. Applicability 

To assess if my solution is applicable to real-world EBSs, I 
selected eight EBSs from the test suite which have been used in 
evaluating prior research [4]. While all subject systems are 

implemented in Java, they are from different app domains (e.g., 
game, simulator, and chat system), of different sizes (5K-
247IK SLOC), and use different underlying mechanisms (e.g., 
JMS [3], Prism-MW [1], and REBECA [16]) for event 
communication. Since the list of sensitive APIs and trust 
boundaries were not provided for those systems, I have used 
the configuration that every 'getter' or 'setter' method was a 
sensitive method and every component belonged to different 
trust boundaries. According to the well-known sensitive API 
list for Android [18], 81% of sensitive methods are eight 
getters or setters (getter: 97%, setters: 65%), which implies that 
getters and setters are more likely to be sensitive to security 
attacks compared to other methods. However, it is important to 
note that this does not necessarily meant that all getters and 
setters are always sensitive methods. Among the eight subject 
systems, my prototype flagged 25 vulnerable event 
communication channels in three systems (Dradel: 12, ERS: 
11, KLAX: 2). On average, the precision of result was 85.67% 
(Dradel: 75%, ERS: 82%, KLAX: 100%). Every false positive 
was caused by the prototype's inaccuracy in identifying 
control-flows between sensitive methods and event interfaces. 
For those three systems, Xanitizer reported 83 security 
warnings such as "may expose internal representation by 
returning reference to mutable object" and "IO Stream 
Resource Leaks" (Dradel: 6, ERS: 62, KLAX: 15). However 
only seven of them (8.43%) were related to the vulnerabilities 
that expose the system to event attacks. Owasp Orizon and 
SonarQube returned 13 (Dradel: 9, ERS: 1, KLAX: 3) and 95 
(Dradel: 17, ERS: 73, KLAX: 5) implementation bugs, 
respectively, indicated as "empty catch detected" and "found 
potential dangerous keyword". But none of them were related 
to the vulnerabilities that expose the system to event attacks. 
Those three tools also did not return any such vulnerability 
from the other five subject systems. Although my prototype 
outperformed the three tools in this evaluation, it is to be noted 
that they detected additional types of vulnerabilities my 
prototype does not target. 

I also tested my prototype on the event-based apps 
comprising different numbers of components. I created four 
distinct apps by adding different numbers of components (i.e., 
25, 50, 75, 100, respectively) to an app randomly selected from 
my benchmark. To check the prototype's best-case perfor-
mance overhead, each of the added components is designed to 
have a minimized architecture—containing one method for 
communicating with at most two other components (55 
SLOC)—which would induce the shortest analysis time while 
connected with other components. The size of the apps 
spanned 2.8K-7K SLOC. None of the added components are 
involved in the vulnerable event communication channels so 
that they can be pruned in Reduction phase. Then I measured 
the analysis time for each app both "with" and "without" the 
Reduction phase. The result (see Fig. 4) indicates that as the 
number of added components increased, the difference of 
analysis time between "with" and "without" Reduction phase 
also increased. This result confirms that my solution minimizes 
the potential overheads in its analysis by introducing the 
pruning operation. Considering the fact that the added components 
are designed to have a minimized architecture, the effectiveness of 
pruning will drastically increase in the case of large-scale EBSs 
comprising a number of components with higher complexity. 
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Fig. 4. Performance on different Number of Components. 

V. RELATED WORK 

Several approaches have targeted the security in EBSs 
[15,17,20,22,25]. Simeon et al. [25] examined the security 
vulnerabilities of event-driven systems and defined the 
conditions that produce them. In general, existing security 
solutions for EBS employ encryption, static code analysis, 
and/or runtime access control techniques. 

Encryption is widely used technique for securing not only 
general software systems, but also EBSs. EventGuard [22] 
proposes encryption for publish/subscribe systems in which 
each component encrypts events through event broker network. 
Publishers sign events and encrypt them with a random key, 
while the signature itself is encrypted with a topic-specific key 
and is attached to the event. However, encryption techniques 
increase the risk of compromised keys and may cause 
unacceptable performance overhead. Furthermore, key 
distribution is in appropriate when it is not determined which 
component will comprise the system. 

Static code analysis is a popular technique for inspecting 
security flaws in target systems. SABER [14] is a static 
analysis tool that detects common design errors based on the 
instantiations of error pattern templates. Andromeda [27] 
inspects data-flow propagations on demand, while supporting 
apps written in Java, .NET, and JavaScript. Xanitizer [7] 
statically detects security vulnerabilities such as injections and 
privacy leaks by using taint-flow analysis. Owasp Orizon [6] is 
a source code security scanner designed to spot vulnerabilities 
in J2EE web apps by using pattern matching. SonarQube [5] is 
an open source platform for inspection of code quality to detect 
security vulnerabilities. 

Runtime access control is another popular technique for 
securing EBSs. Alex et al. [24] proposed a policy model and 
framework for content-based publish/subscribe systems. 
DEFCon [26] is a middleware that applies an information flow 
control model which tracks the event flows through a complex, 
heterogeneous event processing system and constrains 
undesirable event flows that could potentially violate security 
policy. However, aforementioned techniques are more focused 
on other types of security issues than event attacks. 
Furthermore, since those techniques do not fully support event-
based communication model, they may suffer from inaccuracy 
and scalability problems in analyzing large-scale web apps 
comprising a number of components. 

VI. CONCLUSION 

While event-based communication model enables highly 
decoupled, scalable, and easy-to-evolve systems, the non-
determinism in event processing can be exploited by event 
attacks. Existing solutions for general software systems cannot 
be directly applied to resolve event attacks because they do not 
support event-based communication model. Furthermore, 
existing security solutions targeting EBSs do not appropriately 
resolve event attacks or suffer from inaccuracy in detecting 
event attacks. 

To minimize the risk of event attacks, this paper presented 
a novel vulnerability detection technique for EBSs that are 
implemented by using MOM platforms. My technique 
statically analyzes vulnerabilities by examining inter-
component flows and event communication patterns. It 
improves upon existing techniques in detecting vulnerabilities 
that expose the system to event attacks from a given EBS, 
while supporting multiple types of MOM platforms and 
increasing the coverage, accuracy, and scalability of 
vulnerability detection. My empirical evaluation demonstrates 
that my technique is more accurate in identifying vulnerable 
event communication channels from 33 EBSs compared to the 
state-of-the-art vulnerability detection techniques for web apps. 
The result of performance analysis shows that my technique is 
scalable to large-scale EBSs. 

Future studies can focus on building a runtime-access 
controller which controls runtime event communication based 
on the statically-analyzed vulnerabilities. Also I can apply a 
visualization technique which can display the identified 
vulnerabilities between components in order to help engineer's 
understanding. 
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