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Abstract—In the context of Smart City projects, the 

management of parking lots is one of the main concerns of local 

administrations and of industrial solution providers. In this 

respect, we have presented an image processing application, 

which overcomes the issues of classical electro-mechanical 

solutions and employs the feed of a surveillance camera. The 

final web-based interface could provide to the clients the real-

time availability and position of the parking space. The proposed 

method uses a series of feature measures in order to speed-up 

and accurately classifies the occupancy of the space. Using a 

published benchmark, our method has proved to provide very 

accurate results and have been extensively tested on two 

proprietary parking locations. 
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I. INTRODUCTION 

A large number of the parking lot systems use counters on 
entry and exit barriers, but unfortunately, erroneous results are 
obtained if a vehicle occupies more than one parking space or 
when the parking lot includes several types of parking spaces. 
A solution to the problem was to add magnetic sensors on each 
parking space, however, in practice; this type of system 
involves very high costs. 

Therefore, the scope of our research was the development 
of a computer vision system for the detection of parking 
spaces. The motivation behind it resides in the fact that, a video 
camera installed in the car park for security reasons can also 
monitor the parking spaces. Implementing this smart parking 
system has many benefits: it is helpful to customer drivers, low 
cost, can be used in everyday life, decreases the time needed to 
search for a parking space as the driver can steer quickly to the 
available parking spaces, eliminates redundant traffic generated 
by the search for available spaces, can be installed quickly and 
easily, and it is easier to maintain than current systems. 

However, the main challenges of the camera-based systems 
are the lighting conditions: low light or temporal and spatial 
lighting fluctuations, shadows and reflections from the surface 
of other vehicles. 

In this respect, the method proposed in paper [1], employs 
geometric modelling and parking areas layouts as means to 
automatically extract the parking lot configuration. The 
extraction of the parking spaces is based on white or yellow 
lines, using high-resolution aerial images, indicating that a 
large number of parking spaces can be accurately. Thus, after 
defining the geometric and layout models, a method of parking 
space extraction is proposed, using both parking space and 
vehicle detection. Once the objects detection has been 
performed, by comparing against the model, a grouping 

function is applied to the relative positions, according to the 
rules of the geometric. 

In the paper of Gálvez del Postigo et al. [2], after 
initialization, a background extraction was performed and a 
map was created. Using this map, the vehicles are detected and 
tracked in order to determine their status. The first step of 
consists of defining the parking areas to be analyzed, from 
which a binary mask will be created. Thus, a background 
model is needed in order to detect moving vehicles. For this 
purpose, the chosen approach involves the implementation of 
Mixture of Gaussians techniques. The Transition Map is a 
technique that works well for detecting parked vehicles. In 
order to determine the status of the parking spaces, two 
instances are analyzed: parked vehicles and moving vehicles. 

In Števanák et al., the issue of the parking space occupancy 
is addressed using an open source solution called PKSpace [3]. 
It uses a vision-based approach, employing an automated 
learning model, in order to categorize the images of the parking 
spaces as either occupied or vacant. It also allows the user to 
choose either a default model, that is part of the solution 
proposed, or to create their own data set for a particular parking 
lot and to develop the model based on this information. At the 
same time, this solution offers application programming 
interfaces (APIs) which allow external systems to process the 
data collected and store it for later use. 

In paper [4], the authors have studied the performance of 
image processing algorithms when the multithreading approach 
is applied on different platforms (single core / multi-core). 
Results shown that multithreading improve processing time on 
single-core or multi-core platforms. With a single core, the best 
results are achieved when using a combination of small size 
images and less complex algorithms, while the combination of 
a smaller size image and more complex algorithms improves 
performance when working with multi-core processors. 
Multithreading programming can improve the performance of 
the multi-core processor when complex image processing 
algorithms are applied. 

Vítek et al. shown that detecting parking spaces occupancy 
is constantly on the rise, especially in big cities [5]. The paper 
uses wireless cameras to manage parking spaces and 
determines the parking space occupancy based on the camera 
feeds. The proposed system employs small camera modules 
based on Raspberry Pi Zero and an efficient algorithm for 
occupancy detection based on the Histogram of Oriented 
Gradients (HOG) and Support Vector Machine (SVM) 
classifier. The basic features include information concerning 
the vehicle's orientation, where it can be more accurately 
determined. The solution presented can provide occupancy 
information at a rate of 10 parking spaces per second with an 
accuracy of more than 90% in various weather conditions. 
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The scope of this paper was to propose a solution that can 
extract the parking spaces and detect the occupancy of the 
parking lot, using a sequence of images acquired from video 
cameras. Therefore we have combined techniques that are 
capturing and detecting the presence of vehicles on parking 
spaces using image processing, parking spaces detection based 
on markings, detection of the parking lot occupancy, 
identification of available and occupied parking spaces, 
outlining parking spaces, counting the number of available and 
occupied parking spaces. The proposed method allows sending 
information about the occupancy of the parking lot to 
customers using HTTP requests. 

II. PROPOSED SYSTEM 

Most studies in this field have a sequential approach; and 
therefore, a lot of time required for processing. Thus, we have 
proposed a method in which the sequencing is done by parallel 
segmentation, each image is divided into several parts and then 
one thread controls each one of them. After segmentation, all 
parts are merged and the desired result is obtained [4]. 

The processing steps of the method are the following: 

a) Parking lot map description; 

b) Image frame acquisition and pre-processing; 

c) Adaptive background modelling; 

d) Computation of features; 

e) History calculation; 

f) Fusion of results for each parking space; 

g) Defining parking space status; 

h) Feeding data to Client-Server system; 

The general structure of the proposed system is presented in 
Fig.1. 

 

Fig. 1. System Block Diagram. 

A. Parking Lot Map 

In an offline configuration stage, using a template image 
taken from each camera, the following data are defined: the 
coordinates of each parking space, the number of parking 
spaces, as well as the centroid/midpoint of each parking space. 
This information is saved in a configuration file, uploaded one 
time, at system initialization. The coordinates of the parking 
space, as well as the midpoint, are converted from screen 
coordinates into Cartesian coordinates. 

Sample file: 

Number:1;Points:-626 -24,-541 4,-496 -92,-594 -116; 

Centroid:-563 -58 

Number:2;Points:-471 12,-415 32,-367 -44,-428 -66; 

Centroid:-420 -17 

Number:3;Points:-336 52,-290 65,-240 -6,-292 -17; 

Centroid:-289 23 

Number:4;Points:-234 84,-177 102,-117 35,-184 19; 

Centroid:-177 59 

The original image is further divided into several regions, 
aiming to simplify the image representation into a more 
relevant and easier way to be analyzed. This process is used to 
locate each parking space and its limits, based on the four 
coordinates from the configuration file. A perspective 
transformation is also applied for each parking space and a new 
region is obtained from the resulting transformation matrix. 
During this process, a label is assigned to each parking space. 
In consequence, the template image is divided into several 
regions and a thread will process each one of them, in order to 
determine its status. 

B. Multithreading Programming 

In the multithreading approach, the shared memory in 
which the threads work is the image pixel matrix. The work 
load and the part of the matrix that each thread has to handle 
are determined by the main thread [6]. A multithread process 
has several simultaneous execution points [7]. Using multiple 
threads allows an application to allocate long-term tasks, so 
that they can be performed concurrently. This is also possible 
due to the significant improvements in the multi-core systems. 

Nowadays multi-core processors are widely deployed in 
both server and desktop systems. The performance of 
multithreaded applications can be improved when using multi-
core systems, since the thread charge can be moved to the core, 
which works with several threads simultaneously [8]. A good 
example of applications that benefit from multithreading is 
Computer Vision ones [9]. The main idea behind parallel 
processing of images is to divide the problem into simple tasks 
and solve them simultaneously so that the total processing time 
is the sum of the finished tasks (best case scenario) [10]. Image 
processing can be a time consuming task based on the image 
matrix structure that drives this process towards a 
multithreading algorithm. 

The proposed solution uses execution threads to improve 
application performance. After identifying the number of 
parking spaces, one thread is created to process each parking 
space, using Thread Pooling. These are pre-fabricated threads 
that can be launched more quickly by the OS. We cannot 
define a name for a thread in the thread pool. The threads in the 
thread pool only work in the background. The execution 
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threads are created using the Task Parallel Library (TPL). TPL 
offers a basic form of structured parallelism and is based on the 
concept of task. 

For each parking space, the image processing involves the 
analysis of the features (Histogram of Oriented Gradients-
HOG, Scale Invariant Feature Transform–SIFT corner 
detector, color spaces - YUV, HSV and YCbCr). 

HOG is a feature descriptor used to detect objects by 
counting the occurrences of gradient orientation in areas of 
interest. SIFT is a descriptor used to detect the number of the 
points of interest (corners). 

The HSV color space has 3 channels: the Hue, the 
Saturation and the Value, or intensity. The Hue channel 
represents the "color". The saturation channel is the "amount" 
of color (this differentiates between a pale green and pure 
green), and intensity is the brightness of the color (light green 
or dark green). YUV defines a color space in terms of one 
luminance (Y) and two chrominance (UV) components. 
YCbCr color model contains Y, the luminance component and 
Cb and Cr are the blue-difference and red difference Chroma 
components. 

The standard deviation values for the three channels V 
(devSYUV), S (devSHSV), Cb (devSYCrCb) of the color spaces 

YUV, HSV, YcbCr, the number of corners (noSIFT), and the 

HOG descriptor mean (meanHOG) were used to create a history, 
based on predefined thresholds: 0.03 for mean HOG, 7 for 
number of corners resulting from SIFT, 1.4 for V component 
from YUV, 9 for S component from HSV and 1.1 for Cb 
component from YCbCr This history tracks the availability of 
parking spaces. 

Each value from metrics and measurements compares with 
a default threshold. Based on this comparison, counted the 
values of 1 (statusOccupied) and 0 (statusAvailable), and 
the status is determined by the predominant value. If predominant 
is 1, the parking space is occupied, otherwise, is free. 

Function SetStatus (indexParkingLot) 

    if meanHOG[indexParkingLot] > 0.03 then 

statusOccupied++; 

    else statusAvailable++; 

    end if 

    if noSIFT[indexParkingLot] >= 7 then 

statusOccupied++; 

    else statusAvailable++; 

    end if 

    if devSYUV[indexParkingLot] > 1.4 then 

statusOccupied++; 

    else statusAvailable++; 

    end if 

    if (devSHSV[indexParkingLot] > 9) then 

statusOccupied++; 

    else statusAvailable++; 

    end if 

    if (devSYCrCb[indexParkingLot] > 1.1) then 

statusOccupied++; 

    else statusAvailable++; 

    end if 

    if (statusAvailable > statusAvailable) then 

status = 0 

    else status = 1 

    end if 

EndStatus 

For more accurate results, was created a history of 20 
frames that contains the status of each parking space, obtained 
from measured metric and measurement results. With each new 
frame, it is tested if the number of frames originally set has 
reached. If yes, then adding the status to the list produces the 
effect of "Sliding Window", which requires the elimination of 
the first value of the buffer and the addition of the new value in 
the list, according to the FIFO principle. Thus, this technique 
allows for the last changes to each parking space to be retained 
in order to determine the status. Over time, this process helps 
stabilize changes in the background, such as the gradual 
change from day to night, different weather conditions. 

for parkingSpace=0:totalNumberParkingLot 

 if(sizeOfBuffer < 20)  

  Status = SetStatus(parkingSpace) 

  Add status in buffer 

  else    

  SlidingWindow  

  Status = SetStatus(parkingSpace) 

  Add status in buffer 

 end if 

 if predominat is 1 in buffer StatusParkingSpace=1 

 else StatusParkingSpace = 0 

 end if 

end for 

The information concerning the parking lot occupancy 
emerges once each frame is processed, thus identifying the 
number of available spaces, as well as occupied ones, out of 
the total number of parking spaces considered. 

C. Client Interface 

There are many alternatives to creating a web server for the 
purpose of client access to parking lot occupancy. Within this 
system we have used HTTP server based on Nancy, which is a 
framework for building HTTP-based services in .NET. With 
these HTTP-based services, this framework can handle all 
standard HTTP methods such as GET, POST, PUT, DELETE, 
HEAD etc. Everything in Nancy is "HOST's". A host acts as a 
framework or adapter for a hosting environment, and allows 
Nancy to run on existing technologies such as ASP.NET, WCF 
and so on. 

The application must be downloaded and installed using the 
NuGet package manager, as it will download the complete 
references to the current solution or project. Once Nancy is 
installed, the first module can be created. The requests are 
handled by the modules. The Nancy website regards a module 
as "the place where you define the behavior of your 
application". Like Controllers in MVC, there are modules in 
Nancy. A single module must be defined for a Nancy app, 
which becomes the starting point of an application. We can 
create as many legacy modules from NancyModule as we 
need. In the class builder, the routes are defined with Get ["/"]. 
A route must follow the same pattern as Literal Segments, 
Capture Segments ({yourname}), and regular expressions. 

The system listens to one or more addresses in order to 
send the necessary information to an http request. The system 
can listen to multiple addresses by creating a URI array and 
assigning it to the constructor for NancyHost. The result is that 
you can listen on multiple network interfaces. This is useful for 
example, in situations where you have a server that has to listen 
on two different interfaces, and respond differently to both. 
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With Nancy HTTP, you can tell which request came from 
which IP, allowing you to selectively say in program code 
which connection is allowed access to which functionality. 

The life cycle of each Nancy application starts with 
receiving the HTTP request and ends when it sends the HTTP 
response back to the client. Any good web framework allows 
you to send data to it. Nancy is very flexible in terms of 
answering. To prepare more complex answers with headers for 
the information to be sent, a new Response object is built. The 
response is a JSON and it looks as follows: 

{ 

"Parking_lot_1": 

{ 

"TotalParkingSpaces":20, 

"FreeParkingSpaces":12, 

"OccupiedParkingSpaces":8 

        }, 

"Parking_lot_2": 

{ 

"TotalParkingSpaces":38, 

"FreeParkingSpaces":15, 

"OccupiedParkingSpaces":23 

} 

} 

The data sent in JSON format includes the names of the 
installed cameras, and for each one the following information 
is provided: the total number of parking spaces, the number of 
vacant spaces and the number of occupied spaces. 

Example of HTTP request:  http://localhost:5000/data 

III. RESULTS 

In the purpose of evaluation, three metrics were computed: 
accuracy, sensitivity and specificity defined in equations 1, 2 
and 3. In these equations, TP (True Positive) is the number of 
occupied spaces classified as occupied, TN (True Negative) is 
the number of vacant spaces classified as vacant, FP (False 
Positive) is the number of vacant spaces classified as occupied 
and FN (False Negative) is the number of occupied spaces 
classified as vacant [11]. 

Accuracy = (TP + TN)/(FP + FN + TP + TN)           (1) 

Sensitivity = TP/(TP + FN)            (2) 

Specificity = TN/(TN + FP)            (3) 

where TP (True Positive) is the number of occupied spaces 
classified as occupied, TN (True Negative) is the number of 
vacant spaces classified as vacant, FP (False Positive) is the 
number of vacant spaces classified as occupied and FN (False 
Negative) is the number of occupied spaces classified as vacant 
[11]. 

Table 1 shows the accuracy resulted from testing our 
system under various weather conditions: overcast, rainy and 
sunny days in comparison to the CNRPark+EXT results [12]. 
We have employed the same parking lot map as in the 
benchmark provided in CNRPark. For the first benchmark, 8 
parking spaces were selected, and for the second benchmark, 
26. It can be seen that the results were encouraging, with a 
minimum accuracy rate of over 90%. 

The accuracy, sensitivity, and specificity are calculated in 
various weather conditions, with results ranging between 91%-
99%. The best accuracy is in overcast conditions for both 
benchmarks, as seen in Fig. 3 and 5. In Fig. 2 and 4, the 
incorrect and correct detections can be observed on a number 
of frames from the two benchmarks. 

A. Specific Benchmarks Results Examples 

1) Overcast weather: The results on an overcast day for 

the two benchmarks are over 98% accurate, which translates 

into very good detection accuracy. Figure 6 shows screenshots 

of the two examples used. 

2) Rainy weather:The screenshots in Figure 7 were taken 

on a rainy day for various benchmarks. The accuracy under 

these weather conditions is over 90%. It shows that the 

problems persist in the case of camouflage. 

3) Sunny weather:The screenshots in Figure 8 were taken 

on a sunny day for various benchmarks. The accuracy under 

these weather conditions is over 91%. It shows that the 

problems persist in the case of camouflage and shade. 

TABLE I.  RESULTS COMPARISON ON DIFFERENT BENCHMARKS 

Results 
Accuracy 

Overcast% Rainy% Sunny% 

Benchmark 1 with 

proposed method 
99.708 90.088 91.566 

Benchmark 1 from [12] 100 100 99.900 

Benchmark 2 with 

proposed method 
98.313 95.070 91.564 

Benchmark 2 from [12] 100 100 100 

 

Fig. 2. The Benchmark 1 Classification Results under different Weather 

Conditions. 
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Fig. 3. The Benchmark 1 Results of Three Measures on different Weather 

Conditions. 

 

Fig. 4. The Benchmark 2 Classification Results under different Weather 

Conditions. 

 

Fig. 5. The Benchmark 2 Results of Three Measures on different Weather 

Conditions. 

 
(a) 

 
(b) 

Fig. 6. Results on an Overcast Day for (a) Benchmark 1; (b) Benchmark 2. 
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(a)        (b) 

 
(c) 

Fig. 7. Results on a Rainy Day for (a) and (b) Benchmark 1 (c) Benchmark 2. 

   
(a)        (b) 

   
(c)        (d) 

Fig. 8. Results on a Sunny Day for (a) and (b) Benchmark 1; (c) and (d) Benchmark 2. 
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IV. CONCLUSIONS 

In this paper, we have presented a solution for the detection 
of parking spaces using image sequences acquired from video 
cameras. A technique based on computer vision algorithms 
have been investigated, together with a parallel implementation 
and the facility to provide to clients the information about the 
availability of a parking lot using HTTP. Based on two 
available benchmarks, the results obtained achieved minimum 
accuracy rate of over 90%. The unsolved system problems 
remain the presence of shadows and camouflage. Shadows are 
recognized as objects, in this case a vehicles, and thus, a 
partially shaded vacant space is detected as occupied. 
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