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Abstract—The rate of annual road accidents attributed to 

drowsy driving are significantly high. Due to this, researchers 

have proposed several methods aimed at detecting drivers’ 

drowsiness. These methods include subjective, physiological, 

behavioral, vehicle-based, and hybrid methods. However, recent 

reports on road safety are still indicating drowsy driving as a 

major cause of road accidents.  This is plausible because the 

current driver drowsiness detection (DDD) solutions are either 

intrusive or expensive, thus hindering their ubiquitous nature. 

This research serves to bridge this gap by providing a test-bed 

for achieving a non-intrusive and low-cost DDD solution. A 

behavioral DDD solution is proposed based on tracking the face 

and eye state of the driver. The aim is to make this research an 

inception to DDD pervasiveness. To achieve this, National Tsing 

Hua University (NTHU) Computer Vision Lab’s driver 

drowsiness detection video dataset was utilized. Several video 

and image processing operations were performed on the videos 

so as to detect the drivers’ eye state. From the eye states, three 

important drowsiness features were extracted: percentage of 

eyelid closure (PERCLOS), blink frequency (BF), and Maximum 

Closure Duration (MCD) of the eyes. These features were then 

fed as inputs into several machine learning models for drowsiness 

classification. Models from the K-nearest Neighbors (KNN), 

Support Vector Machine (SVM), Logistic Regression, and 

Artificial Neural Networks (ANN) machine learning algorithms 

were experimented. These models were evaluated by calculating 

their accuracy, sensitivity, specificity, miss rate, and false alarm 

rate values. Although these five metrics were evaluated, the focus 

was more on getting optimal accuracies and miss rates.  The 

result shows that the best models were a KNN model when k = 31 

and an ANN model that used an Adadelta optimizer with 3 

hidden layer network of 3, 27, and 9 neurons respective. The 

KNN model obtained an accuracy of 72.25% with a miss rate of 

16.67%, while the ANN model obtained 71.61% and 14.44% 

accuracy and miss rate respectively. 

Keywords—Driver Drowsiness Detection (DDD); face tracking; 

eye tracking; K-nearest Neighbors (KNN); Support Vector Machine 

(SVM); Logistic Regression; Artificial Neural Networks (ANN) 

I. INTRODUCTION 

Drowsy driving is considered one of the major contributors 
to road accidents all over the world. Every year, thousands of 
deaths or severe injuries are recorded due to drivers falling 
asleep while driving [1].  According to a report by the National 
Highway Traffic Safety Administration (NHTSA), driver 
drowsiness accounts for approximately 83,000 crashes, 37,000 
injuries, and 900 deaths in the United States alone [2]. Another 

recent report by the World Health Organization (WHO) on 
road safety reveals that approximately 1.2 million road deaths 
occur annually from 2001 to 2013 [3]. Including the 
aforementioned, many other reports also identified road 
accidents as a rising cause of human deaths and a significant 
amount of these accidents were attributed to driver drowsiness. 

Due to this severity, several types of research works have 
been conducted to prevent drivers from getting drowsy while 
driving. One of the solutions employed involved educating the 
drivers on the adversities of driving drowsy. This passive 
approach entails awareness of the effects of a distorted sleeping 
schedule, sleep deprivation, and the merits of getting a good 
night sleep [4]. Although these are requisites to completely 
eradicate drowsy driving [5], and could probably keep drivers 
alert at specific times, they are, however, not capable of 
determining whether a driver would remain alert in extreme 
situations like driving for a long period of time, not to mention, 
of proffering a solution if drowsiness occurs unexpectedly. 
Thus, an approach capable of measuring driver drowsiness in 
real-time is required. Moreover, there are drivers experiencing 
distorted sleep schedules due to the nature of their job, or with 
sleep disorders [6], who could still fall asleep even after 
adequate sleep. 

However, as expected, numerous real-time approaches, 
providing on-board monitoring of drivers’ drowsiness state 
have also been developed. This is, in fact, the focus of this 
problem domain. Techniques including physiological, 
behavioral, vehicle-based, and hybrid methods have been 
proposed and implemented. Among these techniques, 
physiological approaches are regarded as the most accurate 
driver drowsiness detection (DDD) method [7] with 
electroencephalogram (EEG) and electrocardiogram (ECG) 
being the most exploited approaches. EEG and ECG are used 
for tracking the driver’s brain activity [8-10] and heart pulse 
rate [11-13] respectively. Although both approaches offer 
higher accuracy, they are actually not feasible in the real-world 
[14]. This is because they require electrodes being attached to 
the driver, which could cause discomfort as well as distractions 
[15, 16]. This would likely trace back to the initial problem 
they intended to prevent or solve. 

Behavioral and vehicle-based methods, on the other hand, 
are non-intrusive. Even though they attain slightly lesser 
accuracy than their physiological counterparts, they have 
received significant interest from researchers. This is plausible 
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due to their portability into real-world scenarios. Moreover, 
according to [5], current researches on these two methods 
signify their accuracy is close to that of physiological methods. 
An example is the tracking of drivers’ steering wheel 
movements (SWM) by [17], which obtained a reasonable 
accuracy. Authors in [15, 16] also used cameras and computer 
vision techniques to track drivers’ facial and eye features as a 
means of detecting driver drowsiness. 

This project, however, focuses on exploring DDD by 
tracking drivers’ face and eye states. This approach was 
selected not only because it is one of the most promising 
techniques for accurately detecting driver drowsiness [15], but 
also because it is a potential solution for pragmatically 
achieving DDD ubiquity in the real world. The major 
hindrance of this approach, however, is its current high cost 
and quality of camera requirement. While SWM is a promising 
approach with low-cost application possibilities, SWM and 
other vehicle-based methods have potential for generating high 
false alarm rates [5], leading to more computational 
requirements. 

This project aims to exploit face and eye tracking DDD 
approach as a test-bed for achieving a low-cost and non-
intrusive DDD solution. To achieve this, a face and eye 
tracking model and several machine learning models were 
developed. The face and eye tracking model were used to 
detect if the driver’s eyes are opened or closed. This tracking 
was done on a video dataset containing almost 2 hours of 
driver drowsiness states occurring during the day and night. 
The night data were very crucial in generalizing the accuracy 
of the machine learning models as drowsiness is predicted to 
occur mostly at night [18, 19]. Once the eye states were 
captured, they were passed to the machine learning models for 
classification. 

Almost all DDD approaches use machine learning for 
classifying their drowsiness state. However, most of these 
approaches are usually limited to two or three models when 
evaluating their accuracy. With the driver’s eye state data, over 
twenty models were developed employing K-Nearest 
Neighbors (KNN), Support Vectors Machine (SVM), Logistic 
Regression, and Artificial Neural Networks (ANN) classifiers 
for classifying the eye states into awake or drowsy. With this 
experiment, contribution of a face and eye state model was 
possible with a robust machine learning classification 
comparison for the face and eye tracking DDD domain. 

So far, the paper vaguely touched on what Driver 
Drowsiness Detection is, while highlighting how the task at 
hand can be accomplished. But, in order to get to the crux of 
the problem, there is a need to understand the problem first, 
while focusing on the history and statistical study of the 
problem. This will potentially alleviate the concern caught on a 
developer’s radar, to urge a solution at the earliest. The 
following section caters to these objectives coherently. 

II. PROBLEM BACKGROUND 

Road safety is a significant issue for many countries and 
many safety-related organizations. As population and 
urbanization grows, more vehicles and road users are expected 
on the highway networks. Thus, this leads to increased road 

management demand. The current upsurge in these factors 
(population and urbanization) has, however, stigmatized the 
current road management techniques. Recent reports are 
signaling the implications of poor or insufficient road 
management, yielding high occurrence of road accidents. As 
shown in Fig. 1 and 2, road accidents account for 
approximately 1.2 million deaths since the last decade [3]. 
These deaths were identified as the major causes of youth 
demise. Another report from Malaysia Institute of Road Safety 
Research (MIROS) indicates a total of 476,196 road crashes 
occurred in 2014 with 6,674 and 4,432 leading to deaths and 
serious injuries, respectively [20]. 

Different factors contribute to road accidents. However, the 
most prominent are those related to impairing the driver’s 
response to road tasks. These factors, which include alcohol 
impairment, drugs usage, aging, distraction, and drowsiness, 
are responsible for 31% of fatal accidents in the US according 
to FARS [21]. Drowsy driving, as a result of these factors, has 
received significant attention as a major root cause of road 
crashes. According to the National Sleep Foundation (NSF), 37% 
of drivers in the US are guilty of drowsy driving and 23% have 
done it once in every month [22]. Another report by [23] 
revealed that 16.5% of lethal crashes and 12.5% of accidents, 
requiring admission of road users to hospitals, are as a result of 
drowsy driving. 

 

Fig. 1. Number of Road Deaths, Worldwide [3]. 

 

Fig. 2. Top Ten Causes of Death among People Aged 15-29 Years, 2012 [3]. 
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Drowsy driving is considered a subset of impairment-
related conditions that hinder the driver’s response to required 
road tasks at the appropriate time. This state can arise either 
due to sleep disorders, sleep deprivation, or driving for a long 
period of time [6, 24]. When this occurs, the driver’s driving 
performance, expertise, and decision making are adversely 
affected [16], thus leading to higher chances of accident 
occurrence. Although if the driver is not alone, he/she might be 
alerted by a passenger, however, this is not usually the case as 
most drowsiness-related crashes occur when the driver is alone 
[25]. 

Drowsy driving is a critical issue as its adversities do not 
only affect the driver but is also a threat to all other road users 
in the society. Several solutions, employing different 
approaches, to curb this problem have been developed and 
deployed. They include: subjective, physiological, behavioral, 
vehicle-based, and hybrid solutions [26-27]. Apart from 
subjective methods, which are questionnaire-based, and hybrid 
methods, which are just a combination of other methods, the 
other three methods are at the core of the DDD research 
domain. 

Physiological methods, including EEG, ECG, and 
electrooculogram (EOG), are regarded as the most accurate 
DDD approaches [14-15,17,28-29]. A major contribution to 
their high accuracy is their capability of gaining direct access 
to drivers’ inner body electrical signals, which can, however, 
be used for immediate detection of alertness changes [30]. 
Nevertheless, these methods are mostly restricted to lab 
environments [26].This is plausible because they are intrusive 
in nature, and can cause discomfort or distraction to the driver. 
Vehicle-based and behavioral methods, on the other hand, are 
non-intrusive [14]. Although their accuracy is slightly lesser 
than their physiological counterpart, a recent review by [5] 
indicates that their accuracy is catching up. The major issue 
with these methods, however, is the high cost of equipment 
required. 

Within the DDD vehicle-based solutions ecosystem, Lane 
deviation [24,31] and SWM [17] approaches have received 
ample research significance, yielding adequate accuracies. Of 
these two approaches, SWM poses the utmost potential and has 
even been experimented on low-cost applications. However, 
most vehicle-based approaches are subjective to false alarms 
because they are constrained by vehicle type, driver’s 
experience, road condition, etc. Author in [15] abates their 
accuracy because of the extra computation required. 

Behavioral methods tend to bridge this gap (that is the 
excessive computation and intrusiveness) by offering 
competitive accuracy with tolerable computational expenses. 
Researchers targeting this method usually scope their driver 
behavioral definition to the drivers’ facial features, since this is 
the most definitive physical part of the body that depicts a 
drowsiness state. As one of the most researched DDD method, 
several optimizations and comparisons have been made against 
its approaches. Percentage of eyelid closure (PERCLOS), a 
popular behavioral approach, is usually used as a benchmark 
against other DDD solutions’ accuracy. Apart from PERCLOS, 
yawning detection and head pose tracking are also prominent 
approaches within this domain. However, there is still a need 

for a low-cost implementation of this approach. This is because 
previous works only employ expensive and high-quality 
cameras. 

The current statistics, relating to road accidents in 
conjunction with those attributed to driver drowsiness, indicate 
there are still significant adversities on road highways. 
Although there is notably vast research on DDD, the impact of 
these researches in the real world appears to be dawdling. This 
is because only a few solutions are actually deployed into real-
world scenarios. Presently, DDD solutions fall into one or 
more of these categories: 

 Intrusive; thus, not feasible in the real-world. 

 Very expensive; therefore, only available to minute 
fraction of road users. 

 Affordable; but, lacking robustness. 

A prospective method for mitigating the above mentioned 
is to perform DDD through the face and eye tracking. However, 
this method also has its own share of constraints, which are tied 
to the cost and quality of cameras required. Nevertheless, these 
constraints can be triumphed by channeling most of the 
required processes to the computational side of the system. 

In order to achieve a solution balancing intrusiveness, 
affordability and accuracy, this project seeks to develop a face 
and eye tracking DDD model and evaluate it using vast classes 
of prominent machine learning classifiers. With this, their 
accuracies can be used for selecting the appropriate model for a 
device with constrained specifications. Thus, the aim is to find 
a solution to the problem of how driver drowsiness can be 
detected effectively by the means of a solution deployable in 
the real-world which balances affordability, intrusiveness, and 
accuracy. 

III. LITERATURE REVIEW 

Drowsiness refers to an awake state whereby there is an 
excessive urge or tendency to fall asleep. Whenever this occurs, 
the correspondent is usually afflicted by severe lethargy, and 
mental weakness, thus leading to depleted performance. Also, 
while it is common to find drowsiness being interchanged with 
fatigue in literature, both states are actually different concepts 
[32-33]. Fatigue, on the other hand, implies an extreme 
tiredness state which could be caused by several means 
including drowsiness or physical activities like exercises. Thus, 
drowsiness is a function of fatigue. 

Drowsiness, also known as sleepiness, can emerge 
depending on several factors including being awake for a long 
period of time, sleep disorders, and sleep schedule distortion or 
medications [34]. Cases of sleep disorders include 
hypersomnia, sleep apnea syndrome, circadian rhythm sleep 
disorders, etc. [6] while sleep schedule distortion involves 
staying awake, or working for a long period of time, mostly 
due to working night shifts or driving through a long journey. 
Medications, on the other hand, involve using tranquilizers or 
sleeping pills [34]. 

The effect of drowsiness is significant in all domains. The 
cost of these effects, however, varies across each domain. 
Within the transportation domain, many reports have identified 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

552 | P a g e  

www.ijacsa.thesai.org 

drowsiness as a significant cause of road accidents leading to 
severe injuries and deaths [2-3]. A survey conducted by [6], 
seeking to correlate traffic accidents resulting from drowsy 
driving and the quantity of sleep the drivers had before the 
accident, revealed that 26.3% of accidents, in their sample, 
were caused by drivers that had less than 6 hours of sleep, the 
day before the accident. This implies that these drivers have 
higher chances of becoming drowsy while driving. Another 
finding by [35] led to a consensus that drivers who have slept 
for less than 2 hours within their past 24 hours are not 
competent to drive, and those who had slept for 3 to 5 hours 
have high chances of being impaired while driving. 

All these issues concerning drowsiness have incited 
researchers to find a way for detecting and managing 
drowsiness. Managing drowsiness (not within the scope of this 
research) in and of itself is not an easy task [32], and so is its 
detection. Detecting drowsiness can be as simple as just 
looking at the correspondent’s behavioral changes. However, 
this becomes a difficult task when the individual is alone [36]. 
Moreover, most of the drowsy driving crashes occur when the 
driver is alone [37]. Furthermore, DDD is known to be a 
challenging task because there’s no standardized measure for 
detecting how drowsy the driver was or at a specific period of 
time [35,37]. Up till today, the current driver’s drowsiness 
detection still suffers from either of varying drivers’ 
characteristics, road environment or the vehicle type [14-15,38]. 

Although detecting drowsiness is not an easy task, several 
approaches have been devised to facilitate its detection. These 
approaches are usually categorized into either of the 
technological or non-technological [17], intrusive or non-
intrusive [14,39], and objective or subjective approaches [40-
41]. Within the driving context, these categories are mapped to 
five methods, which are subjective, physiological, behavioral, 
vehicle-based, and hybrid methods [42]. This mapping is 
shown in Table I. 

A. Subjective Methods 

Subjective methods involve assessing the drivers’ current 
level of drowsiness by subjecting them to ratings in the form of 
questionnaires. These ratings are usually self-evaluated [40] or 
evaluated by experts watching the driver in action [15]. To 
detect the changes in a driver’s drowsiness state, [14] 
conducted a pre-experimental, mid-experimental, and post-
experimental Karolinska Sleepiness Scale (KSS) exercise. 
These ratings were the keys to define their drowsiness ground 
truth. [15], on the other hand, employed three experts to 
evaluate the drivers’ state and a Johns Drowsiness Scale (JDS) 
was used. Other methods like the Stanford Sleepiness Scale 
(SSS), as shown in Table II, and Epworth Sleepiness Scale has 
also been applied by researchers. 

As insinuated above, subjective methods are usually not 
used distinctively. They are used alongside other DDD 
methods to provide classification measures required for the 
detection process. This is mainly to enable accurate prediction 
of the driver’s drowsiness state [17]. Furthermore, it is rare to 
find any DDD approach not utilizing at least one of these 
methods. However, they are highly vulnerable to deliberate 
false ratings or unintended bias [40]. 

TABLE. I. DDD APPROACHES AND DROWSINESS DETECTION 

CATEGORIES MATCHING 

       Categories 

Methods 

Subjective Physiological Behavioral 
Vehicle-
based 

Technological - x x x 

Non-
technological 

x - - - 

Intrusive - x x - 

Non-intrusive  - x x 

Objective - x x x 

Subjective x - - - 

TABLE. II. STANFORD SLEEPINESS SCALE (SSS) [43] 

Value Description 

1 Feeling active, vital, alert, or wide awake 

2 Functioning at high levels, but not at peak; able to concentrate 

3 Awake, but relaxed; responsive but not fully alert 

4 Little foggy; not at peak 

5 Foggy; losing interest in remaining awake; slowed down 

6 Sleepy; woozy; fighting sleep; prefer to lie down 

7 No longer fighting sleep; sleep onset soon; cannot stay awake 

Stanford Sleepiness Scale [43] and Karolinska Sleepiness 
Scale [44] are the two most widely utilized subjective measures 
within the DDD domain. SSS is a 7-point measurement scale 
(Table II) describing the current state of drowsiness of an 
individual. This method as employed by [45] is most likely be 
used to categorize driver drowsiness into only two states.  This 
is because of the close relation of each scale. KSS, on the other 
hand, is a 9-point scale (Table III). A contrast to SSS, this scale 
is considered a robust scale capable of categorizing driver’s 
drowsiness into different levels [46]. Authors in [14] and [18] 
used KSS to define five, and three drowsiness states of their 
systems respectively. Also, a review of literature relating to 
DDD by [5] indicates KSS is the most preferred scale of these 
two scales. 

TABLE. III. KAROLINSKA SLEEPINESS SCALE (KSS) [44] 

Value Sleepiness Level 

1 Extremely alert 

2 Very alert 

3 Alert 

4 Rather alert 

5 Neither alert nor sleepy 

6 Some signs of sleepiness 

7 Sleepy but no difficulty staying awake 

8 Sleepy with some effort to keep alert 

9 Extremely sleepy, fighting sleep 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

553 | P a g e  

www.ijacsa.thesai.org 

B. Physiological Methods 

Physiological methods are regarded as the most accurate 
DDD methods [9,47]. These methods provide access to the 
inner body state of the correspondent. With this capability, they 
can detect drowsiness at a very early stage [47]. Several 
sensors have been developed to track the electrical activities of 
different parts of the body. However, the currently employed 
(and most important) sensors for DDD are those involving 
heart activity, brain activity, and eyes activity [33]. The 
processes of capturing these body signals are termed 
electrocardiogram (ECG), electroencephalogram (EEG), and 
electrooculogram (EOG), respectively. 

Physiological methods are conventionally intrusive [14,39]. 
The sensors used for capturing the required data are specific 
electrodes placed relative to the external part of the body they 
are tracking. For EEG, the electrodes are placed on the head [8]. 
The electrode is placed on the chest for ECG [27], and close to 
the eyes for EOG [1]. The intrusiveness of such methods has 
impeded their prospect of being the top DDD approach. 
Because of this, researchers are extensively exploiting new 
approaches, such as steering wheel movements (SWM) [17] 
and face tracking [16]. These approaches are quickly becoming 
the domain’s point of interest.  

Nevertheless, research advancements still continue within 
the physiological scope. These involve increasing the accuracy 
threshold [48], reducing the intrusiveness [8], reducing 
equipment’s cost, and developing mobile solutions [49]. 
Author in [49] tried to balance intrusiveness, cost, and mobility 
by developing a low-cost EEG system using a wireless EEG 
headband and a smart watch, which still managed to get a 
reasonable accuracy. Below is a review of the three most 
prominent physiological methods: 

 Electroencephalogram (EEG) 

This method involves the tracking of electrical activities in 
the brain [30]. Of all physiological approaches, the EEG is the 
most widely used and most accurate [9,49]. Fig. 3 illustrates 
the flow diagram of such a system and its specifications [49]. 
[8] developed a wireless based brain-computer interface for 
detecting the driver’s drowsiness. This system collects the 
driver’s EEG signal at a sample rate of 256 Hz by installing the 
electrodes and a wireless transmitter (Bluetooth) on a brain cap 
to be worn by the driver. 

 Electrocardiogram (ECG) 

This method involves tracking the heart pulse rate [50]. 
Several types of researches have been carried out to facilitate 
this [12-13], and lots of comparisons have been done in order 
to prove its competence with other popular methods. Author in 
[13] examined the heart rate variability (HRV) and compared it 
with popular EEG and behavioral percentage of eyelid closure 
(PERCLOS) methods. Their results show that ECG predictions 
match the two approaches. Furthermore, with an aim to 
mitigate intrusiveness, [50] uses electrodes placed on the 
steering wheel and a wireless ECG sensor node to capture the 
driver’s ECG signals through the palm. This setup is shown in 
Fig. 4. These methods, however, proved ECG to be a 
significant contender in the DDD space. 

 

Fig. 3. Low-Cost and Mobile EEG System Diagram by [49]. 

 

Fig. 4. ECG system architecture [50]. 

 Electrooculogram (EOG) 

Like other physiological methods, EOG requires electrodes 
for data capturing. These electrodes, however, are used for 
tracking the electrical signals depicting the eyes’ retina 
movements. Author in [1] conducted an EOG experiment with 
a sampling frequency of 512 Hz on 37 sleep-deprived subjects 
in a simulator. Although EOG signals are weaker than EEG 
signals, [47] proposed a system that was able to reach 80.74% 
accuracy. 

C. Behavioral Methods 

Unlike physiological methods, behavioral methods are non-
intrusive [14]. They are capable of capturing the driver’s 
drowsiness state without having any physical contact with the 
driver. These methods are the most explored DDD methods 
[27]. Percentage of eyelid closure (PERCLOS), a behavioral 
method, was one of the first and most commonly used DDD 
approach [5]. Rarely is there any DDD approach that does not 
consider PERCLOS. Other methods frequently use it as a 
threshold to validate their model [5,51]. 

As drivers begin to experience drowsiness, there are some 
physical changes that occur around their body- most, especially, 
around the head area [27]. These are the changes behavioral 
methods seek to track. Currently, the recognized changes 
within DDD scope are head nodding, yawning, and some 
varying eyelid states [27]. In order to detect these changes, 
behavioral methods usually go through a combination of video 
acquisition of the driver state and some computer vision 
techniques processes, [52-53] where computer vision 
encompasses both image processing and machine learning. 

As stated above, the three main features targeted in 
behavioral methods are the head poses, yawning, and eye states. 
Several methods have been developed to determine either or a 
combination of these features. Author in [16] worked on a 
system tracking the eye state and head pose of the driver. Their 
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model defined three measures: head poses, eye index, and pupil 
activity. However, two of these measures are just part of the 
aforementioned eye state measure. Author in [15] also worked 
on eye states, and like [16], this measure was subdivided (into 
six separate measures). Other applications for yawning are also 
available and will be reviewed shortly. 

While behavioral methods are currently popular, used in 
extensive research, these methods are usually impaired by 
individual specifics [14]. Many literature works realized this 
and mostly suggested that it tends to be too advanced for the 
time [15]. Author in [38] in an attempt to mitigate this issue 
included several drivers- specific thresholds like different eye 
shape, texture, and blinking patterns in their model. In [14], the 
author achieved theirs by incorporating several methods 
together. Other issues relating to behavioral methods include 
environment illumination, head rotation, and the cost and 
quality of the cameras used for video acquisition [26]. Below is 
a review of the three most prominent behavioral methods. 

 Eye State Tracking 

These methods involve making DDD decisions by 
extracting meaningful features from the driver’s eye [54]. 
Features extracted are accumulated over a stipulated period of 
time so as to generate measurable variables for the actual 
drowsiness detection. Several measures have been defined and 
standardized within this context. These measures include 
PERCLOS, blink frequency, and velocity of eyelid opening 
and closing [5,27]. The blink frequency represents the number 
of times the eyelids close and open over a specific period of 
time. Fig. 5 represents a specific eye state interval for various 
eye state measures as part of a research in [15]. 

Lots of researches have been done with respect to the 
driver’s eye state, thus it is regarded as one of the first and 
most accurate DDD approach [27]. Due to this, many 
comparisons are done against it. A comparative analysis done 
by [55], between eye closure and ECG (heartbeat signal), 
revealed that eye closure was more effective in detecting driver 
drowsiness than ECG. However, it is important to note that 
tracking the accuracy of eye states degrades, either when the 
driver is wearing glasses, in the presence of illumination or 
head position changes [27]. 

 Head Pose Estimation 

This is a behavioral approach based on detecting whether 
the driver’s head is nodding in a way similar to that of a 
drowsy person [17]. This process usually requires a 3D camera 
or a stereoscopic visioning. In the absence of a 3D camera, [16] 
used a 3D software (Blender) to create a 3D head model and 
continuously matched this with their 2D face sequence. 
Although it is highly probable for nodding to follow 
drowsiness, this is usually not the case as there are situations 
where drowsiness occurs without nodding, or probably, 
nodding occurs only when the drowsiness has been deeply 
infused [33]. In either of the two cases, it is evident that the 
accuracy and response time of the method would be degraded. 
However, this is recognized by researchers and this method is 
usually not used alone [16,56]. 

 

Fig. 5. Eye State Intervals for Measuring PERCLOS, and other Eye State 

Measures [15]. 

 Yawning Detection 

This method involves tracking the driver’s mouth [38]. 
However, like the head poses approach, this method does not 
always depict drowsiness [33]. Although this method is not 
usually used in isolation, [28,57] worked on systems solely for 
tracking the mouth and detecting driver’s yawning. 

 Vehicular Based Methods 

These methods attempt to detect drivers’ drowsiness by 
tracking changes in the behavior of the vehicles [5,27]. Several 
approaches have been developed to facilitate this, which 
includes steering wheel movements (SWM) [28,56], the 
standard deviation of lane position (SDLP) [59-60], and 
acceleration and deceleration fluctuations [27]. Of these three 
approaches, SWM and SDLP are the most popular [51,61]. 
Author in [17] worked on a low-cost SWM approach using a 
low-cost accelerometer and compared their results with other 
popular DDD approaches. Another implementation by [19] 
tracks the driver’s lane deviation and then provides a warning 
to the driver to take action. However, if the driver does not 
respond to the warning, the system takes control and makes the 
correction itself. 

Although vehicle-based methods have also recorded high 
accuracy rates, they are usually trailed by their high potential 
of false positive alarms. These have lead researchers to subject 
their systems to robust computations before reaching a 
reasonable accuracy. In order to reach the desired accuracy, [17] 
had to use several techniques and also compare their result 
with other methods. Many researchers, however, view this as a 
minor issue due to the computational power available today. 

Conversely, SWM has been currently receiving much 
interest from researchers [5]. This is because of the possibilities 
of DDD based on the number of steering wheel corrections 
compared to normal driving conditions [27]. According to [5], 
many DDD solutions are currently targeting the development 
of low-cost SWM or the facial tracking approach. For SWM, 
[17] proposed a low-cost approach capable of obtaining a 
reasonable accuracy. 

 Hybrid Methods 

These methods involve the combination of any of the above 
DDD methods as a means for mitigating the weakness of each 
method when used individually [27]. These kinds of 
implementations are still at their infancy; however, the current 
implementations are indicating better results than other 
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methods used discretely [17]. In [14], the author developed a 
system using 23 measures including PERCLOS, SDLP and 
SWM which were captured through a driving simulator. 
Although their result did not attain the expected accuracy, their 
aim to consider individual specifics by correlating various 
approaches questions the results of current methods. Another 

implementation by [62], that combined vehicle-based and 
behavioral approaches, were able to deduce that combination 
of more than one method yields higher accuracy. 

Table IV summarizes and compares  all current DDD 
methods available. It  clearly states the techniques, accuracy 
and tools used in each of the methods. 

TABLE. IV. COMPARATIVE ANALYSIS OF CURRENT DDD METHOD 

Author(s) Objective(s) Techniques Accuracy Tools 

[15] 

- Address illumination and head 

posture changes issues with DDD 

based on facial features 

- AdaBoost 

- ATM 

- ASM 

- JDS 

- 86% overall accuracy 
- Driver simulation setup 

- 8 bits RGB camera 

[16] 

- Drowsiness detection by 

analyzing driver’s eye state and 

head pose 

- SVM 

- Viola-Jones Algorithm 

- ATM 

- POSIT algorithm 

- 97.2% on pupil detection 

- 87.27% overall accuracy 

- BioID and Boston 

University database 

- Camera 

- Blender 3D software 

[14] 

- DDD model that considers drivers 

specifics 

- Validate MOL model by 

comparing with OL and ANN 

model  

- MOL, OL, and ANN 

- KSS 

- 3 DL: MOL has 64.15%, 

OL has 52.7%, ANN has 

56.04% 

- 2 DL: MOL has 88.6%, 

ANN has 83.3% 

- Simulator setup 

- SCANeR studio software 

- Smarteye eye tracker and 

Pro software 

[49] 
- Develop a non-discrete DDD 

classification model 

- EEG 

- SVM based Posterior 

Probabilistic Model 

(SVMPPM) 

- 91.25% for alert 

- 83.78% for early-warning 

- 91.92% for full-warning 

- Bluetooth Low-Energy  

- EEG headband with dry 

electrodes 

- Smartwatch 

- Matlab 

[50] 

- Measure driver fatigue and health 

condition 

- Provide a non-intrusive 

physiological means of DDD 

- ECG 

- 100MHz sampling rate 

- HRV analysis 

- not provided 

- TinyOS 

- Zigbee 

- fabric electrodes 

- MCU TI MSP430 

[13] 
- Provide an HRV based system for 

detecting driver’s fatigue early 

- ECG, HRV 

- ANN 

- FFT 

- 90% overall accuracy 
- Matlab 

-  

[8] 
- Develop a wireless based brain-

computer interface 

- EEG 

- Clustering algorithm 

- 256Hz sampling rate 

- 83.7% true positive rate 

(TPR) 

- Braincap with EEG sensors 

- Bluetooth  

- 600 MHz processor 

[17] 
- develop a low-cost SWM DDD 

system suitable in real-world 

- SWM, EEG, EOG, and 

PERCLOS 

- SVM 

- 87.9% overall accuracy 

- low-cost accelerometer 

- electrodes 

- camera 

[47] - Develop a wearable DDD system 

- EOG 

- Sliding Window technique  

- Autoregressive Integrated 

Moving Average 

- 0.5 seconds ahead of time 

alert rate 

- EOG sensors 

- Arduino Uno 

- Android smartphone 

- HC-06 Bluetooth module 

[63] 

- develop an EOG classifier that 

can automatically detect 

microsleep 

- EOG 

- 256 Hz sampling frequency 

- Sliding Window technique 

- 57% precision  

- 93% recall 
- EOG electrodes 

[58] 
- Detecting vehicles lane deviations 

using SWM 

- SWM 

- Exponential Weighted 

Moving Average (EWMA) 

- Lane departure 

- 91.24% accuracy 
- accelerometer 

-  
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IV. METHODOLOGY 

This section presents the system design details and its 
experimental setup. This design entails several machine 
learning models (which are used for drowsiness classification), 
alongside their evaluation measures. The machine learning 
models were evaluated in terms of their accuracy, sensitivity, 
specificity, false alarm rate, and miss rate. In addition, this 
section encompasses the data collection, data preprocessing, 
and feature selection approaches. These include a face and eye-
state detection model and the calculation of the percentage of 
eyelid closure (PERCLOS), blink frequency (BF), and 
maximum closure duration (MCD) as the selected features. 

A. System Design 

As shown in Fig. 6, the operational design proposes a 
model following the conventional machine learning process. 
From this design, the first step is to acquire and preprocess the 
required data to be used for learning. This data was collected 
from the NTHU computer vision lab and preprocessed using 
several video and image processing techniques to detect the 
driver’s eye states. The next step is to extract the targeted 
features, (from the preprocessed data) which are going to be 
used as the actual inputs for the learning process. The features 
extraction process was used to achieve this. This process helps 
in reducing the dimensionality of the raw inputs (i.e. each 
video frame pixels), and also in selecting meaningful variables 
through a combination of these raw inputs. Then, the 
drowsiness classification process was used to classify the 
driver’s state into either an awake or drowsy state. This process 
utilizes several machine learning classification models. The 
result of these models is then evaluated for their accuracy, 
sensitivity, specificity, false alarm rate, and miss rate in the 
performance evaluation phase. 

B. Dataset 

The dataset used for this experiment was a driver 
drowsiness detection video dataset provided by the National 
Tsing Hua University (NTHU) Computer Vision Lab. The 
description of the dataset is given in Table V. This dataset 
consists of video data from both male and female drivers with 
various facial characteristics, different ethnicities, and from 5 
different scenarios. The videos are in 640x480 pixels, 15/30 
frames per second (fps) AVI format without sound. They were 
taken in real and varying illumination conditions. In addition to 
the video data, labels for each video frame were also provided 
whereby each frame was labeled with either a drowsy or a non-
drowsy status. 

 

Fig. 6. Operational Design. 

TABLE. V. NTHU DATASET DESCRIPTION [64] 

Dataset Category Description 

Training set 
18 subjects with each subject having scenarios 

that contain each video type separately 

Evaluation set 
4 subjects with each subject having scenarios 

that combine all video types into one video  

Scenario Description 

NoGlasses 

Category for 30 frames per second videos and 

their respective labels 
Glasses 

Sunglasses 

Night-NoGlasses 
Category for 15 frames per second videos and 

their respective labels 
Night-Glasses 

Driver’s Behaviors Description 

Yawning 
The driver opens his mouth wide due to 

tiredness 

Nodding 
The driver's head falls forward when drowsy or 

asleep 

Looking aside The driver turns his head left and right 

Talking and laughing The driver is talking or laughing while driving 

Sleepy-eyes 
The driver closes his eyes due to drowsiness 

while driving 

Drowsy 

The driver looks sleepy and lethargic 

(including nodding, slowly blinking and 

yawning) 

Stillness The driver drives normally 

Videos Description 

yawning.avi The video includes yawning behaviors 

slowBlinkWithNodding.avi 
The video includes sleepy-eyes and nodding 

behaviors 

sleepyCombination.avi 
The video includes a combination of drowsy 

behaviors, e.g. sleepy-eyes, yawning, nodding 

nonsleepyCombination.avi 

The videos include a combination of non-

drowsy behaviors, e.g. laughing, talking, 

looking aside 

Labels Description 

drowsiness.txt 0 for Stillness and 1 for Drowsy 

head.txt 
0 for Stillness, 1 for Nodding and 2 for 

Looking aside 

mouth.txt 
0 for Stillness, 1 for Yawning, and 2 for 

Talking or Laughing 

eye.txt 0 for Stillness and 1 for Sleepy-eyes 
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C. Data Preprocessing 

The raw data currently at hand is a 640x480 pixel 15/30 fps 
video collection and each frame’s respective drowsiness 
annotation. If this data were to be used as it is, proposed 
machine learning classifiers would have 307,200 
inputs/dimension values for each sample. This would have 
been very computationally expensive with a downside of 
defying the project aim seeking a low-cost solution, in the first 
place. Also, from the dataset, only data from 10 subjects in the 
training set were utilized for training while the whole 
evaluation set was used for the evaluation process. This totals 
to 192412 frames (1 hour, 46 minutes, 53 seconds). Thus, the 
dimension of the classifiers’ input has to be reduced. This is 
what the preprocessing stage aims to achieve. 

To reduce the input dimension, eye pupil detection is first 
performed on each frame by tracking the driver’s face then 
eyes. This reduced the 307,200 inputs to just one value 
depicting the eye states. Then the eye state data was segmented 
for each video into a 4 secs segment collection. What this 
implies is that a 3 min video (i.e. 180 seconds) would have 45 
segments, and each segment would contain 120 values, if 30 
fps was used. The 4 secs segments are defined as the period (T) 
threshold and where drowsiness features are extracted from. 
The 4 secs time frame was selected because that duration is 
sufficient for experiencing a serious drowsiness damage [16]. 
And finally, the eye state data is normalized into an open or 
closed state because of the noises experienced and the capacity 
of the pupil eye detection model. These processes are further 
explained in the next sub-sections. 

1) Eye pupil detection: The eye pupil detection model 

takes as input every video frame from the dataset. Then it 

converts this frame into a gray image, where several image 

processing operations are performed on it. Adaptive 

Histogram Equalization (AHE), Adaptive Thresholding, 

Morphological Transformations, face and eye detection using 

Haar Cascades, and Contours detection were the operations 

performed on each frame. 

AHE was used to improve the contrast of the gray image. 
This was required to brighten the night video sets, and also to 
normalize the contrast of some of the daytime videos which 
were too light for detecting the driver’s face or eyes. Then the 
driver’s face and eyes were tracked using Intel’s Haar face and 
eye cascades. However, only if the driver’s face gets detected, 
the eyes can be tracked (within the detected face region.) This 
process can be visualized in Fig. 7. 

Upon detecting the eye(s), adaptive thresholding was 
employed to binarize the image for the morphological 
operations. Erosion and Dilation are the basic morphological 
operations. Erosion erodes away the white (1) region in the 
image while dilation increases the white region. For this model,  
Closing (which is dilation followed by erosion) is performed, 
then Erosion, and finally Opening (which is erosion followed 
by dilation) on the binarized eye(s). The Opening was useful 

for removing noises (scanty white pixels) in the eye image, and 
closing was used for closing small black points in the image. 
Then the eye pupil  is detected by finding the area with the 
most concentrated black pixels (which is the eye pupil). This is 
defined as finding contours (continuous points having the same 
color or intensity) in OpenCV-Python documentation [65]. 

As shown in Fig. 7, the outputs can either be 0, 0.5, 0.75, or 
1. The output is 0 if the face was detected but the eyes were not 
detected, or if the eyes were detected but the pupils were not 
detected. Also, the output is 0.5 if the face was not detected. 
This holds a value because detecting the face can be impeded 
by several behaviors such as nodding or looking aside, which 
are behaviors that are present in the dataset. And finally, the 
output is 0.75 if only one eye pupil is detected; otherwise, the 
value of the output is 1. A visualization of how the result looks 
like is shown in Fig. 8. From this figure, potential drowsiness 
measures can be identified, which can be exploited. 

2) Data segmentation: The eye state data from the 

previous section and their associated labels were segmented 

into 4 secs segments before any further preprocessing. The 4 

secs segment here is defined as 120 frames, which imply 120 

eye states per segment. The 120 frames depict 4 secs because 

all the videos were later treated as 30 fps so as to enforce 

consistency in subsequent phases. Also, it is important to 

recall that every video has four associated label-files 

(drowsiness.txt, eye.txt, head.txt, and mouth.txt), thus every 

eye state segment also has four associated label-segments i.e.  

480 labels for each eye state segment. 

3) Preprocessed data normalization: Several causes, in 

addition to the presence of noise in the eye state data could be 

identified in the eye pupil detection section. Also, since only 

whether the eye is open or closed is tracked, the data has to be 

either 0 (drowsy) or 1 (awake). To achieve that, the head label 

of each eye state segment is used and converted the label from 

1 (drowsy) to 0 and from 2 (looking aside) to 1. Then the 

remaining 0.75 values were converted to 1, and the 0.5s were 

converted to 1 or 0 depending on the statistical mode of the 

values 1 and 0 in the segment. The result of this process is 

visualized in Fig. 9. 

4) Labels combination: As of now, each eye state segment 

is associated with four separate label segments, i.e., each eye 

state has four labels (drowsiness, eye, head, and mouth), and 

each of these labels could hold a different value. For example, 

head and mouth labels can contain a value 2 whereby 

drowsiness and eyes are just 0 and 1. Thus, these labels need 

to be aggregated into a single value depicting the drowsy state. 

To achieve this, all head and mouth labels were first converted 

with a value of 2 to 0 as these labels represent looking away 

and talking or laughing, respectively (both of which indicate 

awake states). Then, the average of the four labels was 

computed and binarized with a threshold of 0.25, i.e., 

everything greater than 0.25 is converted to 1 and 0 otherwise. 
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Fig. 7. Eye Pupil Detection Model.

 

Fig. 8. Evaluation Dataset (004 Subject) Eye State. 

 

Fig. 9. Evaluation Dataset (004 Subject) Normalized Eye State. 

D. Features Extraction 

From the normalized eye state data, three features were 
extracted. This means that the features were calculated in every 
4 secs within the video frame. The features calculated are the 
percentages of eyelid closure (PERCLOS), blink frequency 
(BF), and maximum closure duration (MCD). The calculation 
of these features is illustrated in Fig. 10. 

 

Fig. 10. PERCLOS, BF, and MCD Features Definition [15]. 

         
          

 
                  (1) 

   
 

 
               (2) 

                               (3) 

            

1) Features Standardization: The next and final process 

after extracting the features was to scale the data so that their 

range is standardized. This process is required because the 

machine learning models calculate the distance between two 

samples using the Euclidean distance at some point in the 

learning process. Thus, if one feature has a broad range of 

values than the others, then the distance calculation would be 

greatly influenced by that feature. And for this data, the 

features were of the following range: 0 to 100 for PERCLOS 

because it’s a percentage, 0 to 40 for BF, and MCD is 0 to 120 

because the length of each data is 120, which is also the 

maximum amount of time a driver can have his/her eyes 

closed in a segment. These values indicate BF would not 

contribute much in the learning process. 

There are two popular techniques for normalizing features 
in machine learning: Min-Max normalization (or rescaling), 
and Z-score normalization (or standardization). Min-Max 
rescales the features in the range [0, 1] or [-1, 1], while 
standardization rescales the features to have zero mean and a 
unit-variance. For this research, standardization was chosen 
because it is the most widely employed normalization 
technique for the range of machine learning algorithms used 
[66]. The equation for calculating this is shown below: 

                 ̂   
    ̅

 
            (4) 

E. Drowsiness Classification 

According to the DDD literature, most researchers usually 
scope their drowsiness classification to either an SVM or ANN 
machine learning model. This is logical as these two 
algorithms excel in high dimension, multi-class, and nonlinear 
classification problems. However, with a rigid data 
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preprocessing in place (as in this system), the capabilities of 
other algorithms can also be explored. Due to this, evaluating 
several KNN and logistic regression models was considered in 
the research. Also, the problem at hand is the binary 
classification problem. This is because the provided labels only 
identify a drowsy state (1) and an awake state (0). 

1) K-Nearest Neighbors (KNN) Models: The KNN 

algorithm is one of the simplest and popular machine learning 

algorithms. This algorithm finds the nearest neighbors for a 

particular point in the sample space and (in a classification 

problem) then returns the class with the majority vote as the 

predicted output. For this research, 10 KNN models were 

designed with varying k values and used them for the 

classification problem. The details of this design are shown in 

Table VI. 

                   √∑        
  

              (5) 

2) Support Vectors Machine (SVM) Models: SVM is an 

algorithm that tries to find the optimal hyperplane that best 

separates data in an n-dimensional space. The terms optimal 

and best here indicate a hyperplane with the maximum margin 

from the support vectors. The support vectors are the points 

used to define the supporting hyperplane, which serve as the 

boundaries for the actual hyperplane. In order to find the 

optimal hyperplane, a kernel function is used to compute the 

similarity between other points and the support vectors, which 

is then further used to categorize the data points. The kernel 

functions extend SVM capability to higher dimensional spaces 

which thus makes it an important component in the algorithm. 

To exploit this capability, four are compared in Table VII.  

        〈   ́〉              (6) 

               〈   ́〉                 (7) 

        ‖   ́‖               (8) 

                 〈   ́〉                 (9) 

                               
                   

TABLE. VI. KNN MODEL DESCRIPTION 

Property Description 

k value     {                         } 

Distance metrics Euclidean distance 

TABLE. VII. SVM MODELS DESCRIPTION 

Property Description 

Kernel function K      ́   {                             } 

Distance metrics Euclidean distance 

3) Logistic Regression Models: Logistic Regression is a 

machine learning algorithm used for finding the best fitting 

boundary in a data. Unlike the name stipulates, this algorithm 

is used for binary classification. However, in order to evaluate 

its classification capability on the data, 6 different models 

were designed focusing on the algorithm’s optimizer for 

minimizing its loss function. The structure of this design is 

detailed in Table VIII. 

4) Artificial Neural Networks (ANN) Models: The 

artificial neural network is a model motivated by the 

biological structure of the human brain. This model enables 

the definition of neurons and their categorization into several 

layers. The input and output layers are the basic building 

blocks of an ANN model. However, if an ANN model 

contains just these two layers, it is no more different than a 

logistic or softmax regression model (depending on the output 

layer). ANN starts to become distinctive with the inclusion of 

hidden layers in the neural network. With this structure at 

hand, shown in Fig. 11, several models can be developed 

because different hidden layers, number of neurons, activation 

function, loss optimization function, and learning algorithm 

can be employed. 

However, for this research, a 3 hidden layer neural network  
was created, with softmax being used as the activation function 
in the last hidden layer. Two models were developed from this 
layer structure with a [10, 50, 20] and [3, 27, 9] hidden neurons 
per hidden layer. For evaluation purposes, 6 optimization 
functions for minimizing loss were also applied alongside the 
hidden layer structure described previously, thus making a total 
of 12 models.  Details about the models are displayed in 
Table IX. 

TABLE. VIII. LOGISTIC REGRESSION MODELS DESCRIPTION 

Property Description 

Optimizer 
      {                                 

                     } 

Learning 

rate 

     {                         } for each optimizer 

respectively 

 

Fig. 11. ANN with 3 Hidden Model. 
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TABLE. IX. ANN MODELS DESCRIPTION 

Property Description 

Optimizer 

    
  {                                 
                     } 

Learning rate 
     {                       } for each optimizer 

respectively 

Hidden layers and 

number of neurons 

3 hidden layers with [10, 50, 20] and [3, 27, 9] for 

each optimizer. 

F. Performance Evaluation 

The final stage of the operational design is to evaluate the 
performance of the classification models used during the 
experiment. To do this, the conventional confusion matrix was 
used  to generate the positive and negative prediction scores of 
each model and then deduct several performance measures 
from those scores. Details about the confusion matrix and the 
performance measures targeted are described in the next two 
sections. In addition to the confusion matrix performance 
measures, a 10-fold cross validation will also be performed on 
the KNN and SVM models. 

1) Performance Measures: The confusion matrix is a 

contingency table used in machine learning for visualizing the 

raw performance of an algorithm. As shown in Table X, this 

matrix stipulates four scores which are true positive (TP), true 

negative (FP), false positive (FP), and false negative (FN). 

The TP score depicts where the classifier correctly predicted a 

1 or a truth value. TN, however, indicates where a 0 or false 

value was correctly predicted. The total of these two scores 

gives all the classifier’s correct predictions, from which the 

accuracy of the model can be calculated. The FP and FN 

values, on the other hand, provide wrong predictions, from 

which the model’s bad characteristics are found out in specific 

instances. 

From the confusion matrix above, at least 9 performance 
metrics can be computed for the models. However, this paper 
would focus on just 5 of these measures. These metrics include 
accuracy, sensitivity (true positive rate), miss rate (false 
negative rate), false alarm rate (false positive rate), and 
specificity (true negative rate). 

a) Accuracy: Accuracy is the basic performance measure 

for any model or system. The accuracy of a model depicts how 

close the predicted value is to the actual. In this context, this is 

how correctly the models predict a drowsy or awake state. The 

formula for calculating the models’ accuracy is shown below: 

          
     

           
          (10) 

TABLE. X. CONFUSION MATRIX 

 Prediction 

A
ct

u
a
l 

True Positive (TP) 
False Negative (FN) 

(type II errors | miss) 

False Positive (FP) 

(type I error | false alarm) 
True Negative (TN) 

b) Sensitivity and Miss Rate: Sensitivity measures the 

rate of positive prediction that is truly positive prediction. In 

other words, it refers to the proportion of predicted drowsiness 

states which may actually be drowsy. Furthermore, the 

complement of sensitivity is the miss rate. This is the 

proportion of actual drowsy states being predicted as awake 

states. In safety context, the miss rate is very crucial. In the 

coming section it may be observed that equal significance will 

be given to miss rate and accuracy when one attempts to 

determine the performance of the model. The formula below 

calculates the sensitivity and miss rate. 

             
  

     
           (11) 

                                 (12) 

c) Specificity and False Alarm Rate: Like sensitivity and 

miss rate, specificity and false alarm rate measures the degree 

of negative predictions that are correctly and wrongly predicted. 

From the false alarm rate, the amount of distraction or 

discomfort of an actual system can be detected and mitigated. 

The formula for these two measures is stipulated below. 

             
  

     
           (13) 

                                       (14) 

d) Cross Validation: As stated above, a 10-fold cross 

validation is performed on the KNN and SVM models. This is 

to confirm the generalization rate of these models so as to 

avoid overfitting. The cross validation was not performed on 

the logistic regression and ANN models because these models 

are very computationally intensive, thus a cross validation 

might consume significant time. And also, because the 

tensorflow library is used, it provides the capability to 

configure the number of steps for training and testing before 

converging; hence, it is possible to train or test for a long 

period of time before generating an output. 

V. RESULTS AND DISCUSSION 

The result of the standardized extracted features is shown in 
Fig. 12. As seen in the diagonal figures, the PERCLOS and 
MCD distribution explicitly depict the drowsiness states. This 
implies high PERCLOS and MCD should predict a drowsy 
state while their low values should predict an awake state. For 
BF, there is not much distinction between the awake and 
drowsy states. This is, however, expected because in the real-
world, slow, medium, or fast blinks have an equal probability 
of being a drowsy or an awake state. 

Finally, the correlation of each feature is also displayed in 
Table XI. These values and Fig. 12 indicate that BF has weak 
correlations with other features, with almost no correlation 
with PERCLOS. Again, putting this in a real-world context, the 
driver’s eyes could be closed for a long period of time within 
one to many blinks. Conversely, PERCLOS and MCD tend to 
have a strong positive correlation. This is because both features 
increase together. However, the scatters in the middle imply 
they do not decrease together. Sparse MCD values would total 
to a high PERCLOS. 
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TABLE. XI. CORRELATION BETWEEN FEATURES 

Features PC and BF PC and MCD BF and MCD 

Correlation -0.1709 0.8637 -0.4376 

In this section, the performance result is presented for each 
model under their respective machine learning algorithm. A 
table will show these results and also accompany it with two 
figures visualizing the results based on two different 
comparison approaches. The first figure focuses on generic 
evaluation measures (like accuracy, sensitivity, and specificity) 
found in almost every machine learning analysis while the 
other figure focuses on measures (like miss rate and false alarm 
rate) that are critical and specific to safety contexts. Also, for 
evaluation, a benchmark of 70% accuracy and 15% miss rate is 
defined to determine how the good model should be. 

A. K-Nearest Neighbors (KNN) Model Results 

As seen in Table XII, all the models yielded varying results. 
However, they tend to have an average accuracy of 70.67 with 
k = 3 and k = 31 providing the least and best accuracy 
respectively. This can be further conceived by looking at 
Fig. 13, where it depicts that the accuracies increase as the k 
value increases, even though there were slight decreases when 
k = 15 and k = 41. This increment correlation can be justified 
because the models with a higher number of neighbors have 
more votes of the majority to aggregate from. Although, this 
can also mean overfitting, the notion is nullified by performing 
a 10-fold cross validation (CV) on the models. And as seen, the 
CV accuracies were very close to the original accuracies. This 
proves no overfitting occurred. 

The model’s sensitivity and specificity performance is 
shown in Fig. 13. These two metrics were very crucial in 
calculating the miss rate and false alarm rate. These two 
measures must be as high as possible so as to get low miss rate 
and false alarm rate values. The simulation reveals that k = 31 
has the highest sensitivity value which also implies, it has the 

lowest miss rate. This is convenient as this model had the best 
accuracy even though having high accuracy does not really 
signify having a high sensitivity or low miss rate. This is 
further asserted as this model (k = 31) does not have the best 
specificity and false alarm rate. 

Fig. 14 compares the KNN model’s miss rate and false 
alarm rate. From this figure, the miss rate and false alarm rate 
seems to decrease as the value of k increases. The best miss 
rates and false alarm rates were achieved at k=31 and k=21, 
respectively. Without this variation, k=31 would have been 
considered as a flawless model for the KNN algorithm. 
However, this is still tolerable as false alarm has a minimal 
safety effect on the driver. Thus, the best KNN model is when 
k=31. 

B. Support Vector Machine (SVM) Model Results 

For SVM evaluation, several kernel functions were 
compared. These functions transform the similarity 
computation between the input points and selected support 
vectors into different dimensions. The result of this experiment 
is shown in Table XIII. Like the KNN models, a 10-fold CV 
was performed to denounce overfitting. From the results, the 
sparseness of features is inferred when the linear model 
obtained higher accuracies than most of the non-linear models. 
This depicts the linearity between the features and the 
drowsiness states. This is further confirmed in the next section 
with logistic regression (a linear model), whereby the 
accuracies are between 69% and 70%. 

The RBF model, however, performed better than the linear 
model. This is because the linear kernel is a special case of 
RBF [67] and with the RBF has the capability to fit cases 
(nonlinear categories), which the linear kernel cannot. The CV 
accuracies also showed no overfitting occurrence, except for 
the sigmoid function with a significant of 4% difference. 
Fig. 15 depicts the performance of different SVM models, 
briefly giving a bird’s eye-view of their accuracies CV 
accuracies, sensitivities, and specificities. 

 

Fig. 12. Standardized Extracted Features. 
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TABLE. XII. KNN PERFORMANCE EVALUATION RESULTS 

K value Accuracy CV accuracy Sensitivity Specificity Miss rate False alarm rate 

3 67.78 64.11 76.67 55.81 23.33 44.2 

5 69.38 67.46 79.17 56.18 20.83 43.82 

7 69.06 68.42 79.17 55.43 20.83 44.57 

9 70.81 68.42 82.22 55.43 17.78 44.57 

11 71.29 68.90 82.5 56.18 17.5 43.82 

13 71.45 69.06 82.78 56.18 17.22 43.82 

15 70.97 68.10 82.5 55.43 17.5 44.57 

21 71.93 69.06 81.94 58.47 18.06 41.57 

31 72.25 70.33 83.33 57.30 16.67 42.7 

41 71.77 71.29 81.94 58.05 18.06 41.95 

Average 70.67 68.52 81.22 56.45 18.78 43.56 

 

Fig. 13. KNN Models, Accuracy, CV Accuracy, Sensitivity, and Specificity. 

 

Fig. 14. KNN Models Miss Rate and False Alarm Rate. 
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TABLE. XIII. SVM PERFORMANCE EVALUATION RESULTS 

Kernel function Accuracy CV accuracy Sensitivity Specificity Miss rate False alarm rate 

Linear 69.86 68.42 78.61 58.05 21.39 41.95 

RBF 70.66 69.7 80.56 57.30 19.44 42.7 

Sigmoid 69.22 65.23 81.34 52.81 18.61 47.19 

Polynomial 68.9 68.58 86.94 44.57 13.06 55.43 

Average 69.66 67.98 81.86 53.18 18.13 46.82 

 

Fig. 15. SVM Models, Accuracy, CV Accuracy, Sensitivity, and Specificity. 

In contrast to accuracy and specificity, the nonlinear 
kernels excelled at predicting the correct drowsy state 
(sensitivity) than the linear kernel. Thus, this means they have 
lower miss rate values. This is shown in Fig. 16, where the 
polynomial kernel had the lowest miss rate value. This is true 
because the strength of the polynomial kernel comes from it 
having more hyperparameters than the other kernels which thus 
increases its complexity. However, the RBF model was 
selected as the best model because it had the best accuracy, 
false alarm rate, and a considerable miss rate. The polynomial 
model on the other hand, had the worst accuracy and false 
alarm rate. 

C. Logistic Regression Model Results 

The logistic regression algorithm is a linear classifier for 
binary classification (awake or drowsy in this case). This 
algorithm tries to find the optimal weight required in fitting the 
best line through the data. In order to achieve this weight, an 
optimizer is required to minimize the loss function so that the 
predicted values are closer to their actual counterpart. Several 
models were developed to compare the result of different 
optimizers. The optimizers chosen were a category of 
optimizers developed as improvements to the popular gradient 
descent optimizer. Also, in order to achieve this, each 
optimizer’s parameter was tuned so as to attain their possible 

best result. The parameter values used are stipulated in 
Table XIV. 

Table XIV, Fig. 17 and Fig. 18 show the result of each 
optimizer. As seen in the table and the figures depicted, Adam 
and gradient descent had the best accuracies. However, with 
respect to gradient descent, the two other optimizers, with 70% 
accuracy, are known for their great impovement on gradient 
descent’s learning rate selection [68]. The Adam optimizer also 
had the best miss rate while RMSProp had the best false alarm 
rate. This is visualized in Fig. 18, where due to the linearity of 
the models, a (negative) correlation between the miss rate and 
false alarm rate was perceived. The Adam optimizer model 
was thus selected as the best model because this model 
obtained the best accuracy and miss rate. 

D. Artificial Neural Network (ANN) Model Results 

The final set of models evaluated was based on the ANN 
algorithm. The definitions of these models were similar to that 
of logistic regression, where different loss function optimizers 
were evaluated. However, since neural networks are being 
dealt with, two neural nets with 3 hidden layers were created 
whereby each hidden layer had different number of neurons. 
The result of this evaluation is shown in Table XV. As seen in 
this table, most of the models had 70% accuracy, thus 
signifying superiority to other machine learning algorithms 
compared with the provided data. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

564 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 16. SVM Models Miss Rate and False Alarm Rate. 

TABLE. XIV. LOGISTIC REGRESSION PERFORMANCE EVALUATION RESULTS 

Optimizer Accuracy Sensitivity Specificity Miss rate False alarm rate 

GradientDescent 70.81 81.11 56.93 18.89 43.07 

Momentum 69.70 77.50 59.18 22.50 40.82 

Adagrad 70.02 78.06 59.18 21.94 40.82 

Adadelta 69.54 76.94 59.55 23.06 40.45 

RMSprop 69.22 77.22 58.43 22.76 41.57 

Adam 70.81 86.11 50.19 13.89 49.81 

Average 70.02 79.49 57.24 20.51 42.76 

 

Fig. 17. Logistic Regression Models, Accuracy, Sensitivity, and Specificity. 
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Fig. 18. Logistic Regression Models Miss Rate and False Alarm Rate. 

TABLE. XV. ANN PERFORMANCE EVALUATION RESULTS 

Optimizer/ Hidden layer Accuracy Sensitivity Specificity Miss rate False alarm rate 

GradientDescent[10, 50, 20] 71.13 81.67 56.93 18.33 43.07 

Momentum[10, 50, 20] 71.45 85.28 52.81 14.72 47.19 

Adagrad[10, 50, 20] 70.49 86.67 48.69 13.33 51.31 

Adadelta[10, 50, 20] 70.34 86.39 48.69 13.61 51.31 

RMSprop[10, 50, 20] 68.9 80.56 53.18 19.44 46.82 

Adam[10, 50, 20] 71.61 85 53.56 15 46.44 

Average 70.65 85 53.56 15 46.44 

GradientDescent[3, 27, 9] 71.45 85 53.18 15 46.82 

Momentum[3, 27, 9] 71.45 85.83 52.06 14.17 47.94 

Adagrad[3, 27, 9] 69.7 78.06 58.43 21.94 41.57 

Adadelta[3, 27, 9] 71.61 85.56 52.81 14.44 47.19 

RMSprop[3, 27, 9] 71.45 85.83 52.06 14.17 47.94 

Adam[3, 27, 9] 69.38 78.06 57.68 21.94 42.32 

Average 70.84 83.06 54.37 16.94 45.63 

Table XV has been translated to the graph depicted in 
Fig. 19 showing the comparison of performance measures of 
different ANN models. The results have been categorized 
based on the neural network structure. And as seen in the table, 
the network with 3, 27, and 9 neurons per layer obtained the 
best accuracy and false alarm rate, while the other network 
obtained the best miss rate. From this, it is inferred that the 
number of neurons per layer strongly affects these measures 
even though enough experimentation hasn’t been carried out to 
generalize which network structure is most effective. 

However, regarding the loss function optimizers, Adam and 
Adadelta attained the best accuracies in the [10, 50, 20] and [3, 
27, 9] networks, respectively. The Adam and Adadelta 
optimizers were able to perform well in these scenarios 
because they computed adaptive learning rates for the 
traditional gradient descent parameters [68]. However, the 

Adadelta was chosen in the neural network [3, 27, 9] as the 
best model for the ANN algorithm because its miss rate was 
better than that of Adam’s as shown in Fig. 20. 

E. Best KNN, SVM, Logistic Regression and ANN Model 

Comparisons 

As shown in Fig. 21, each model has its strengths and 
weaknesses regarding accuracy, miss rate (compliment of 
sensitivity), and false alarm rate (compliment of specificity). 
The KNN model had the best accuracy and false alarm rate 
while competing with the SVM’s false alarm rate. This is 
expected as KNN is a very good classifier when supplied clean 
data. However, the SVM model does not perform much 
compared to other models. This was surprising as SVM is a 
very strong classifier. This might be due to the parameter 
settings for the models. Thus, providing better or optimal 
parameters might improve the SVM performance. Nevertheless, 
this model had the best false alarm rate. 
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Fig. 19. ANN Models, Accuracy, Sensitivity, and Specificity. 

 

Fig. 20. ANN Models Miss Rate and False Alarm Rate. 

 

Fig. 21. Best KNN, SVM, Logistic Regression, and ANN Performance. 
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The logistic regression model had the best miss rate. This 
capability is very important as drowsy driving is considered a 
safety problem; thus, missing to classify a drowsy state as the 
awake state is a critical issue. Comparing this model to the 
KNN model, the KNN model performed better in all aspects 
except the miss rate where the logistic regression model 
surpasses it by 3%, this difference is still tolerable. 

The final model is the ANN model. The result of this model 
can be interpreted to be better than the KNN model depending 
on the tradeoffs between accuracy and miss rate. However, this 
model obtained an accuracy of 71.61 and a miss rate of 14.44. 

F. Result Benchmark 

ANN and KNN results were compared with the paper 
recommended by the creator of the NTHU dataset. The result 
of this comparison is shown in Table XVI below. This paper 
by [69] provided two models using two different fusion 
strategies: independently-average architecture (IAA) and 
feature-fused architecture (FFA). And as shown below, the 
IAA and FFA obtained 73.06 and 70.81 accuracies, 
respectively. Author in [69] also evaluated the performance of 
popular multi-class classification algorithm on this dataset in 
their experiment. Comparing the result of this model and the 
other algorithms they evaluated with the result of proposed 
KNN and ANN model, proposed models obtained better 
accuracies than the latter, except their IAA model which had 
73% accuracy. 

TABLE. XVI. BENCHMARK RESULT 

Researchers Accuracy (%) 

Proposed KNN 72.25 

Proposed ANN 71.61 

DDD-FFA [69] 70.81 

DDD-IAA [69] 73.06 

AlexNet [70] 62.99 

VGG-FaceNet [71] 61.50 

FlowImageNet [72] 67.85 

LRCN [72] 65.93 

VI. FUTURE WORK 

As it was evident that the methods proposed in the research 
were non-intrusive and the results obtained were on par with 
the benchmarks considered, a real world prototype model will 
be developed. To start with, a simple prototype using a micro 
computer, capable of handling computer vision, like raspberry 
pi paired with a high resolution camera will be developed and 
tested. The output of the DDD system can be used to expand 
the research further or can be relayed to a control system of a 
vehicle to enable actuation based DDD output. 

VII. CONCLUSION 

This research focused on finding a low-cost and non-
intrusive driver drowsiness detection solution which is based 
on face and eye tracking. To achieve this solution, several 
kinds of literature works were reviewed to understand the 
driver drowsiness detection ecosystem. These literature works 

incited greater interest in this domain because driver 
drowsiness is considered as a major contributor to road 
accidents. With this problem at hand, it was discovered that 
most of the DDD researches, even though they obtained high 
accuracies, were unable to make it to real-world scenarios. 
With this research, this paper thus proposes a non-intrusive 
solution based on tracking the face and eyes of the driver, thus, 
not requiring any attachment to the driver. A low-cost solution 
was obtained by performing experimentation on a medium-
quality video dataset. The eye pupil detection model and the 
numerous machine learning models were the contributions to 
this ecosystem. 

However, the accuracy of the system was found to be at 
most 70-75%. In addition to this, the video feed required 
complex hardware and processing power, any lag due to which 
would result in fatal consequences. The video feed must be of 
high resolution and recorded in well-lit conditions, which may 
not be the case always in real world scenarios. This could lead 
to deviations in results. Any glares flashed, most importantly, 
on the driver’s face might cause distractions or involuntary 
closure of eye lids, giving false alarms to the system. The data 
set must be acquired from various drivers not belonging to the 
same family, since genetic similarities can directly affect the 
specificity of the algorithms. 

Although there are several improvements that can be 
embedded into this research, it is believed that the current 
result is adequate for deployment into a real system which can 
be used in the real-world scenario. This research is therefore 
considered as an inception for DDD ubiquity. 
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