
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

18 | P a g e  

www.ijacsa.thesai.org 

Authentication and Authorization Design in 

Honeybee Computing 

Nur Husna Azizul
1
, Abdullah Mohd Zin

2
, Ravie Chandren Muniyandi

3
, Zarina Shukur

4
 

Center for Software Technology and Management (Softam) 

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 

 

 
Abstract—Honeybee computing is a concept based on 

advanced ubiquitous computing technology to support Smart 

City Smart Village (SCSV) initiatives. Advanced ubiquitous 

computing is a computing environment that contains many 

devices. There are two types of communication within Honeybee 

computing: client server and peer-to-peer. One of the 

authorization techniques is the OAuth technique, where a user 

can access an application without creating an account and can be 

accessed from multiple devices. OAuth is suitable to control the 

limited access of resources to the server. The server use REST 

API as web service to publish data from resources. However 

since Honeybee computing also supports peer-to-peer 

communication, security problem can still be an issue. In this 

paper, we want to propose the design of a secure data 

transmission for Honeybee computing by adopting the 

authorization process of OAuth 2.0 and Elliptic Curve Diffie-

Hellman (ECDH) with HMAC-Sha. This article will also discuss 

the communication flow after adopting OAuth 2.0 and ECDH to 

the computing environment. 

Keywords—HMAC-Sha; REST API; peer-to-peer; web service; 

honeybee computing 

I. INTRODUCTION 

Honeybee computing is a concept based on advanced 
ubiquitous computing technology to support Smart City Smart 
Village (SCSV) initiatives1. It is supported by a middleware 
together with a number of tools such as semantic knowledge 
tool and predictive analytics for information management. The 
sources of information in Honeybee Computing are from the 
web, public and private cloud, and user devices. Since there is 
a multiple sources of data, it is important that all transactions 
are secured. 

In the development of a software, the effort to secure the 
software is important, for example a framework cyber security 
[1] strategy framework is to protect government data, foreign 
investment and citizens. With many types of attacks, the 
importance of security is not only to look at securing the data 
but also to ensure users authenticity [2], especially if the 
interaction involves third party users. For example, a design for 
a virtual private network [3] for collaboration specialist users 
where the authentication becomes the main part of the design 
and authentication mechanism for an ad-hoc network [4]. One 
of the popular security problems within a network is the man-
in-the-middle (MITM) attack [5][6]. The problem of a MITM 
attack is more critical in applications that use the single sign on 
(SSO) method. The Facebook platform that is based on cloud 
computing is open to multiple types of MITM attacks [5][7]. 

Authorization and authentication [8][9] are security issues 
that must be considered during the development of an 
application. There are multiple cloud service providers with 
client authentication method, for example Amazon Web 
services that use HMAC-Sha1, HMAC-Sha256, or X.509 
certificate, Azure uses SAML 2.0 or Auth 2.0, Azure Storage 
uses HMAC-Sha256, and Google App Engine uses OAuth 2.0, 
shared secret or certificate. HTTP authentication [6][10][11] 
provides basic and digest access authentication. 

Honeybee computing needed authorization authentication 
that support the architecture, since the Honeybee computing 
support peer-to-peer and client server, secure communication 
during data transfer is important to protect the resource. Client 
server use authorization and authentication that involved 
storing of key in server side, while peer to peer security 
mechanism usually involved with encryption and decryption. 
There is no security method for secure communication with 
both client server and peer to peer communication. This paper 
discusses the authorization and authentication process in 
Honeybee computing. 

The rest of this paper is organized as follows: The existing 
work of the attack, client server and peer to peer method to 
secure the communication is presented in Section 2. In 
Section 3, we present the overview of Honeybee Computing, 
before discussing the findings in Section 4. Section 5 presents 
the communication flow. Finally, Section 6 concludes the 
paper and presents the future work. 

II. RELATED WORK 

A. MITM Attack 

Generally, there are three types of MITM attack, namely 
Address Resolution Protocol (ARP) Cache Poisoning, Domain 
Name System (DNS) Spoofing and Session Hijacking [12]. 
The attacks that use ARP spoofing [13] refers to a technique 
that enables an attacker to pretend to be one of the users in a 
communication between two users. The DNS spoofing 
principle [13] is where the victim’s HTTP traffic is intercepted. 
The program analyzes incoming HTTPS links and replaces 
them with unprotected HTTP links or homographic ally related 
secure links. Session hijacking is the hijacking of a valid 
computer session to the browser. The aim of MITM [12] is to 
compromise the confidentiality, integrity and availability of 
messages. Based on the three effects, the scenario that would 
be caused by MITM would be as follows: 

1GSIAC Smart City. “ Smart City-Smart Village”. 
http://gsiac.org/index.cfm?&menuid=36#sthash.74DYwYR0.dpuf [28 January 

2015]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

19 | P a g e  

www.ijacsa.thesai.org 

Confidentiality: The confidentiality of a message can be 
compromised where the message can be seen by a man-in-the-
middle by interrupting the communication in the middle 
without both victims realizing. Conti et al. presents the ARP 
spoofing for the man-in-the-middle to stay in the 
communication in silence as shown in Fig. 1. The victim, Bob 
would send a message to Alice without realizing that Eve is 
actually the one that sent a message to both victims. This 
would cause a confidentiality risk to the conversations between 
both victims even though they might believe that their 
conversation is safe. 

Integrity: Message integrity can be compromised by the 
man-in-the-middle attacking the communication and 
modifying the message. This is one of the possible effects 
caused by session hijacking; for example, the attackers can 
interrupt the information and then modify the message to get 
session access so that the attacker can access the resources. 
These types of attacks usually occur during the authentication 
process and cause a threat to users since the layer of security is 
not secure. Session hijacking [12] is very dangerous for 
Internet banking especially since it contains sensitive data. 
During MITM attacks, traffic is usually interrupted, and a 
spoofed certification is given to the client to mimic the server. 

Availability: There are a lot of prevention methods to 
ensure the security of the communication during a man-in-the-
middle attack. Since the attack starts from the early stage, the 
victims might expose the authentication procedure to the 
attackers. One of the methods is to identify if the message is 
compromised by the attacker during authentication. The issue 
with a man-in-the-middle attack is that message modification 
shows the interruption. That is why there is a lot of 
cryptography methods that involve key sharing to ensure the 
message is not compromised. 

 

Fig. 1. Authorization Process in OAuth 2.0 [6]. 

B. OAuth 

OAuth is suitable to control the limited access of resources 
of the server. 

For the server side, OAuth 2.0 is an authorization 
framework that is suitable for an environment that involves the 
use of multiple devices. OAuth 2.0 is an evolution from OAuth 
where it uses REST API as the development language. This 
specification is being developed within the Internet 
Engineering Task Force (IETF).  The recent technology of 
OAuth 2.0 provides new security for users to enable third party 
applications to access resources from third party providers. 
These resources can be obtained using REST API

2
. For 

example, a person who already has a Facebook account can log 
in to the Spotify application through his Facebook account. 
Spotify does not have to know the username and password of 
the Facebook account. 

The authorization process can be done using token 
authentication. Richardson and Ruby [6] present two types of 
authorization: using web interface or without web interfaces. 
Fig. 2 shows authorization with a web interface. In this 
example, the application needs permission from the user before 
Google provides a token to enable the application to use the 
Google calendar data. 

For the client side, two types of platforms are considered, 
namely the Android apps and web application. For the Android 
apps to use third party libraries, an SDK [14] is normally 
provided. For example, an Android SDK is provided by 
Google for the programmer to develop apps without the need 
to register. This is different from using third party libraries 
online. For example, in a social network such as Facebook, 
Facebook SDK provides libraries for the Android platform. To 
access this SDK, a programmer has to create an account in 
Facebook and register as a programmer. The apps must be 
registered to Facebook and a secret key is provided for the apps 
to run online. The interaction is almost the same with web 
application. Facebook provides a system to enable 
programmers to register the application profile so that 
Facebook would recognize the list of applications that have 
access to the Facebook server. 

Fig. 3 shows the sequence diagram of the authorization 
process. In this figure, a user refers to a person who has an 
account in the resource server, a user agent is the web 
application or Android app developed by the programmer. The 
client is provided by the middleware developer. Client act as 
interface. The user agent sends a request to the client, and the 
client will redirect the request to the URL of the server. 

C. Infrastructure-Less Communication 

In an infrastructure-less communication, such as in a peer-
to-peer or ad hoc network, there is no server to manage 
registered devices. The authorization process is done using a 
hello protocol. HELLO beacon messages per interval time in 
order to periodically update link information [15]. To follow 
hello beacon, the protocol would affect the network 
performances. Thus, to authorize users in infrastructure-less 
devices, a key provided by the programmer is sent by device 
A; if device B as the receiver returns the right string then 
device B is authorized. 

2 U. Friedrichsen ,” OAuth 2.0: A standard is coming of age. codecentric 
AG”. http://www.slideshare.net/ufried/oauth-20-18356495. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

20 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Token to Access Functionality in Google Calendar [6]. 

 

Fig. 3. Shows Authorization that Involves Third Party and user [14]. 

One of the solutions for security in peer-to-peer is provided 
by the Android API

3
 is known as Elliptic Curve Diffie-

Hellman [16] that sends a key without sharing the actual key. 
In this approach, the message is encrypted and decrypted. 
Cryptographic

3
 hash functions are important security 

primitives especially for data integrity and authentication. 
HMAC-SHA1 is one of the cryptographic hash functions used 
to ensure data integrity in computing communication. 

III. HONEYBEE COMPUTING OVERVIEW 

Honeybee computing is a concept based on advanced 
ubiquitous computing to support Smart City Smart Village

1
. 

Honeybee computing contains several components such as 
semantic knowledge tool and predictive analytics for 
information management [17]. The sources of information in 
Honeybee computing are the web, public and private cloud, 
and devices. 

In order to enable applications to be developed in a 
Honeybee computing environment, a middleware is needed. 
The architecture of the middleware to support the applications 
development in a Honeybee computing environment is 

described in [17]. The middleware architecture is shown in 
Fig. 4. There are five main components in the middleware, 
namely, Service Manager, Communication Manager, Security 
Manager, Semantic Manager, and News Manager. Network 
Management provides the connection with the user devices, 
while Resource Manager supports the management of the 
available resources. Honeybee computing supports two types 
of network: infrastructure or client-server based network and 
infrastructure-less or peer-to-peer network. In an infrastructure 
based network, users can communicate through a server. 
Communication in peer-to-peer network does not involve an 
intermediate server, but rather users communicate with each 
other directly. Most of the users access computing network 
through wireless communication either through Wi-Fi, ZigBee 
or 3G/4G technology. In a client-server based network, 
communication between the server and client is done through 
web services. There are two methods in providing web 
services: Representational State Transfer (REST) and Simple 
Object Access Protocol (SOAP). REST is a more popular 
choice for middleware as it is simpler to use. 

Currently there are two types of applications: normal 
applications operating on a PC and apps operating on a mobile 
device. Development of apps within the Honeybee middleware 
is supported by a software development kit (SDK). Since a user 
may have a number of devices, the same application or app 
may be installed in some or all of these devices. Every 
application or app uses many different types of services. In 
order to control the type of services that can be accessed by an 
app, there is a need for permission control. There are two 
common types of permission provided by an application or 
app: 

1) Reading: The application or app can obtain user’s data 

stored in the honeybee server. 

2) Delete: The application or app can delete user’s data 

stored in the server. 

Interaction between users, devices, applications and apps 
and permission is shown in Fig. 4. 

The Honeybee Security manager is responsible in 
preventing malicious attacks to the server. The protection is 
done through an authorization key. Other components of the 
middleware are only accessible if the request contains the 
approved authorization key. 

 

Fig. 4. Shows Interaction of the Security Package. 

3 N. Elenkov,”ECDH on Android sample app”. Github. 
https://github.com/nelenkov/ecdh-kx. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

21 | P a g e  

www.ijacsa.thesai.org 

Fig. 5 shows that there are two ways to access the services 
provided by the Honeybee Security manager. A Honeybee 
application on a PC can access the Security Web API directly. 
A Honeybee app on a mobile device will access the Security 
Web API through an SDK provided by org.honeybee.security. 

There are two types of services provided by the Honeybee 
manager: 

1) Authentication and authorization services to access 

services provided by other parts of the middleware; and 

2) Encryption and decryption services for communication 

between apps on different devices. 

Authentication is needed to access the Honeybee 
middleware. A server as a security manager provides service to 
ensure whether the app is authorized to access sources. For 
user sign up, login, and logout, a link to the Honeybee main 
web page is provided. After an authentication, a user has a 
session ID that is stored in cookies. The rules are as follows: 

1) Programmer needs to register the apps to obtain 

information such as apps id and apps secret. 

2) End_user is granted the type of permissions for the apps 

to access the source. 

3) Each device provides a MAC address to access the 

server, and every token is provided for each device at each 

request to the server. 

 

Fig. 5. Secret Generated by HMAC-SHA1 Algorithm for Programmer to 

Develop Application. 

 

Fig. 6. Sequence Diagram in Security Manager. 

In this system, a programmer is a user, thus user sign up is 
needed and then the user must register as a programmer to 
access the developer dashboard. 

For an end-user to develop an app, registration is needed 
where the end-user needs to agree to the programmer 
agreement. Apps registration is needed for the Honeybee apps 
to access the Honeybee API. An app ID and app secret is 
provided to the end-user for development purposes; the 
sequence is shown in Fig. 6. 

IV. AUTHORIZATION IN HONEYBEE COMPUTING 

Honeybee computing authorization follows the OAuth 
workflow. The authorization is processed using multiple 
predefined URLs, called endpoints. There are 4 endpoints: 

1) Request URI (this endpoint passes the request token). 

2) Access URI (exchanges request token for an access 

token). 

3) Authorize URI (confirms that the access token is valid). 

4) Refresh token (refresh access token if previous is 

invalid). 

Fig. 7 shows the sequence diagram between user, 
programmer, client, and server. The programmer develops the 
Honeybee app or web application and interacts with the 
Honeybee client before redirecting to the endpoints in the 
server. This process is adapted from the OAuth2.0 security. 

Each number in the diagram is explained as follows: 

 Request URI: The first endpoint is the request URI. 
This request URI is provided by the packages in 
Honeybee computing. The request URI passes the app 
secret to check if the user has granted permission to the 
Honeybee app to access the user account. 

 Access URI: In the second endpoint, after the user is 
granted permission, an access token is provided. This 
access token can be used for requests to the resource 
server. 

 Authorize URI: In this third endpoint, the access token 
is checked whether it is valid or not; if the token is valid 
then data is returned from the resource server. 

 Refresh token URI: The fourth endpoint is used to 
refresh expired tokens; this is used when the user opens 
the app and the token saved is expired. This endpoint is 
not shown in the diagram. From Fig. 7, users must grant 
permission to enable third party applications to the 
access server. 

The Honeybee computing Security manager is responsible 
for request management. This is to ensure that all requests are 
authorized. This is because every resource in Honeybee 
computing needs permission from the user and tokens to get 
authorized. The template is designed so that author affiliations 
are not repeated each time for multiple authors of the same 
affiliation. Please keep your affiliations as succinct as possible 
(for example, do not differentiate among departments of the 
same organization). This template was designed for two 
affiliations. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

22 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 7. Communication Flow when Device uses WAP Connection. 

V. COMMUNICATION IN HONEYBEE COMPUTING 

There are a number of communication processes involved 
in Honeybee computing: user registration, application 
registration, accessing server for resources, finding nearby 
devices, communicate with other devices, peer-to-peer 
communication and building an ad hoc network. The 
descriptions of these processes are as follows: 

User registration: Before a user can use the application, the 
user must have an account with the Honeybee system. This 
registration is different from the application registration; user 
must grant different types of permissions. This procedure is to 
protect multiple access to user data. In every user device there 
are a lot of applications, however only applications that are 
granted by the user can access the Honeybee server. 

Application registration: Since the Honeybee system is a 
community system, the third party application would need to 
be authenticated by the Honeybee server. Thus, the app 
developer or programmer must register the application to the 
system. Programmers have to input the application package 
and then the app ID and app secret are provided for that 
particular application as a signature to access the server. 

Accessing server for resources: The sequence of activities 
to assess a Honeybee resource is shown in Fig. 8. When a user 
is successfully logged in to the system, the middleware will 
provide a token and the application can request the resource by 
using the provided token. Fig. 8 shows a device 
communication when connected to WAP. 

Finding Nearby Devices: To find a nearby device, the user 
must use Wi-Fi to connect to the Honeybee server. User must 
log in to the Honeybee system to get information needed from 
the server. Honeybee SDK then lists all nearby users who are 
online using WAP. 

Communicate with other devices: The steps needed for 
communicating with other mobile devices using Wi-Fi are as 
follows: 

1) Device A sends an encrypted message and key to device 

B. Device B then replies with an encrypted message and key. 

2) Device A then decrypts the message and checks the 

following: 

a) Decrypted message follows the format of the 

message. 

b) MAC address inside the message exists in the file 

downloaded from the Honeybee server. 

Device B would follow the same procedure to identify if 
the key is modified. During this step, both devices can proceed 
using the key or stop the session and start with a new session to 
get a new key. 

3) If both devices agree to proceed, device A sends an 

encrypted message to device B without the key sending new 

keys. 

Peer-to-peer communication: Peer-to-peer communication 
uses a concept similar as WAP since both use Wi-Fi to 
communicate; at the same time peer-to-peer is also an ad hoc 
network. To explain the communication, the steps of the 
procedure are as follows: 

1) Device A scans for nearby devices using the Android 

library and identifies which device to send a message. Device 

A then encrypts the message and sends with a key to the 

selected device, which is device B. Device B then replies with 

the encrypted message and key by following the format needed. 

2) Device A and device B then decrypt the message given 

and identify the following conditions: 

a) Decrypted message follows the format to send 

message; and 

b) One of the attributes is following the file downloaded 

from the Honeybee server earlier. 

If any of the conditions are not followed, the 
communication is suspected as not secure. Both devices could 
proceed or stop the current session. If both devices agree to 
continue, the message can be sent by sending an encrypted 
message without the need to send the key. 

Building an ad hoc network: An ad hoc network involves a 
number of devices connected together to form a network. It 
does not involve an intermediate server to send messages from 
one device to another, thus the communication is real time. By 
using the same authentication method as WAP, the app then 
can communicate. After logging in to the Honeybee system, 
the system would provide the information of registered devices 
to the Honeybee system. 

VI. CONCLUSION 

In man-in-the-middle attacks, there are multiple methods to 
prevent these attacks. There are several methods to prevent the 
effect of the attacks such as focus on the authentication method 
and using a different technique of cryptography for messages. 
There are also methods that focus on the digital signature to 
prevent any attacks. Honeybee computing security on the other 
hand, adapts the cryptography method and also validates the 
application at the server. To get the list of registered devices, 
the device communicates with the server before connecting to 
the device. These two communication need to identify if a 
man-in-the-middle attack is possible during data transfer. To 
prevent the man-in-the-middle attack, three methods of 
prevention are covered which are identity identification, 
resource protection and communication secure. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

23 | P a g e  

www.ijacsa.thesai.org 

To ensure the authorization, the OAuth 2.0 method is used. 
This type of authorization using key sharing involves user 
agreement before proceeding. With this method, not all data is 
accessible to the user. This method is also located at the server 
the location of the resources. Other than that, every 
authorization and authentication process involves more than 
one secret key, thus the process to ensure the security of the 
communication is complex to get easily attacked by intruders. 
Since the man-in-the-middle is capable of impersonating the 
victim, one of the approaches in Honeybee computing is 
identity identification. To ensure if the sender is not an 
attacker, the server provides a list of devices that helps the user 
to identify if the sender is actually a registered user or an 
attacker. Since the list of registered devices is downloaded 
from the server, the attacker would need to attack the 
communication with the server to modify the list. By using the 
OAuth 2.0 method that is secure for the environment, the 
attacker would have difficulties to interrupt the 
communication. 

One of the causes of man-in-the-middle is message 
availability where the attacker changes the message without 
victims realizing. For this case, we use cryptographic and also 
adopt the key sharing method. To prevent the key from being 
attacked by intruders, we use the ECDH key for key sharing. 
This method is one of the methods that are used for man-in-
the-middle attacks to prevent any modification to the message. 
If the attacker is capable of accessing the message, the 
communication is still secure since the attacker would face 
other difficulties in decrypting the message. The 
communication design in Honeybee computing is mainly based 
on the entities inside the system. Two types of users which are 
application user and programmer show that Honeybee 
computing is a community system. Since there is involvement 
of third party applications in accessing the resources, the 
security involvement from different aspects is very important. 
With multiple devices that use multiple applications to access 
the resources, the OAuth 2.0 technique is used. Since 
Honeybee computing architecture involves the infrastructure-
less communication, the ECDH method is adopted in the 
Honeybee computing security. These two methods prevent 
man-in-the-middle attacks to the system. The effects of man-
in-the-middle attacks would cause a lot of problems. 

As conclusion, it is important for any software that 
involved with communication transmission to have a secure 
data transmission. The after effect of MITM would cause many 
troubles in the resources To ensure the proposed authorization 
and authentication help to secure communication in honeybee 
computing, the future research is needed, which is to test 
whether the communication is secure from MITM attack, a 
simulation is needed where MITM attack to the application 
developed in the honeybee computing. With the functionality 
provided in honeybee computing such as send message, request 
data from middleware, and register user info, all the 
functionality must be tested to ensure MITM attack would not 
happen. 

The next task is to validate the proposed security 
mechanism. The validation process will be done using security 
testing based on the test cases [18]. 

ACKNOWLEDGMENT 

The authors would like to thank Mr. Muhammad Zharif for 
his valuable suggestions on the improvement of the paper. This 
research is one of the Malaysian Government funded projects 
under the Ministry of Higher Education (MOHE) Fundamental 
Research Grant (FRGS) with reference number 
FRGS/1/2015/ICT04/UKM/02/3. 

REFERENCES 

[1] K. Salamzada,Z. Shukur and M. Abu Bakar , “A Framework for 
Cybersecurity Strategy for Developing Countries: Case Study of 
Afghanistan”. Asia-Pacific Journal of Information Technology and 
Multimedia,4(1): 1 – 10. 

[2] Sidra Ijaz, Munam Ali Shah, Abid Khan and Mansoor Ahmed, “Smart 
Cities: A Survey on Security Concerns” International Journal of 
Advanced Computer Science and Applications(IJACSA), 7(2), 2016. 

[3] A. Kargar Raeespour A and AM Patel, “Design and Evaluation of a 
Virtual Private Network Architecture for Collaborating Specialist 
Users”. Asia-Pacific Journal of Information Technology, 5 (1):15 – 30. 

[4] MA Catur Bhakti and A. Abdullah, ”EAP Authentication Mechanism 
for Ad Hoc Wireless LAN”, Journal of Information Technology and 
Multimedia, 5(2008): 13-40. 

[5] V. Rastogi and A. Agrawal, “All your Google and Facebook logins are 
belong to us: A case for single sign-off”. 2015 Eighth International 
Conference on Contemporary Computing (IC3) (2015), Noida, 20th–
22nd August, India. 

[6] L. Richardson and S Ruby, “RESTful web service”. 1st ed. O’Reilly 
Media. 

[7] Mohammed Nasser Al-Mhiqani, Rabiah Ahmad, Warusia Yassin, 
Aslinda Hassan, Zaheera Zainal Abidin, Nabeel Salih Ali and Karrar 
Hameed Abdulkareem, “Cyber-Security Incidents: A Review Cases in 
Cyber-Physical Systems” International Journal of Advanced Computer 
Science and Applications(IJACSA), 9(1), 2018. 

[8] T. Ziebermayr and S. Probst, “Web Service Authorization Framework”. 
Proc. ICWS, 614-621. 

[9] H. Lu , “Keeping Your API Keys in a Safe”. Proc. CLOUD, 962-965. 

[10] J. Franks, P. Hallam-Baker, J. Hostetler,S. Lawrence,P. Leach,A. 
Luotonen  and L. Stewart, “RFC 2617: HTTP Authentication: Basic and 
Digest Access Authentication”. IETF. 
https://tools.ietf.org/html/rfc2617#section-2 

[11] Muhammad Kazim and Shao Ying Zhu, “A survey on top security 
threats in cloud computing” International Journal of Advanced 
Computer Science and Applications(IJACSA), 6(3), 2015. 

[12] M. Conti, N.Dragoni, and V. Lesyk, “A Survey on Man in the Middle 
Attack”. IEEE Communications Surveys and Tutorials, 18(3):2027-
2051. 

[13] AA. Maksutov,IA. Cherepanov and MS. Alekseev, “Detection and 
prevention of DNS spoofing attacks”. 2017 Siberian Symposium on 
Data Science and Engineering (SSDSE). 

[14] T. Ziebermayr and S. Probst, “Web Service Authorization Framework”. 
Proc. ICWS, 614-621. 

[15] E. Khan, M. El-Kharashi, F. Gebali  and M. Abd-El-Barr,”Design space 
exploration of a reconfigurable HMAC-hash unit”. Journal of Research 
and Practice in Information Technology. 40(2):109. 

[16] E. Khan,M.  El-Kharashi,F.  Gebali and M. Abd-El-Barr ,” Design space 
exploration of a reconfigurable HMAC-hash unit”. Journal of Research 
and Practice in Information Technology. 40(2):109. 

[17] NH. Azizul, A. Mohd Zin and E. Sundararajan,”The Design and 
Implementation of Middleware for Application Development within 
Honeybee Computing Environment”. IJASEIT, (6)6:937-943. 

[18] A. Lunkeit and I. Schieferdecker “Model-Based Security Testing - 
Deriving Test Models from Artefacts of Security Engineering”. 2018 
IEEE International Conference on Software Testing, Verification and 
Validation Workshops (ICSTW), 244-251. 


