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Abstract—Dimensionality reduction with two methods, 

namely, Laplacian Eigenmap (LE) and Locality Preserving 

Projections (LPP) is studied for normal and pathological noisy 

and noiseless ECG patterns. Besides, the possibility of using 

compressed sensing (CS) as a method of dimensionality reduction 

is also analyzed. The classification rate for the initial domain as 

well as in manifolds of various dimensions for the three cases are 

presented and compared. 

Keywords—Dimensionality reduction; compressed sensing; 

electrocardiography (ECG) 

I. INTRODUCTION 

In the last years, dimensionality reduction methods have 
been widely investigated. The main idea about these methods 
is to represent high-dimensional raw data on intrinsic lower 
dimensional spaces. The main targets are either to reduce the 
computation costs for the raw data or to represent the data in a 
friendlier manner. 

Wireless biomedical sensors are easy to use for long-term 
monitoring, especially outside the hospital, offering the 
possibility of better results able to substantially improve the 
patient's health and quality of life. Since electrocardiography 
(ECG) signals recorded from the electrical activity of the heart 
over a period of time have been used for diagnosis in many 
diseases, ECG tele-monitoring is accepted as an encouraging 
method in tele-medicine. Considering the importance of ECG 
signal recording, we are confronted with the problem of 
storing, transmitting and processing/classification the signals 
preferably in real time. One of the solutions to all these 
problems is the application of the dimensionality reduction of 
data. 

Several reasons for using dimensionality reduction are [1]: 

 The space required for storing data is reduced as the 
number of dimensions decreases. 

 Reduced dimensions lead to less computing / training 
time. 

 Some algorithms do not work well for large size data. 
Thus, the diminution of these dimensions must be in 
order for the algorithm to be useful. 

 It considers multi-collinearity by removing redundant 
features. 

 In numerous cases, for datasets with high dimensional 
not all measured variables are “important” for 
comprehension the basic phenomena of interest. 

 Helps view data. It is difficult or impossible to view 
data in dimensions larger than 3D, therefore, reducing 
the space dimension to 2D or 3D, permits representing 
the data and thus plot and observe more clearly the 
models that appear and/or even better understand their 
spatial representation. 

In this paper we will use three methods for dimensionality 
reduction of ECG signals, namely, Laplacian Eigenmaps (LE) 
and Locality Preserving Projections (LPP), as well as a third 
method, the compressed acquisition (compressed sensing – 
CS). For testing these methods, we used ECG signal segments 
belonging to 8 distinct classes. 

LPP is a typical graph-based dimensionality reduction 
method, consisting of projective maps based on solving a 
variational problem that optimally conserve the neighborhood 
structure of the data set. When the high dimensional data lies 
on a low dimensional manifold embedded in the ambient 
space, the LPP are obtained by finding the optimal linear 
approximations to the eigen functions of the Laplace Beltrami 
operator on the manifold [2,3]. 

The main advantage of LE is that it reduces dimensionality 
by keeping the local and global structure even when the data is 
on a manifold [4,5]. 

To increase precision in classifications while reducing 
dimensionality all ECG segments have been processed to have 
the R wave centered. In order to conserve classes on the 
manifold, the main idea is to preserve neighbors as unchanged 
as possible. For all cases of dimensionality reduction with the 
three tested algorithms, the qualitative/quantitative evaluation 
is the classification rate. Therefore, classification rate obtained 
with the original ECG patterns with the classification rates 
obtained on new ECG patterns on which dimensionality 
reductions with Laplacian Eigenmaps, Locality Preserving 
Projections and compressed sensed were applied will be 
compared. 
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II. BACKGROUND 

A. Dimensionality Reduction Techniques 

In the linear case the dimensionality problem can be stated 
as follows: Starting from a dataset of n vectors. 

           ,       

find, a projection matrix         which leads to the low 

dimensional dataset  

           ,       

M<N through the linear projection 

      

Depending on the specific target represented, P can be 
learned through various dimension reduction techniques. In our 
case the above approach corresponds to LPP and CS. The LE is 
closely related to the above techniques except for the non-
linear character, both techniques conserving the local manifold 
structure [1]. 

a) Locality Preserving Projection: LPP is a linear 

projective map that arises by solving a variational problem 

which optimally preserves the neighborhood structure of the 

data set. 

The LPP algorithm is proposed for the purpose of deriving 
a linear subspace with manifold data structure. The LPP 
algorithm can be viewed as linear approximate version derived 
by Laplacian Eigenmap algorithm. 

The first step in LLP is the construction of an adjacency 
graph G with n nodes, the number of testing signals, each node 
corresponding to a signal in the dataset; the ith node 
corresponds to the data xi. We put an edge between any xi and 
all points within a K-neighbourhood [2-3]. Based on the 
distance between nodes choose the weights wij with the 
formula. 

       ‖     ‖
 
   

where, σ is a positive constant. The similarity matrix wij of 
the graph G models the local structure of the data manifold in 
the original space. The last step is to solve the generalized 
eigen-decomposition problem: 

XLX
T
a = ΛXDX

T
a, 

Where: 

D = Diagonal matrix 

L = Laplacian matrix 

Λ = a diagonal matrix with eigenvalue in ascending order 

a = the corresponding eigenvector matrix. 

To finish, P matrix is constructed with the first M columns 
in a. Note that the projected data to the subspace from different 
classes can be separated in general with nonlinear decision 
boundary [2-3]. 

b) Laplacian Eigenmap: The first two stages of the LE 

method are the same as those of LLP while the last stage 

consists of computing the eigenvectors and eigenvalues for the 

generalized eigenvector problem [4, 5]: 

Lf = λDf 

where, D = (dij) is an (n×n) diagonal matrix with, 

    ∑    

    

 

L = D−W being the Laplacian matrix that can be thought as 
an operator on functions defined on the vertices of G. 

At finish, we eliminate the eigenvector f0 corresponding to 
the 0 eigenvalue and utilize the next m eigenvectors 
corresponding to the next m eigenvalues in increasing order for 
embedding in an m dimensional Euclidean space: 

xi → (f1(i), . . . , fm(i)) 

where, f0, . . . , fk−1 are the solutions of generalized 
eigenvector problem [1,4,5]. 

B. Compressive Sensing 

CS is a method that can be used to acquire signals with 
smaller number of measurements than the Nyquist rate in order 
to approximate sparse signals. According to CS theory a signal 
x can be characterized using the projections: 

       

where,     , y     is the measurement vector and 
       is the CS measurement or projection matrix whose 

entries are independent identically distributed (i.i.d) samples 
[6,7]. According to CS theory, the signal x can be 
approximately reconstructed from its projection by using an 
appropriate dictionary. However, in our approach we do not 
aim at signal reconstruction but only use the low dimensional 
projection vector y for classifications [6,7]. 

III. EXPERIMENTAL RESULTS 

To order to study the possibilities of dimension reduction 
using LE, LPP and CS method, we have considered 44 ECG 
signals from the MIT-BIH Arrhythmia databank acquired at a 
sampling frequency of 360Hz, with 11 bits / sample [8]. The 
databank also contains annotation files with the index of the R 
wave and the class to which each ECG pattern belongs. 

According to the annotations files, eight major classes have 
been recognized, i.e., seven classes of pathological classes: 
atrial premature beat (A), left bundle branch block beat (L), 
right bundle branch block beat (R), premature ventricular 
contraction (V), fusion of ventricular and normal beat (F), 
paced beat (/), fusion of paced and normal beat (f) and a class 
of normal beats (N). 

We used the same segmentation as in [9] to increase 
classification rate. So, a cardiac pattern begins in the middle of 
the RR interval and ends in the middle of the next RR interval. 
In the cardiac pattern thus obtained the R wave will be placed 
in the middle by resampling the waveforms on both sides of R. 
In this way patterns with the cardiac R wave centered have 
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been obtained. So, all cardiac patterns are of dimension 301, 
with the R wave placed on the 150-th sample. 

We constructed a database, namely a data set with 5608 
patterns, having 701 patterns for each of the above classes. All 
patterns were normalized to unity norms. However, sensitivity 
to normalization was observed only in the case of LPP. 

To classification in the initial 301 dimensional signal space 
we have used the KNN classifier using the Euclidean distance 
and the membership decision was based on the nearest 
neighbor. 

For the original normalized ECG data the classification rate 
for the eight classes analyzed has been found to be 94.92% 
[11]. 

Fig. 1 shows the results for all tested methods for 
dimensionality reduction. It can be seen that for LE and CS the 
classification rate is increasing and once a maximum is 
reached, the classification rate stabilizes around that value. For 
very small values of the space dimension the best results are 
obtained with LE. Thus, for space dimension equal to 2 a 
classification rate of 82.61% is obtained, while for space 
dimension 8 the results are comparable for all three tested 
methods. If we refer to the maximum values achieved in terms 
of classification, then LPP offers the best results, i.e., for space 
dimension equal to 25, a 94.37% classification rate was 
obtained [10]. Several results regarding dimensionality 
reduction for the three tested methods are presented in Table I. 

Since many techniques are noise-sensitive, we tested all 
three algorithms with waveforms with 8% added noise 
normally distributed. 

Fig. 2 shows the classification rate obtained by LPP for 
ECG segments with and without noise. It is found that the 
locality-preserving character of the LPP method makes it 
relatively insensitive to noise because the classification rate 
varies significantly in the presence of 8% noise. 

Fig. 3 shows the classification rate obtained by Laplacian 
Eigenmaps for ECG segments with and without noise. There 
are some small differences, but they are not significant so that 
LE can be considered almost insensitive to the presence of 
noise. 

 

Fig. 1. Classification Rate vs. Space Dimension with LPP, LE and CS 

(Sigma = 5, Neighborhood k = 9) for Noiseless and Normalised ECG Patterns. 

TABLE. I. CLASSIFICATION RATE % VS. SPACE DIMENSION FOR LLP, LE 

AND CS (SIGMA = 5, NEIGHBORHOOD K=9) 

Space dimension LE LPP CS 

2 82,61 48,10 40,64 

3 87,46 72,55 71,47 

4 89,40 79,87 76,79 

5 90,85 84,14 83,06 

6 91,01 86,83 87,99 

7 90,82 88,11 86,72 

8 90,98 90,41 89,29 

9 91,35 90,96 91,07 

10 91,57 91,54 91,65 

12 91,48 92,76 92,12 

14 91,82 93,01 93,20 

16 92,07 93,21 92,32 

18 91,87 93,76 93,81 

20 91,68 93,87 93,54 

22 92,07 94,15 93,73 

24 92,15 94,34 93,90 

26 92,23 94,29 93,78 

28 92,48 94,29 94,09 

30 92,59 94,37 94,23 

32 92,62 94,21 93,70 

34 92,65 94,21 93,92 

36 92,65 94,26 93,76 

38 92,73 94,18 93,92 

40 92,68 94,18 94,20 

42 92,79 94,21 94,01 

44 92,76 94,23 94,03 

46 92,68 94,23 94,39 

48 92,62 94,23 94,37 

50 92,65 94,18 93,90 

75 92,84 93,96 94,64 

100 92,95 93,87 95,00 

125 92,93 93,79 94,42 

150 92,90 93,68 94,62 

175 93,17 93,68 94,92 

200 93,09 93,43 94,62 

 

Fig. 2. Classification Rate % vs. Space Dimension with LPP (Sigma = 5, 

Neighborhood k = 9) Noisy and Noiseless ECG Normalised Patterns. 
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Fig. 3. Classification Rate % vs. Space Dimension with LE (Sigma = 5, 

Neighborhood k = 9) Noisy and Noiseless ECG Normalised Patterns. 

For dimensions less than 10, it has been found that the 
classification rate for CS may differ, depending on the 
projection matrix. For this we tested several projection 
matrices; Table II presents these results and the average 
classification rates. For all three methods, the sensitivity of the 
algorithm to data normalization was analyzed as well. 

Fig. 4 shows the classification rates obtained by 
compressed sensed ECG patterns with and without noise. The 
results are similar, so CS is not noise-sensitive as well. 

Fig. 5 shows ECG patterns transformed into a 3-
dimensional space for LE (87.46% classification rate), LPP 
(72.55% classification rate) and CS techniques (66.5% 
classification rate). 

Fig. 6 shows the classification rate obtained by LPP for 
ECG segments with various levels of noise and without noise 
for non-normalized signals. Interestingly, for dimensions less 
than 40, the classification rates are practically unaffected by 
noise. However, for larger space dimensions, the results are 
worse but are improved by noise. Observe that, if we refer to 
the maximum values achieved in terms of classification, then 
LPP offers the best results for space dimension equal to 27 
with a classification rate of 94%, even higher than that 
obtained for the initial non-normalized ECG signals (space 
dimension equal to 301 and classification rate 92.5%). 

In Table III, several results for the LPP method applied to 
noiseless and noisy ECG waveforms are presented. 

 

Fig. 4. Classification Rate % vs. Space Dimension with CS Noisy and 

Noiseless ECG Normalised Patterns. 

 

 

 

Fig. 5. ECG Patterns Reprezented into a 3-Dimensional Space with LE, LPP 

and CS Techniques. 

 

Fig. 6. Classification Rate % vs. Space Dimension with LPP (Sigma = 5, 

Neighborhood k = 9) for Original and Noisy Non-Normalised ECG Patterns.
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TABLE. II. CLASSIFICATION RATE VS. SPACE DIMENSION FOR COMPRESSED SENSED WITH A FEW PROJECTION MATRICES 

DIM mean CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9 CS 10 

2 39,09 44,64 33,19 36,56 37,50 40,33 40,75 38,47 36,53 42,25 40,69 

3 53,22 53,31 54,94 50,42 54,81 49,72 48,44 61,31 48,03 64,39 46,86 

4 66,03 66,19 63,50 66,81 68,83 62,50 68,83 63,78 74,22 62,06 63,56 

5 73,20 74,53 80,19 74,31 71,97 70,08 69,75 74,56 68,00 72,50 76,11 

7 79,63 83,47 81,17 74,28 78,89 77,94 83,58 80,44 77,92 76,33 82,22 

9 84,54 84,89 84,31 84,17 84,25 85,31 84,92 85,03 84,78 82,42 85,31 

11 85,68 85,56 82,44 85,47 84,94 86,28 87,25 87,42 87,28 85,94 84,19 

13 86,86 85,11 88,39 89,03 85,72 85,44 87,75 85,56 86,97 88,11 86,50 

15 87,98 87,94 87,06 87,56 88,36 88,00 87,31 88,28 87,83 88,94 88,53 

17 88,21 89,50 88,56 89,33 87,78 87,67 87,67 88,22 87,69 88,42 87,22 

20 88,99 89,75 89,00 90,03 88,72 88,75 89,92 88,86 88,14 88,75 87,94 

25 89,12 89,72 87,94 89,00 87,94 89,14 89,94 89,81 90,42 88,72 88,58 

30 89,33 89,69 88,83 89,31 88,92 89,00 88,75 89,86 90,50 89,00 89,42 

35 89,95 90,14 89,86 89,36 89,64 90,56 90,19 90,56 89,81 89,19 90,19 

40 89,76 90,14 89,75 89,44 89,11 90,83 89,25 89,17 90,17 89,78 89,94 

45 89,81 89,83 89,50 89,94 90,17 89,14 90,19 89,97 89,44 89,72 90,17 

50 90,14 90,50 89,31 89,94 90,22 89,86 90,64 89,89 90,25 90,83 90,00 

TABLE. III. CLASSIFICATION RATE VS. SPACE DIMENSION FOR LPP WITH SEVERAL TYPES OF NOISE (FOR NON-NORMALISED SIGNALS) 

Space 
Dim. 

normal distribution 

Mean = 2 

SD = 2 

uniform distribution 
(-5, 5) 

normal distribution 

Mean = 1 

SD = 2 

normal distribution 

Mean = 5 

SD = 2 

normal distribution 

Mean = 1 

SD = 1 

LPP without noise 

 Red     color yellow color black   color green  color blue    color dash-dotted red line 

50 91.35 90.67 91.35 92.03 92.03 92.47 

80 84.38 83.45 84.26 84.88 84.38 80.90 

100 80.40 77.29 80.40 79.78 78.47 67.39 

125 74.30 72.37 74.05 74.61 71.44 50.28 

150 68.89 68.64 70.44 67.64 63.53 40.20 

175 66.09 64.09 65.09 63.04 57.06 32.55 

200 63.41 60.30 59.93 59.05 51.40 27.26 

IV. CONCLUSIONS 

The results presented in this paper concerned LE, LPP and 
CS dimension reduction techniques for ECG signals without 
and with noise. 

Interestingly, for dimensions up to 10, the results obtained 
with LE are best even for very small dimensions like 2D or 3D. 
Even though the classification rates are smaller, it is possible to 
make an intuitive image on data separation. However an 
inconvenience of LE (unlike LPP) is that for each new data the 
computation should be taken from the beginning. 

The results obtained with CS are close to those obtained 
with LE, CS offering the advantage of very low complexity in 
the compression stage. Another major advantage is that if a 
representation in which the signal is sparse is known, then from 
the reduced space it is possible to reconstruct (with some error) 
the initial data. 

An advantage of LPP is that once the projection subspace 
has been found any new data entry will be projected on it with 
no other computation.  However, although LPP has been 
successfully applied in numerous practical problems of pattern 
recognition the method may have some problems since the 
LPP results depend mainly on its underlying neighborhood 
graph whose construction suffers as the graph is constructed 
using the nearest neighbor criterion which tends to work 
weakly for high-dimensional original space and it is generally 
uneasy to assign appropriate values for the neighborhood size 
and heat kernel parameter implicated in the graph building. 

In the case of LPP, we have found that the ECG 
classification results are influenced by the normalization of the 
signals for high space dimension-the influence of 
normalization is insignificant for space dimension less than 27. 
This can be justified by the fact that for the test signals the 
ECG signals are projected onto the new found subspace (the 
projection matrix represented by the corresponding eigenvector 
matrix). 
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Last, but not least, we found that of all three tested 
algorithms, LPP is the most robust to noise but sensitive to data 
normalization, while CS is sensitive to small dimensions of 
space at the projection of the matrix. 

In the future, we will analyze the influence of data 
normalization on classification rates for dimensionality 
reduction methods. 
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