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Abstract—Conditional Preference Networks (CP-nets) are a
compact and natural model to represent conditional qualitative
preferences. In CP-nets, the set of variables is fixed in advance.
That is, the set of alternatives available during the decision
process are always the same no matter how long the process is. In
many configuration and interactive problems, it is expected that
some variables are subject to be included or excluded during the
configuration process due to users showing interest or boredom
on some aspects of the problem. Representing and reasoning with
such changes is important to the success of the application and
therefore, it is important to have a model capable of dynamically
including or excluding variables. In this work, we introduce active
CP-nets (aCP-nets) as an extension of CP-nets where variable
participation is governed by a set of activation requirements.
In particular, we introduce an activation status to the CP-net
variables and analyze two possible semantics of aCP-nets along
with their consistency requirements.
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I. INTRODUCTION

Preferences, as a notion for desires and wishes, plays an
important role in any decision making process [1]. Hence,
representing and reasoning about preferences is an important
task to develop successful applications. Classical decision
theory approaches usually assume the existence of a utility
function which maps an alternative u to a numerical value
µ(u) that represent the desirability of the decision maker in
having u among other alternatives. Another important type
of preference representations is the qualitative models where
preference statements are expressed in a comparative way i.e.,
u is more preferred than u′ where u and u′ are two distinct
alternatives. The latter is known to be less demanding in terms
of the cognitive effort required from the user [2]. One of the
well-studied models for qualitative preferences is the of Condi-
tional Preference Networks (CP-nets) [3]. A CP-net is a fixed
model to represent and reason about qualitative conditional
preferences. In CP-net, the preference of one attribute may
depend on the value of other attributes. Roughly speaking, the
CP-net is a directed graph where vertices represent attributes
and the edges show the preferential dependencies. Given a set
of attributes or variables V , one usually define a CP-net that is
fixed and static through out all the process of decision making.
In other words, the set of solutions available to the decision
maker (DM) are the same through out the process.

Two important questions arise when dealing with CP-nets:
i) What is the best alternative given the current preference
information? and ii) Given two alternatives which one is better

according to the underlying CP-net? The latter is also known as
dominance testing, i.e., deciding which alternative dominates
the other. Clearly, the best alternative is the one that is not
dominated by any other alternative or solution. Solving or
answering dominance questions require searching the space
of solutions. Needless to say, for a fixed structure like CP-
nets, the answer to the above questions is the same through
out the decision process. However, one may expect the answer
to differ from time to time due to some changes happening in
the network.

Also, while having the same answer to both questions
is acceptable on some static domains, it is not the case in
interactive and configuration problems. In the latter, users are
usually interested in different subsets of the variables satisfying
certain requirements and hence, the answers need to take into
account the changes. It is intuitive to assume the user interest
in having one attribute to be part of the solution space is
conditioned upon the existence of other attributes.

Consider, for example, a PC configuration website where
customized PCs can be manufactured per customer’s require-
ments and preferences. Assume the user is interested in the
type of screen only if high performance graphic card was
chosen as part of the customized configuration. In all other
cases, she is not interested in knowing the screen type as all
the market screens are indifferent to her. In this case, it is clear
that there is no need to include the screen type preference for
all configurations. But only to those where high performance
graphic card is included. This is evident in situations where
users build their own products or mass customization products.
The users are interested in having a mechanism to include
or exclude some variables based on some predefined criteria.
This differs from situations where the system (or the user)
has a vague idea on the preferences. The latter has been
tackled by the literature in a probabilistic manner for uncertain
preferences in CP-nets [4].

However, to the best of our knowledge, there exists no
attempt to augment scenarios of the form “If a variable X is
included (resp. excluded) in the network then include (resp.
exclude) variable Y from the search” or “If variable X has
the value x then include (resp. exclude) variable Y ”. This has
the potential to make the preference representation applicable
to wide problems where the set of variables change during
the decision making process. In this work, we propose an
extension to CP-net called active CP-net (aCP-nets) to tackle
variables’ inclusion and exclusion in the problem. The main
idea is to associate every variable with a status (active or
inactive) where the status change is governed by a set of
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inclusion and exclusion constraints. And, at any given time
of the decision making process, only those active variables are
included in the search.

This paper is organized as follows: Background informa-
tion is provided in the next section. Section 3 presents related
attempts in the literature. In Section 4, we introduce aCP-
nets and the participation constraints. Section 5 discusses two
different possible semantics of aCP-nets and show how to solve
dominance testing in each semantic. Lastly, conclusion and
foreseeable work is discussed in Section 6.

II. CONDITIONAL PREFERENCE NETWORKS (CP-NETS)

A CP-net [3] is a graphical model to represent qualitative
preference statements including conditional preferences of the
form “I prefer x to x′ ” or “I prefer x to x′ when y
holds”. A CP-net works by exploiting the notion of preferential
dependency based on the ceteris paribus (with all other things
being without change) assumption. The CP-net is a set of
ceteris paribus preference statements which assumed to be
valid only when two alternatives differ in exactly one variable
value. Graphically, a CP-net can be represented by a directed
graph where vertices represent features (or variables) V =
{V1, V2, . . . , Vn} and arcs represent preference dependencies
among features. Every variable X ∈ V is associated with a
set of possible values (its domain) DX . An edge from X to
Y means the preference of Y depends on the values of X . In
such case we say X is a parent of Y and use Pa(Y ) to denote
the set of parents for Y . Every variable X is associated with
a ceteris paribus table (denoted as CPT (X)) expressing the
order ranking of different values of X given the values of the
parents Pa(X). An outcome for a CP-net is an assignment
for each variable from its domain. A variable X is an ancestor
of another variable Y if X resides in a path from any root
node of the graph to Y and X is descendant of Y if Y is an
ancestor of X .

Given a CP-net, the users usually have some queries about
the preference statements in the network. One of the main
queries is to find the best outcome given the set of preferences.
We say an outcome o is better than another outcome o′ if
there exists a sequence of worsening flips going from o to
o′ [3]. A worsening flip is a change in the variable value
to a less preferred value according to the variable’s CPT.
The relation between different outcomes for a CP-net can be
captured through an induced graph. The graph is constructed as
follows: Each node in the induced graph represents an outcome
of the network. An edge going from o′ to o exists if there is
an improving flip according to the CPT of one of the variables
in o′ all else being equal.

Consider the simple CP-net and its induced graph shown in
Fig. 1. The CP-net has three variables A,B and C where A and
B are unconditionally prefer a and b to ā and b̄ respectively.
However, the preference function for C depends on different
values of A and B. For instance when A = a and B = b̄, the
decision maker prefers c̄ to c as value of the variable C. The
induced graph represents all the information we need to answer
different dominance relations between outcomes. An outcome
o dominates another outcome o′ if there is a path from o′ to o
in the induced graph otherwise they are incomparable (denoted
as o ./ o′). An outcome is said to be optimal if there exists no

other outcome that dominates it. It is known that for acyclic
CP-nets there exists a single optimal outcome that dominates
all other solution [3]. For example, the optimal outcome for
CP-net in Fig. 1 is abc. Apparently, the size of the induced
graph is exponential in the number of attributes. Due to the
dependency nature of CP-nets, one needs to consult all the
values of Pa(X) before deciding which value is preferred for
X . This is mainly because missing a value of any Y ∈ Pa(X)
may lead to inconsistent conclusions, i.e., x being preferred to
x′ and vice versa at the same time. This turns to be the main
property we need to guarantee when including or excluding
variables and dependencies.

III. RELATED WORK

Since its inception by Boutilier et al. [3], CP-nets have
received a considerable attention from the artificial intelligence
(AI) community. Many attempts have been proposed tackling
different aspects of CP-nets including their semantics [5]–[8],
learning [9], [10], and representation [11], [12]. In particular,
several works have been made toward extending the semantics
and the expressive power of the CP-nets. For instance, the work
in [7] extended the CP-net to include preference languages
beyond ceteris paribus and thus allow statements to differ in
more than more attribute. Another extension of CP-net is the
weighted CP-net [8] where the user is able to associate weights
to variables. The work in [12] has introduced (conditional)
importance over variables. Also, [13] extended the model to
augment the notion of comfort when choosing one alternative
over another. In [14], [15], the preference-based optimization
problem was investigated where hard constraints are assumed
to co-exist with a CP-net and the goal is to find a most
preferred and feasible solution.

As for extending the semantics of CP-nets to dynamic
situations, Bigot et al. [4], [9] studied the case where prefer-
ences are uncertain and a probability distribution is associated
with a statement. The same problem has been also tackled
by [16] where dependencies are associated with probability of
existence and every variable X is associated with a distribution
over the set of total orders for X ′s values. The work in [11]
considered situations where a webpage content is governed by
a CP-net in an adaptive way. Based on the user clicks, the
most preferred content is rendered on the page.

However, none of previous attempts has discussed the
dynamic aspect of the CP-nets in handling changes that is
deterministic and of incremental nature. In particular, the vari-
ables’ inclusion and exclusion during the search. To this end,
there are dynamic models to represent configuration problems
similar to the problems tackled in this work. However, they
target different knowledge information. One notable represen-
tation in this class is the conditional constraint satisfaction
problem [17] where constraints and variables are included or
excluded during the search. The conditional CSP formalism is
limited to constraints and cannot directly applied to qualitative
preferences as it is the case in this work.

A closely related area is the preference-based product con-
figuration systems [18]–[22] where a configurator is responsi-
ble for customizing the product based on the user preferences.
Such configurators allow for a greater flexibility in meeting
the users needs and desires. However, we are not aware of
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āb̄ : c � c̄

(a) The CP-net

ab̄c̄ ābc̄ āb̄c
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(b) The induced preference
graph

Fig. 1: An acyclic CP-net and its induced preference
graph.

all other solution. For example, the optimal outcome
for CP-net in Figure 1 is abc.

3 Related Work

Since its inception by Boutilier et al. [6], CP-nets have

received a great attention from the artificial intelligence
community. Many approaches have been proposed tack-
ling di↵erent aspects of CP-nets including semantics [8,

5,16], learning [1,4,2], and representation [7]. Many at-
tempts have been made toward extending the semantics
and the expressive power of the CP-nets. In particu-
lar, the probabilistic CP-net extension [3,9] is aimed

to capture cases where preferences are issued with un-
certainty in a probabilistic manner. However, none of
previous work has discussed the dynamic aspect of the

CP-nets in handling changes that is deterministic and
of incremental nature. In particular, the variables’ in-
clusion and exclusion during the search. To this end,
there are dynamic representations to represent configu-

ration problems similar to the problems tackled in this
work. However, they aim to define di↵erent informa-
tion rather than preferences. One notable representa-

tion is the conditional constraint satisfaction problem
[12] where constraints and variables are included or ex-
cluded during the search. The conditional CSP formal-

ism is limited to constraints and cannot directly applied
to qualitative preferences as it is the case in this paper.

4 Active CP-nets (aCP-nets)

In this section we introduce aCP-net extension of CP-
nets in the spirit of Conditional CSPs framework [12,

14]. In particular, we add participation conditions upon
the CP-net variables that allow variables to be included

or excluded during the search. However, unlike condi-

tional CSPs, CP-nets have rich semantics that we need
to take into account when reasoning about variables’
participation. Specifically, the set of participant vari-

ables must be consistent with the preferential depen-
dencies shown in the CP-net structure. Typical CP-net
can be viewed as a pair hV,�i where V is the set of
all possible variables in the domain and � is the set of

CPTs. Now we define our aCP-net framework.

Definition 1 (aCP-net) aCP-net is a tuple hV, VI , Ĉ,�i
where V is the set of all variables s.t. each variable is

associated with an activation status. VI is the set of
initial variables VI ✓ V and Ĉ is the set of activity
constraints and � is the set of CPTs.

Given a variable X 2 V , we denote the status of X

as STATUS(X) . Each variable can be in exactly one
state either ACTIVE or INACTIVE at any given time.
The set of participation requirements Ĉ describes dif-

ferent possible changes over the structure while VI is
the set of always active variables that cannot be re-
moved from the domain. VI can be viewed as the core
variables that minimally describe any configuration and

thus it is the default preference network for the system.
When reasoning about aCP-net, only active variables
are taken into account. Given aCP-net instance ↵, the

two main operations over ↵ are including and exclud-
ing variables. We describe variables inclusion in terms
of Require Variable (RV) and Always Required Variable
(ARV) conditions. Similarly, excluding variables from ↵

is done through the conditions of Require Not (RN) and
Always Require Not (ARN).

A B

C D

E F

a�ā b�b̄

ab:c�c̄

ab̄:c̄�c

āb:c�c̄

āb̄:c̄�c

b:d�d̄

b̄:d̄�d

c:e�ē

c̄:ē�e c:f�f̄

c̄:f̄�f

Fig. 2: Simple CP-net Structure

4.1 Participation Requirements

In this section we discuss di↵erent possible participa-
tion conditions over the aCP-net structure. These con-

ditions are Required Variable (RV) and Always Re-
quired Variable (ARV) to include variables and Require

Fig. 1: An acyclic CP-net (left) and its induced preference graph (right).

any previous work targeting conditional qualitative preferences
where attributes are included or excluded during the process
of configuration.

IV. ACTIVE CP-NETS (ACP-NETS)

In this section we introduce aCP-net extension of CP-
nets in the spirit of Conditional CSPs framework [17], [23].
In particular, we add participation conditions upon the CP-
net variables that allow variables to be included or excluded
during the search. However, unlike conditional CSPs, CP-nets
have rich semantics that we need to take into account when
reasoning about variables’ participation. Specifically, the set of
participant variables must be consistent with the preferential
dependecies shown in the CP-net structure. Typical CP-net can
be viewed as a pair 〈V, φ〉 where V is the set of all possible
variables in the domain and φ is the set of CPTs. Now we
define our aCP-net framework.

Definition 1 (aCP-net). aCP-net is a tuple 〈V, VI , Ĉ, φ〉 where
V is the set of all variables s.t. each variable is associated with
an activation status. VI is the set of initial variables VI ⊆ V
and Ĉ is the set of activity constraints and φ is the set of
CPTs.

Given a variable X ∈ V , we denote the status of X as
STATUS(X) . Each variable can be in exactly one state either
ACTIVE or INACTIVE at any given time. The set of participa-
tion requirements Ĉ describes different possible changes over
the structure while VI is the set of always active variables that
cannot be removed from the domain. VI can be viewed as
the core variables that minimally describe any configuration
and thus it is the default preference network for the system.
When reasoning about aCP-net, only active variables are
taken into account. Given aCP-net instance α, the two main
operations over α are including and excluding variables. We
describe variables inclusion in terms of Require Variable (RV)
and Always Required Variable (ARV) conditions. Similarly,
excluding variables from α is done through the conditions of
Require Not (RN) and Always Require Not (ARN).

A. Participation Requirements

In this section, we discuss different possible participation
conditions over the aCP-net structure. These conditions are
Required Variable (RV) and Always Required Variable (ARV)

to include variables and Require Not (RN) and Always Require
Not (ARN) to exclude variables. Such participation require-
ments have been proven to be useful in many configuration
problems and in particular in the framework of conditional
CSP [17]. Generally speaking, all conditions have the follow-
ing form:

condition::result

where condition⊂ V represents the condition variables and
result∈ V − VI represents a variable and ::∈ { incl−−→, excl−−→
} represents the type of condition (exclusion or inclusion).
Whenever condition becomes true, result is executed
and a variable is either included or excluded from the problem
domain.

Note that aCP-nets is a generalisation of CP-nets in the
sense that the set of conditional dependencies can be preserved
along with CPTs in aCP-nets under the special case where
VI = V . In such case, the aCP-net will have only one possible
instance.

Example 1. Consider CP-net in Fig. 2. It is easy to see that we
can represent the original CP-net as aCP-net instance where
V = {A,B,C,D,E, F}, VI = V and Ĉ = ∅.

1) Including Variables: One of the simplest yet effective
participation requirements to include variables is the required
variable (RV) condition. RV has the form A1 = a1 ∧ A2 =

a2∧ ....∧An = an
incl−−→ X where Ai ∈ V and X ∈ (V −VI).

This simply says X will be activated (i.e., included) into the
problem if every Ai = ai becomes true.

A B

C D

E F

a�ā b�b̄

ab:c�c̄
ab̄:c̄�c
āb:c�c̄
āb̄:c̄�c

b:d�d̄
b̄:d̄�d

c:e�ē
c̄:ē�e c:f�f̄

c̄:f̄�f

Fig. 2: Simple CP-net Structure
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Similarly, Always Required Variable (ARV) is used to
include a variable X when subset of variables A1, ..., An ∈ V
are active regardless of their values and has the form of
A1 ∧ ... ∧An incl−−→ X .

2) Excluding Variables: Intuitively, Required Not (RN)
requirement asserts the exclusion of variable based on other
variables values. RN has the form A1 = a1 ∧A2 = a2 ∧ ... ∧
An = an

excl−−→ X where Ai ∈ V and X ∈ (V − VI). Similar
to RN, ARN has the form of A1 ∧ ... ∧An excl−−→ X .

V. SEMANTICS OF ACP-NETS

So far we have described the conditions under which vari-
ables may be included or excluded from the network domain
without relating them to the underlying aCP-net structure
and semantics. Arbitrary changes might lead to violating the
semantics of CP-nets. For instance, assume removing one of
the parents of a variable X . How CPT(X) should be updated
for such changes? or consider including a variable X where
one of its parents is not active, how the aCP-net should behave
in such circumstances? Therefore, in this work, we study
different possible changes and define conservative and open
rules for applying different changes into the aCP-net structure.
The goal of conservative rules is to represent a valid CP-net
(defined below) at anytime of the aCP-net process. On the
other hand, the open semantics aim to represent most general
case where the resulted instance of aCP-net are not necessarily
a semantically correct CP-net.

A. Conservative Semantics

The core concept here is that the changes must result in a
valid CP-net at any given time of the solution process.

Definition 2 (Valid CP-net). Given a set of variables R and
their corresponding CPTs ψ, 〈R,ψ〉 represents a valid CP-net
iff for any variable X ∈ R, Pa(X) also exists in R.

Example 2. Consider R = {A,C,E, F} and ψ is their CPTs
for the CP-net in Fig. 2, here R does not represents valid
CP-net since the variable B ∈ Pa(C) is not in R.

In the conservative semantics of aCP-nets the changes will
always result in a valid CP-net. To reflect the conditional de-
pendencies in the structure of CP-net, we assert the activation
of a variable based on its parents activation. That is for any
variable X with set of parents Pa(X) ⊂ V , for any parent
variable I ∈ Pa(X), either STATUS(I)==ACTIVE or there
exists c ∈ Ĉ where I will be activated.

Definition 3 (Consistent Inclusion). An aCP-net has the
consistent inclusion property if for any c ∈ Ĉ whenever a
variable X ∈ V to be included, Pa(X) is also included in
the domain.

In the context of aCP-net, we need to be careful in
excluding variables. The excluded variable X may be either
a leaf node (thus there are no other variables depend on it)
or not a leaf node in the aCP-net structure. In the first case,
we can safely remove X since we are guaranteed that there
will be no other variable S where X ∈ Pa(S) that might be
activated later. In the second case, we can use a procedure to

look for whether any of X’s descendants will be activated in
Ĉ.

Definition 4 (Consistent Exclusion). An aCP-net has the
consistent exclusion property if for any c ∈ Ĉ whenever a
variable X ∈ V to be excluded, X has no descendants or for
any variable Y ∈ V of X’s descendants, there is no c ∈ Ĉsuch
that Y will be activated.

Definition 5 (Consistent aCP-net). aCP-net is consistent if it
satisfies the consistent inclusion and exclusion properties.

The goal of conservative rules is to reflect precisely dif-
ferent valid CP-nets from the original CP-net 〈V, φ〉 without
violating its semantics and dependencies. This is formally
proved by the following lemma:

Lemma 1. If A is a consistent aCP-net then the set of
variables available at any given time of the search represents
a valid CP-net.

Proof: The proof is by contradiction. Assume A to be a
consistent aCP-net but the set of variables available at time t
form a CP-net that is not valid. By definition, this means there
exists at least one variable X where Y ∈ Pa(X) was not
included at time t but X was included. First assume X ∈ VI ,
this is impossible as VI is available at any given time, and for
any X , the set of parents must be part of the initial variables
as well. Second, assume X 6∈ VI , then there must exist at least
one participation constraint c ∈ Ĉ that result in including X .
Given that Y ∈ Pa(X) was not included at time t, then the
inclusion was not consistent and thus the aCP-net does not
have the consistent inclusion property which contradicts with
our assumption of A being a consistent aCP-net.

Algorithm 1: Consistency Test for aCP-nets

input : 〈V, VI , Ĉ, φ〉: aCP-net Structure
output: True or False

1 foreach c ∈ Ĉ do
2 Let X = result in c
3 if c is inclusion condition then
4 foreach Y ∈ Pa(X) do
5 if STATUS(Y )==INACTIVE then
6 Return False
7 end
8 end
9 end

10 else
11 foreach P ∈ Descendants(X) do
12 if STATUS(P )==ACTIVE then
13 Return False
14 end
15 end
16 end
17 end
18 Return True

Although this might seem too restrictive conditions, it
may apply in different domains where the changes are known
a priori and the dependencies between variables cannot be
changed. We describe a procedure in Algorithm 1 to check
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whether a given aCP-net is consistent or not. The complexity
of the algorithm is O(n|Ĉ|) where n = |V | is the number of
variables and |Ĉ| is the number of participation requirements
assuming the parent size for any variable X is bounded by a
constant.

1) Reasoning with aCP-net in Conservative Semantics:
In the previous section, we have listed some conservative
rules for aCP-nets to follow in order to be consistent with
the information provided in V and φ. These consistency
conditions are based on the valid CP-net definition and the
set of activation requirements Ĉ. It is clear that the order of
conditions listed in Ĉ plays an important rule in verifying the
consistency of a given aCP-net structure. Thus, we order Ĉ
in the following way. First all inclusion conditions are sorted
before exclusion ones. For the set of inclusion conditions, we
order them from top to bottom according to V . For example
for two conditions c1, c2 ∈ C where c1 and c2 assert including
A and B respectively such that B ∈ Pa(A) then c2 is ordered
before c1. The exclusion conditions are ordered in the opposite
way from bottom to top.

Example 3. Consider aCP-net structure θ= 〈V, VI , Ĉ, φ〉
where V and φ represent the set of variables and their CPTs
in Fig. 2, respectively. Let VI = {A,B,D} and Ĉ contains
the following set of activity conditions: a1 : A = a

incl−−→ C,
a2 : B = b̄

incl−−→ E, a3 : C
incl−−→ F . Fig. 3 shows the

CP-net instances resulted from θ when executing a1, a2 and
a3 respectively. Observe that θ is a consistent aCP-net. Now,
assume we add the activity constraint a4 : A = ā

excl−−→ C,
θ will not be consistent anymore as E is already activated.
This will not be the case if for example there was an exclusion
constraint for E.

a) Answering aCP-net Queries:: Given the activation
requirements, we are interested in answering different queries
related to the underlying aCP-net structure. The key obser-
vation here is that any instance of aCP-net is a valid CP-
net representation. In other words, it is a sub-network of the
original CP-net. Therefore, for any aCP-net, the semantics
of CP-net are directly inherited and utilized. For instance,
finding the best outcome for a particular aCP-net instance is
done through the sweep-forwarding procedure presented in [3].
Given two outcomes α and β, deciding which one is better can
be classified into two cases: (i) α and β are derived from the
same network. (ii) They are derived from different networks. In
the former, it is clear that we can adopt the CP-net semantics to
answer such query. In particular, assume α and β are derived
from the network π , we can answer the dominance task by
finding a sequence of flips from one outcome to another in π.

However, aCP-net structures usually contain outcomes with
different domain spaces. Here, we need to have a mechanism
under which we can conclude whether a given outcome is
better than another. In other words, we need to find out a new
dominance relation over aCP-net structure in case outcomes α
and β were derived from different networks.

Example 4. Consider the aCP-net structure θ= 〈V, VI , Ĉ, φ〉
where V and φ represent the set of variables and their CPTs
in Fig. 2, respectively. Let VI = {A,B,D} and Ĉ contains
the following set of activity conditions:

a1 : A = a
incl−−→ C, a2 : B = b̄

incl−−→ E, a3 : C
incl−−→ F

and a4 : D = d̄
excl−−→ C. Fig. 4 shows the complete

search space for this example with classic baktracking search
algorithm. Here, θ has different solutions with different domain
spaces. For instance, solutions abd̄ and abdcf are derived from
different networks. The crossed out paths represent inconsistent
aCP-net instances. For example, assignment ab̄d̄ is inconsistent
since executing a4 will lead to removing the variable C while
E is included.

2) Dominance Testing: In this section we provide a method
to answer dominance queries when outcomes have different
domain spaces. We do so by utilizing the original network
structure Ω where Ω = 〈V, φ〉 for a given aCP-net structure
θ=〈V, VI , Ĉ, φ〉. Let α be any outcome in θ. We know that α
might be delivered from any valid CP-net π contained in Ω.
This is due to the fact that consistent aCP-net always result in
valid CP-nets. Thus, we have π ⊆ Ω for any outcome defined
over network π in θ. Our method works as follow. Given two
outcomes α and β over θ, if Dα 6= Dβ , we extent them to
outcomes ᾱ and β̄ over Ω and then do dominance test over the
new extended outcomes. Assume ϕ = VΩ−Vα to be the set of
variables not listed in α. We go top to bottom assigning each
variable X ∈ ϕ to X = xi such that xi is the least preferred
value given Pa(X).

Example 5. Consider the aCP-net structure in Example 4 with
the following two solutions α = abd̄ and β = abdcf , it is
clear that both Ωα and Ωβ are subset of the original network
Ω, thus we extend α and β to solutions over Ω and then do
the dominance testing task. In particular, we have ᾱ = abd̄c̄fe
and β̄ = abdcf ē and β̄ �Ω ᾱ.

B. Open Semantics

So far we have discussed a restrictive but useful semantics
for changes over CP-net. The result of the conservative seman-
tics is the guarantee of valid CP-nets during the decision pro-
cess. This means that whenever we include a variable X , the
set of parents are already included (i.e. active). Analogy, when
removing a variable Y , we assert that Y has no other variables
depend on it in the given aCP-net structure or its participation
constraints. Particularly, we assumed a large and original CP-
net exist in advance. From the imposed consistency conditions,
we implicitly handled the inclusion and exclusion of variables.

However, it could be the case where the user is interested
in changing the structure and semantics of the original net-
work. In such cases, we need to distinguish between includ-
ing/excluding variables through the participation requirements
and adding/removing variables and dependencies to the do-
main. The latter will result in changing original network 〈V, φ〉
of the aCP-net structure. In such cases we can relax the consis-
tency conditions posed by the conservative semantics to a more
flexible ones. In particular, we consider changes correspond to
adding and removing variables and dependencies.

1) Adding Variables or Dependencies: Adding a variable
X to the aCP-net structure can be done through two steps.
First, we add X to V . Second, we pose an ARV condition
in the form ∅ incl−−→ X . This will result in X included in the
problem. This way, it is possible to add a completely new
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Fig. 3: Different CP-net instances resulted from the aCP-net in Example 3.

variable to the domain and then reason about its most preferred
value.

To add dependency between X and Y where X,Y ∈ V .
The only condition here is that the new dependency will not
lead to cycles in the aCP-net structure. We refer to I(X,Y ) as
a dependency of Y on the values of X (i.e., for different x ∈ X
we have an order over DY ). Adding dependency I(X,Y ) will
result in updating the CPT(Y )∈ φ in a way that Pa(Y ) =
Pa(Y ) ∪ X and for each unique assignments of the parents,
we have an order over DY .

2) Removing Dependencies and Variables: Before remov-
ing a dependency or variable, we first introduce the process of
marginalization of a variable X ∈ Pa(Y ) in CPT(Y ).

Definition 6 (Marginalization). Given a CPT ` for a variable
Y , marginalising X ∈ Pa(Y ) over ` (denoted as `↓X ) is a
new CPT λ where Dλ=D`−X and for any value x ∈ DX , x
has been removed from λ.

After marginalising X over CPT(Y ) (CPT (Y )↓X ) it might
be the case where we have the same assignment of the parents
with different orders over DY . Thus, we next provide a
definition for valid CPTs in the aCP-net structure.

Definition 7 (Valid CPT). CPT(X) is a valid CPT iff for each
assignment γ of the parents, we have the same ordering over
DX .

For instance, consider the CP-net in Fig. 1, assume we
are interested in removing the dependency between B and C
(I(B,C)). First we marginalise B over CPT (C). The resulted
CPT is not valid since for A = a we have two different orders.

Lastly, in order to remove a variable X from the domain,
we first need to remove the set of dependencies hold between
X and its immediate descendants (i.e., children) and then we
can safely remove X .

3) Posing Queries: Consider removing I(B,C) from the
CP-net structure in Fig. 1, CPT(C) will have the following
statements: a : c � c̄, a : c̄ � c, ā : c � c̄ and ā : c̄ � c.
Obviously, these statements contradict with each other and
breaks the intuitive meaning of CP-net of having exactly one
order for the same assignment of the parents. How the CPT(C)
should be updated in such cases? We can overcome such
contradictions by revising the order of the variable. One way to
do so is to engage the user by asking different questions. In this
particular example, we can ask the user whether she prefers abc

to abc̄ in order to know the order when A = a. In particular, if
abc � abc̄ then the CPT(C) is updated to c � c̄ for A = a. The
same goes for A = ā with the query whether ābc is preferred
to ābc̄. Such queries hold the promise of revising invalid CPTs
and make them valid during the process of decision making.

VI. CONCLUSION AND FUTURE WORK

This paper presented aCP-net, an extension for CP-nets
to include and exclude variables during the search. We listed
some consistency conditions under which the resulted changes
always form valid CP-nets and, thus will preserve the seman-
tics of CP-nets. We have also analyzed the situation of changes
leading to inconsistencies in the preference information and
suggested possible techniques to overcome the inconsistency
and answer the dominance testing.

Foreseeable work include defining relaxed conditions to
allow arbitrary changes over variables and dependencies.
Another important future work is to learn the participation
requirements from historical interactions with the system.
This holds the promise of lowering the burden of specifying
participating requirements by the end users.
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ē

f̄ f

e

f̄ f

c

e

f f̄

ē
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