
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

Mobile Agent Platform based Wallet for Preventing
Double Spending in Offline e-Cash

Irwan∗1, Armein Z. R. Langi2, Emir Husni3
School of Electrical Engineering and Informatics

Institut Teknologi Bandung,
Bandung, Indonesia

Abstract—Electronic cash (or e-cash) research has been going
on for more than three decades since it was first proposed. Various
schemes and methods are proposed to improve privacy and secu-
rity in e-cash, but there is one security issue that less discussed
mainly in offline e-cash, namely, double-spending. Generally, the
mechanism to deal with double-spending in offline e-cash is
performing double-spending identification when depositing the
coin. Even though the mechanism is successful in identifying
double-spender, but it cannot prevent double-spending. This
paper proposes the Mobile Agent Platform based Wallet (MAPW)
to overcome the double-spending issue in offline e-cash. MAPW
uses the autonomy and cooperation of agents to give protection
against malicious agent, counterfeit coin and duplicate coin. This
model has been verified using Colored Petri Nets (CPN) and
has proven to be successful in preventing double-spending, and
overcoming malicious agent, and counterfeit coins.

Keywords—e-Cash; double-spending; MAPW; CPN

I. INTRODUCTION

Nowadays, electronic payment has proliferated along with
the use of the Internet. The electronic payments can be classi-
fied into four categories: online credit card, electronic check,
smart cards based electronic payment, and e-cash [1]. E-cash
is the only electronic payment that provides not only security
but also the privacy of its users. E-cash generally consists of
three types of entities: bank, user, and merchant. The user
withdraws coins from the bank and spends it on the merchant
who then deposits the coins to the bank. The security aspect of
e-cash should cover some main properties (1) unforgeability:
no user can create coin other than the authorized party; (2) no
framing: no one except the owner of a coin can spend it; and
(3) double-spending prevention: coin can only be spent once.
The privacy aspect covers the anonymity of users, which mean
no one can discover the true identity of a user correlated with
withdrawal or spending transaction.

Following the first e-cash scheme introduced by Chaum
[2], [3], many e-cash schemes [4], [5], [6], [7] have been
proposed, and most of them focus on improving privacy and se-
curity (unforgeability and no framing). These proposed e-cash
schemes only provide double-spending identification to over-
come double-spending. Double-spending is a security issue in
which the same coin can be spent more than once since an e-
cash’s coin is a set of digital data that can be duplicated easily.
Double-spending identification is a mechanism to identify
whether a coin is a duplicated or not. If the coin is identified as
duplicated coin, e-cash system revoke anonymity and discover
the identity of the duplicated coin owner. The double-spending

identification successfully discovers the identity of double-
spender, but it cannot prevent double-spending in advance,
especially for offline e-cash scheme.

Several existing proposed methods to fulfill the property of
double-spending prevention such as blockchain [8], smartcard
[9], and mobile agent [10]. Nakamoto proposed the use of
blockchain in a peer-to-peer e-cash system to prevent double-
spending [8]. Blockchain is a global ledger where all trans-
action recorded. Every transaction must be broadcasted to
all nodes and added to the ledger. Because all nodes keep
this ledger, it is impossible to perform double-spending. The
blockchain-based method is comparatively slow in transaction
speed and confirmation. As reported by Statista, average con-
firmation time of bitcoin, which is one of e-cash scheme that
implements the blockchain method, is 9.47 minutes1.

In order to manage the double-spending problem in offline
e-cash scheme, Liu proposed a method that uses a smartcard
that records a pair of all withdrawn coins [9]. When a customer
spends a coin, a merchant requests the pair of the spent coin
to the smartcard. Smartcard searches the pair to prove that the
coin has not been spent yet. If the pair exists in the smartcard,
merchant accepts the coin while smartcard deletes the pair of
the coin. The customer cannot spend the same coin because
a pair of the coin no longer exist in the smartcard. However,
this method does not provide any mechanism to prevent a pair
of the spent coin rewritten in the smartcard.

Furthermore, Salama proposed a more advanced method in
against the double-spending problem by using Optical Memory
Card (OMC) and mobile agent [10]. OMC is a write-only card
that used for recording the serial number of the spent coin. The
mobile agent is used as a coin that can identify the spent coin
which its serial number has been recorded in OMC. Hence,
customer cannot spend the same coin if the serial number of
the coin recorded in OMC. This method can prevent double-
spending in advance but has limitation in OMC memory. When
OMC has no memory space, the double-spending prevention
capability cannot be performed.

From the above analysis, the existing methods have not
been able to prevent double-spending optimally. These meth-
ods still have open issues in the slow confirmation time, the
inability to counter data of spent coin to be copied on the
smartcard and limited data storage space on OMC. Double-
spending causes financial losses, so this issue is paramount to

1Average confirmation time of Bitcoin transactions from June 2017 to
June 2018 according to https://www.statista.com/statistics/793539/bitcoin-
transaction-confirmation-time / accessed 31 July 2019

www.ijacsa.thesai.org 584 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

resolve. Thus, we need to construct a method that meets the
double-spending prevention property and prove the security of
the method. This paper proposes the Mobile Agent Platform
based Wallet (MAPW) model that is not only able to deter
counterfeit coin and prevent double-spending but also protect
the mobile agent platform from malicious agents.

This paper is organized as follows. In Section 2, we
describe the preliminaries on offline e-cash and agent’s tech-
nology in e-cash. Overview of the proposed MAPW model
is presented in Section 3. In Section 4, the Colored Petri
Nets (CPN) model of MAPW is described, and the analysis of
security is presented in Section 5. Finally, Section 6 concludes
the proposed model and Section 7 gives pointers to future
work.

II. PRELIMINARIES

This section introduces some concepts related to offline
e-cash system and the use of agent’s technology in the e-cash.

A. Overview of Offline e-Cash

The prevalent model of the e-cash schemes involved three
different parties, namely a bank, customers, and merchants.
The life cycle of e-cash coin involves these three parties
as given in Fig. 1. This life cycle begins when a customer
withdraws the coin from the bank (withdrawal protocol). Then,
the customer spends the coin by sending it to a merchant
in trading for some goods or services (payment protocol).
Finally, the merchant ends the cycle by depositing coin (deposit
protocol). There are two types of e-cash schemes, namely,
online and offline.

Bank

Customer Merchant

coin
withdrawal

coin
payment

coin
deposit

Fig. 1. The circulation of e-cash coin.

Both online and offline e-cash schemes perform two major
verifications, namely coin’s validity verification and identi-
fication of the coin’s double-spending. In an online e-cash
scheme [11], as illustrated in Fig. 2a, the merchant has to be
online with the bank when performing both verifications on the
payment protocol. The coin from the payment is accepted if
the coin is valid and never used before. While in offline e-cash
scheme [12], [13], [14], as illustrated in Fig. 2b, the merchant
accepts a coin on payment protocol and subsequently verifies
the validity of the coin without involving the bank. The bank
identifies double-spending of a coin on deposit protocol.

The potential for dishonest customers to double-spend
coins is higher in offline e-cash since the coins are not verified
at the coin payment protocol. Therefore, an offline e-cash
scheme must have a mechanism to prevent double-spending.

Besides, e-cash also must be resistant to counterfeit coin and
adversary users.

• coin verification
• double-spending checking

Bank

Customer Merchant

coin
withdrawal

coin
payment

coin
deposit

(a) Online e-cash

Bank

Customer Merchant

coin
withdrawal

coin
deposit

coin verification

double-spending
checking

coin
payment

(b) Offline e-cash

Fig. 2. Coin verification in traditional e-cash

B. Agent’s Technology in e-Cash

An agent is a computer program that is able to take
independent action on behalf of its user or owner. Generally,
the agent is categorised into two types: static and mobile agent.
The static agent always stays in one place and performs the
operations according to its intended purposes. The mobile
agent is the one with mobility capability that allows it to
migrate from one host to another to perform the operations
for its owner.

Within the last decade, the paradigm of the agent system
was discussed broadly. Many suggestions for future fields
of application of the agent system have been made in a
distributed system such as distributed database [15] and digital
library [16]. In the e-cash system, the paradigm of the agent
system address the challenges of communication bottleneck
and resource ability of a user. There are two main research
fields about e-cash and agent. The first field concern of agent
is an e-commerce framework, including the notion of payment
[17]. Furthermore, the possibility of an agent to carry and
spend e-cash is the second field [10], [18].

The agent technology adoption in many fields led to sophis-
ticated design and security threats. Since mobile agent migrates
from one host to another, mobile agent more vulnerable than
the static agent. Thus, the mobile agent platform protection
is vital because it is an environment where a mobile agent
gets executed. Mobile agent platform suffers security threats
from a foreign agent that performs denial of service attack

www.ijacsa.thesai.org 585 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

and unauthorized access. Protection of mobile agent platform
from a malicious agent can adopt various techniques. The
first is sandbox technique which isolates untrusted agent so
cannot alter the platform or agent in it [19]. Simple Malicious
Identification Police (MIP) model [20] is the second technique
that can be adopted to protect the mobile agent platform. The
concept of this technique is identifying malicious agent by
scanning the byte code of the agent.

III. PROPOSED MODEL

The proposed model is the MAPW model for preventing
double-spending in offline e-cash scheme. This section gives
an overview and description of the proposed model in detail.

A. Overview of Proposed Model

The MAPW model is intentionally designed as a coin’s
wallet with protection against malicious agent, counterfeit
coin, and double-spent coin. Simple MIP model is adopted to
protect MAPW against malicious agent. In order to overcome
the counterfeit and double-spent coin, MAPW applies the
autonomy and cooperation capabilities of the software agent.

The main idea of MAPW model is to append double-
spending identification when receiving a coin thus can prevent
double-spending in advance. Fig. 3 illustrates the proposed
offline e-cash cycle used by MPAW. There are three parties:
bank B that able to issue coins and accept deposited coins;
customer C that can withdraw and spend coins; and merchant
M that can accept spending coins and deposit coin. Our
proposed model is composed of withdrawal protocol, payment
protocol, and deposit protocol.

Bank

Customer Merchant

coin
withdrawal

coin
deposit

• coin verification
• double-spending prevention

coin
payment

double-spending
checking

MAPW MAPW

Fig. 3. The proposed offline e-cash cycle.

The simple description of these protocols is given as
follows:

1) The withdrawal protocol: The customer C withdraws a
coin ci from B. If B and C pass the challenge-response, B
sends ci to C. Then, C’s wallet verifies the signature of ci and
performs the synchronization checking.

2) The payment checking: The customer C spends a coin ci
to M. At first, both of them perform challenge-response and
ci will be sent to M if the challenge-response is performed
successfully. The M’s wallet subsequently performs the veri-
fication of ci’s signature and the synchronization checking.

3) The deposit checking: The merchant M can deposit
coin ci to the bank B. Before depositing ci, M and B
perform challenge-response. B allows M to send ci if they
pass the challenge-response. First, B verifies the signature of
ci and checks whether ci has been previously deposited. If the
signature of ci is valid and ci is never deposited before, B
accepts ci.

4) The synchronization checking: The purpose of the syn-
chronization checking is preventing the wallet from receiving
duplicate coin. The synchronization is performed when the
wallet of C or M receives or sends a coin. The wallet checks
the identity of the new coin whenever it receives a new coin.
The new coin is accepted if there are no coins in the wallet that
has the same identity as the new coin. Otherwise, the wallet
refuses the new coin. Before the wallet sends a coin, the wallet
checks the existence of coin’s identity. If coin’s identity exists,
it allows the coin to migrate to another wallet.

B. Model Description

MAPW model, as shown in Fig. 4, has four static agents
(like user, bank, identifier, and killer agent) and one mobile
agent (coin agent). The static agents, with their respective
duties and responsibilities, protect the mobile agent platform,
and ensuring no counterfeit and double-spent coin. User agent
performs three e-cash protocols (withdrawal, payment, and
deposit), and is responsible for incoming and outgoing check-
ing. Bank agent is an agent of the bank’s representative that
stores the identity of all coin agent in the wallet and identifies
a duplicate agent. Identifier agent determines whether the
foreign agent is a malicious agent or not. Killer agent kills
any malicious agent, counterfeit coin, and double-spent coin.

bank agent

user agent identifier agent

killer agent

coin agent

? foreign agent

incoming
agent

checking

incoming
checking

incoming
gate

outgoing
gate

incoming
request

duplication
checking

kills coin coin storage

outgoing
request

yes

no

valid

outgoing
checking

coin ID
existence

add incoming
coin ID

coin’s synchronization

coin

invalid
not coin

?

remove
outgoing
coin ID

not exist

exist

Fig. 4. The model of MAPW.

Like bank agent, coin agent stores the identity of all coin in
the wallet and identifies the duplicate agent. The coin agent, as
shown in Fig. 5, carries coin data like serial number, signature,
origin, and sync ID. Serial number is a unique number that
represents the identity of the coin. Signature is a bank’s digital
signature for verifying the authenticity of the coin. A flag that
indicates whether the coin comes from a valid protocol or not
is called origin. Sync ID is a memory space to store the identity

www.ijacsa.thesai.org 586 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

of the bank and other coin agents that are in the same wallet
at the same time.

serial
number signature origin sync ID

Fig. 5. The block data of coin.

C. The Function of Mobile Agent Platform based Wallet Model

The functional process algorithm of MAPW model in-
volves two algorithms: the arrival and leaving of a coin that
is respectively given in Algorithm 1 and Algorithm 2. In
Algorithm 1, the arrival of a new agent triggers the identifier
agent to identify the new agent. If the new agent is not
identified as a coin agent, the identifier agent will trigger the
killer agent to kill the new agent. Otherwise, the new agent
will be considered as a new coin and forwarded to the user
agent for verifying the new coin’s signature. The new coin is
allowed to broadcast its arrival to the bank agent and stored
coins if its signature is valid, but the killer agent will kill it if
its signature is invalid. After the bank agent and stored coins
receive the broadcast message, they check the existence of the
new coin ID in their memory of the stored coins’ ID and send
a kill command to the killer agent if its ID is a duplicate.
However, the bank agent and stored coins save the new coin
ID if the new coin is not a duplicate. The new coin also saves
the bank agent and all stored coins’ ID.

Algorithm 1 Algorithm for the arrival of agent/coin

if the agent is not a coin or request is not a valid incoming
request then

killer agent kills the agent and exit;
else

the agent is considered as a new coin;
user agent verifies the new coin’s signature;
if the signature of the new coin is invalid then

sends a command to killer agent to kill the new coin;
else

the new coin broadcasts its arrival to stored coin and
bank agent;
the bank agent and stored coins check the new coin ID
whether its already exist or not;
if the ID of new coin is a duplicate of stored ID coin
then

the bank agent or stored coins send a kill command
to killer agent;

else
the bank agent and stored coins save the new coin
ID;
the new coin ID saves all stored coin ID and bank
agent;

end if
end if

end if

The leaving of a coin, as described in Algorithm 2, begins
whenever the user agent accepts a valid outgoing request. The
user agent sends a request to a coin for migrating to another

wallet. The coin that accepts this request then broadcasts its
migration to the bank agent and other coins. They delete the
coin’s ID from their memory and allow the coin’s migration
if the coin’s ID is in their memory. Otherwise, they consider
the coin as an invalid coin and trigger the killer agent to kill
the coin.

Algorithm 2 Algorithm for the leaving of a coin

if request is a valid outgoing coin request then
the user agent sends a request to the coin for migrating
to another wallet;
the coin broadcasts its migration;
if the bank agent and other coins know the ID of the coin
then

other coins agent and bank agent delete ID of the coin;
the coin migrates and deletes the ID of other coins;

else
killer agent kills the coin agent and exit;

end if
else

ignores request;
end if

IV. COLORED PETRI NETS MODEL OF MOBILE AGENT
PLATFORM BASED WALLET

MAPW is the proposed model of double-spending preven-
tion in offline e-cash. In order to determine the correctness
and eliminating or minimizing the security of MAPW, it must
be verified by using a formal method. There are various
formal methods, but the most commonly used for the agent
is Petri nets. For example, Petri nets can be used for modeling
interaction protocol in multiagent system [21] and for verifying
agent-based architecture [22]. This paper uses CPN, that is
a combination of the capabilities of Petri nets and a high-
level programming language, for the design, development, and
analysis of MAPW [23].

TABLE I. TESTED SCENARIOS FOR MAPW MODEL

Case
Agent
type

Condition of coin

Signature Legitimate
origin Duplicate Known

ID
malicious

agent not coin - - - -

counterfeit
coin coin invalid

(sign=0) - - -

double
spending coin

valid
(sign=1)

invalid
(orig=0) - -

valid
(sign=1)

valid
(orig=1) yes -

valid
(sign=1)

valid
(orig=1) no no

normal
spending coin valid

(sign=1)
valid

(orig=1) no yes

Table I shows a set of the tested scenario for MAPW model
in proving the MAPW’s protection against malicious agent,
counterfeit coin, and double-spending. MAPW also should
able to do normal spending. A malicious agent is an agent
that its type is not a coin agent. A counterfeit coin is a coin
with an invalid signature (sign=0). There are three possibilities
of double-spending. First, a coin with a valid signature but
not came from the legitimate origin (valid withdrawal or valid

www.ijacsa.thesai.org 587 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

payment). Second, coin with valid signature and came from
legitimate origin but has a duplicate in the wallet. Third, a
coin with a valid signature, came from legitimate and does not
have a duplicate in the wallet, but its identity is not recognized.
The last scenario is normal spending that is a coin with a valid
signature, came from the legitimate origin, does not have any
duplicate, and its identity is recognized by bank agent and coin
agent.

The CPN model of MAPW consists of one main MAPW
model page and four subpages for coin’s generation, incoming
coin, outgoing coin, and synchronization coin’s ID. Fig. 6
illustrates the main MAPW model page in which accepts the
incoming and outgoing request. Every time MAPW accepts
incoming coin request, it will trigger coin generation to gen-
erate random coin, and this random coin will be checked by
incoming coin checking. If the request is an outgoing coin
request, it will be checked by outgoing coin checking.

transaction
rejected

COIN

all coin
synchronization

done

1

incoming or outgoing
input request

STRING

300`"incoming"++
50`"outgoing"

coin
entrance

COIN

coin
incoming

start

outgoing
coin
start

store
coin

COIN

{serial="bank",sign=1,
orig=1,syn=["bank"]}

coin
number

INT

1

incoming
coin

accepted

COIN
coin ID
sync

SN

"bank"

coin
outgoing
accepted

COIN

gen
trigger

agent
type
check

INT

kill
coin

accept request

CoinSync

CoinSyncCoinSync

CoinIncomingChecking

CoinIncomingCheckingCoinIncomingChecking

CoinOutgoingChecking

CoinOutgoingCheckingCoinOutgoingChecking

CoinGenerate

CoinGenerateCoinGenerate

coin

request

if request="incoming" then 1`()
else empty

if request="outgoing" then 1`()
else empty

if request="incoming" then 1`()
else empty

agentType

Fig. 6. Main CPN model of MAPW

There are four customized color types and five customized
functions in the CPN model of MAPW. Fig. 7 shows the dec-
laration of the four customized color types, namely, FLAG,
SN , SY N , and COIN . FLAG is an integer color type with
a value of 0 or 1. SN is a string color type that represents
serial number of a coin. SY N is a color type of the list of
SN that represents the memory of a coin. COIN is a record
color type that consists of serial, sign, orig, and syn.

colset FLAG=int with 0..1;
colset SN=STRING;
colset SYN=list SN;
colset COIN=

record serial:SN*sign:FLAG*orig:FLAG*syn:SYN;

Fig. 7. Declaration of CPN model color types

The five customized functions, as shown in Fig. 8, are
count(), notin(), serialV al(), boolV al(), and serialLabel().
The count() function is used for counting data in a list. The
notin() function is used for searching serial number of a coin
in a list. The serialV al() function returns a random integer

value from 1 to 500. The boolV al() function returns a random
number of 0 or 1. The serialLabel() function returns a random
serial number of a coin.

fun count(synCoin:SYN)=
if synCoin=[] then 0
else 1+count(tl(synCoin));

fun notin(sn:SN,syn:SYN)=
if syn=[] then true
else if sn=hd(syn) then false
else notin(sn,tl(syn));

fun serialVal()=
discrete(1,500);

fun boolVal()=
discrete(0,1);

fun serialLabel()=
"serial"^Int.toString(serialVal());

Fig. 8. Declaration of CPN model function

A. CoinGenerate Subpage

The CoinGenerate subpage illustrated in Fig. 9 is the first
subpage of MAPW’s top-level CPN model and the CPN model
of the identifier agent that is responsible for checking all
incoming agent. This subpage performs the generation of a
random incoming agent (coin and non-coin agent) that enters
MAPW through the incoming gate, which is triggered by gen
trigger place. Coin agent is represented by 1, while a non-coin
agent is represented by 0. Random value 0 or 1 is generated
by boolV al() function. If a non-coin agent enters MAPW, it
will be killed, and the model will return to wait for a request.
However, if the incoming agent is a coin agent, it will generate
a coin agent and send the coin agent to coin entrance.

coin
entrance

Out COINOut

gen
trigger

InIn

foreign
agent

INT

not coin

all coin
synchronization

done

OutOut

agent
type
check

Out
INT

Out

gen
agent

filter
foreign agent

kill
foreign agent

1`boolVal()

agentType

if agentType=0 then 1`()
else empty

if agentType=1 then
1`{serial=serialLabel(),
sign=boolVal(),
orig=boolVal(),
syn=[]}
else empty

agentType

Fig. 9. CPN model of the CoinGenerate subpage

Coin data on this model uses COIN color type
{serial, sign, orig, syn} that consists of serial as the serial
number or identity of the coin, sign as the signature of the
coin, orig as the origin of the coins, and syn as a storage
memory of all coins in the wallet. The value of serial,
sign, and orig are generated randomly in order to allow
all conditions of the coin that enter MAPW either valid or
invalid. The invalid coin is a duplicate, false signature or the
entrance of coin without incoming request. serialLabel() and
boolV al() function subsequently generates a random serial
number of a coin, and random value of 0 or 1. The signature
of the coin is valid if the value is 1 and invalid if the is 0.

www.ijacsa.thesai.org 588 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

B. CoinIncomingChecking Subpage

Fig. 10 illustrates the CoinIncomingChecking subpage in
more detail. Agent type check, coin incoming start, and coin
entrance are provided as input. CoinIncomingChecking will be
executed if a coin agent enters MAPW that is marked by value
1 of agentType. The data of coin agent that enters CoinIncom-
ingChecking is generated by CoinGenerate subpage. Then this
model verifies signature and flag of the coin agent whether
valid or not. If the signature and flag are valid, the coin will be
considered as an incoming coin and start the scanning process.
Otherwise, the transaction is rejected, and the incoming coin
agent is going to be killed.

notsafe
counter

INT

0

coin
checked

SYN

[]

safe
counter

INT
0

coin sync
starting point COIN

next
coin

1

coin sync
end point

COIN

coin
start scan COIN

coin
incoming

start

InIn

store
coin

In/Out
COIN

In/Out

transaction
rejected

Out
COIN

Out

coin
incoming
accepted

Out
COIN

Out
coin

entrance

In
COIN

In

coin
number

In/Out
INT

1

In/Out

filter
result

agent type
check

In
INT

In

sync check

[notin(#serial(coinOld),
 serialList)]

start
scan

decide sync result

[count(serialList)
=coinNum]

incoming
checking

filter agent type
and request

if #orig(coin)=1
andalso #sign(coin)=1
then 1`coin
else empty

if notin(#serial(coin),#syn(coinOld))
then safeCnt+1
else 0

0

0

if notin(#serial(coin),#syn(coinOld))
then 0
else notsafeCnt+1

notsafeCnt

if safeCnt+notsafeCnt=coinNum then []
else serialList

coin

serialList serialList

notsafeCnt

#serial(coinOld)::serialList

safeCnt

if count(serialList) >= (coinNum-1)
then 1`coin else empty

coin

coin

safeCnt

coinOld

if notsafeCnt>0
then 1`coin
else empty

if notsafeCnt>0
then empty
else 1`coin

if #orig(coin)=1
andalso #sign(coin)=1
then empty
else 1`coin

coin

coinNum coinNum

if count(serialList)<(coinNum-1)
then 1`coin
else empty

coin

if agentType=1 then 1`()
else empty

agentType

Fig. 10. CPN model of the CoinIncomingChecking subpage

The purpose of the scanning process in CoinIncom-
ingChecking is as duplicate coin checker. All stored coin agent
and bank agent in MAPW check the serial number of the new
coin, and if they already have the serial number, then the new
coin is rejected. Otherwise, the serial number of the new coin
is fresh, the new coin is accepted and forwarded to CoinSync
transition.

C. CoinSync Subpage

The function of CoinSync subpage is synchronizing the
serial number of incoming and outgoing coin, as illustrated
in Fig. 11. This function is triggered when incoming coin
accepted or outgoing coin accepted fire a COIN token.

The synchronization of an accepted incoming coin begins
with broadcasting the serial number of the incoming coin agent
to bank agent and all stored coin agents. Bank agent and all
stored coin add the serial number of the incoming coin agent
to their sync variable. The incoming coin agent also adds the
serial number of bank agent and all stored coin agent to its
sync variable. Then incoming coin agent is accepted and adds
the value of coin number place with 1.

The purpose of synchronization of an outgoing coin is re-
moving the outgoing coin agent’s serial number and decreasing
coin number place value by 1. This synchronization starts
by broadcasting the outgoing coin to all stored coins agent
and bank agent to remove the serial number of the outgoing
coin agent. Terminate synchronization and return to wait for a
request.

count sync
coins number

INT

0

synchronization

COIN

broadcast

coin
number

In/Out
INT

1

In/Out

coin ID
sync

In/Out
SN

In/Out

incoming
coin

accepted

In
COIN

In

store
coin

In/Out COINIn/Out

all coin
synchronization

done

Out

1

Out

outgoing
coin

accepted

In

COIN

In

terminate
sync

[coinNum<>0 andalso
 coinNum=synNum]

start
synchronization

[count(#syn(coin))
<>coinNum]

synchronization

[notin(serial,synCoin)]

coin synchronization
finish

[count(synCoin)=
 coinNum]

start
sync

remove
coin

[(#serial(coin))=serial]

synNum

{serial=snCoin,
 sign=signCoin,
 orig=origCoin,
 syn=serial::synCoin}

(coinNum-1)`()

{serial=snCoin,
 sign=signCoin,
 orig=origCoin,
 syn=synCoin}

{serial=(#serial(coin)),
 sign=(#sign(coin)),
 orig=(#orig(coin)),
 syn=[]}

{serial=snCoin,
 sign=signCoin,
 orig=origCoin,
 syn=synCoin}

0

coinNum`()

{serial=(#serial(coin)),
 sign=(#sign(coin)),
 orig=(#orig(coin)),
 syn=[]}

synNum+1

synNum

coinNum

coinNum+1

coinNum

coinNum

#serial(coin)

coin

{serial=snCoin,
 sign=signCoin,
 orig=origCoin,
 syn=synCoin}

coinNum-1

serial

coin

coinNum

coin

serial

coinNum

Fig. 11. CPN model of the SynchronizationProcess subpage

D. CoinOutgoingChecking Subpage

The CoinOutgoingChecking subpage, as illustrated in Fig.
12, serves outgoing request which asks for sending a coin
agent to a new wallet. This subpage checks the availability and
validity of an outgoing coin. The first checking, availability
of coins checking, is performed to determine if there are
coins stored in the wallet when receiving an outgoing request.
If there are no coins, the outgoing request will be ignored.
Oppositely, a coin will be called in order to send it to a new
wallet.

The subsequent checking is the validity of coin checking,
which verifies whether other coins agent and bank agent know
the coin’s serial number. If other coins agent and bank agent
save the serial number of the coin in their sync variable,
the coin is accepted as an outgoing coin and forwarded to
CoinSync subpage. Otherwise, the outgoing request is rejected,
and the coin is forwarded to kill coin transition in main CPN
model.

V. DISCUSSION

The CPN model of MAPW is verified by performing the
state-space analysis that calculates all reducible states and
state changes in order to observe the behavior of MAPW
model, such as the nonexistence of loops and deadlocks; the

www.ijacsa.thesai.org 589 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

coin sync
starting point

COIN

coin sync
end point

COIN

coin
check

SYN

[]

notsafe
counter

INT

0

next
coin

1

coin
start scan

COIN

coin leaving
start

coin
number

In/Out
INT

1

In/Out

store
coin

In/Out
COIN

In/Out

coin
outgoing

start

InIn

coin
outgoing
accepted

Out

COIN

Out

transaction
rejected

Out

COIN

Out

all coin
synchronization

done

Out

1

Out

safe
counter

INT

0

start
scan

sync check

[notin(#serial(coinOld),
 serialList)]

decide sync result

[count(serialList)
=coinNum-1]

call coin

[#serial(coin)<>"bank"]

outgoing
checking

if notin(#serial(coin),#syn(coinOld))
then notsafeCnt+1
else 0

coin

notsafeCnt

coin

serialListserialList

if count(serialList) >= (coinNum-2)
then 1`coin else empty

if count(serialList)<(coinNum-2)
then 1`coin
else empty

coin

notsafeCnt

#serial(coinOld)::serialList

if coinNum>1
then 1`()
else empty

0

coin

if safeCnt+notsafeCnt=coinNum-1 then []
else serialList

coin

coinNum

coin

coinNum

if notsafeCnt>0
then empty
else 1`coin

if notsafeCnt>0
then 1`coin
else empty

coinOld

coinNum

if coinNum=1
then 1`()
else empty

safeCntsafeCnt

if notin(#serial(coin),#syn(coinOld))
then 0
else safeCnt+1

0

Fig. 12. CPN model of the CoinOutgoingChecking subpage

possibility of always being able to reach a certain state; and
the delivery guarantee of a provided service. The state-space
analysis results in Table II shows that there is no infinite
occurrence sequence that indicates there is no loop in MAPW’s
model so that the termination of each module is guaranteed.
There is no home marking, which is mean the impossibility
to have an occurrence sequence that cannot be extended to
reach the home marking. The state-space analysis detects the
marking that has no enabled transition, which is called dead
marking. Dead marking exists because not every coin leaves
the wallet. Furthermore, the state-space analysis shows the
absence of dead transitions and live transitions. The absence of
dead transitions means that each transition has the possibility
of occurring at least once while the absence of live transition
means the transitions always occur in any condition.

TABLE II. STATE-SPACE ANALYSIS RESULTS OF MAPW MODEL

Property Result
No infinite occurence sequence None

Home markings None
Dead markings Yes
Dead transitions None
Live transitions None

In addition to state-space analysis, the CPN model of
MAPW is also tested for its security (malicious agent, coun-
terfeit coin, and double-spending) and functionality (normal-
spending) by referring to scenarios in Table I. The result of
tested scenarios for MAPW model (Tabel III) shows that the
CPN model of MAPW passes all of the tested scenarios.

The properties of MAPW model is compared with two
related works [9], [10] and the comparison can be seen in Table
IV. Liu [9] and Salama [10] have forgery and double-spending

TABLE III. THE RESULT OF TESTED SCENARIOS FOR MAPW MODEL

Scenario Result
malicious agent detected and killed
counterfeit coin detected and killed
double-spending detected and killed
normal spending pass

prevention, but they do not have any wallet protection. In
order to perform double-spending prevention, Liu [9] uses
smartcard and Salama [10] uses OMC and mobile agent. The
MAPW model has both forgery and double-spending pre-
vention. Double-spending prevention is performed by mobile
agent without depending on the specific hardware. The MAPW
model also has wallet protection that protects the wallet from
malicious agents.

TABLE IV. THE COMPARISON OF PROPERTIES BETWEEN RELATED
WORK AND PROPOSED MODEL

Property Proposed model Liu [9] Salama [10]
wallet protection yes no no

forgery prevention yes yes yes
double-spending prevention yes yes yes

card based no yes yes
mobile agent based yes no yes

VI. CONCLUSION

The offline e-cash is vulnerable of double-spending because
the bank stay offline while the merchant accepts a coin
anonymously from the customer. The merchant only checks
the validity of the coin’s signature when accepts the coin, but
the merchant cannot determine whether the coin is a double-
spent coin or not. The bank verifies double-spending after the
transaction. This paper proposes the MAPW for offline e-cash
that has been modeled, analyzed, verified, and tested by using
CPN and tested scenarios. The result shows that the MAPW
is able to prevent double-spending, protect wallet against the
malicious agent and counterfeit coin.

VII. FUTURE WORK

There are various issues in offline e-cash which must be
addressed in the future, such as the protection of coin against
malicious host problem and the application of MAPW to
offline transferable e-cash. The transferability of e-cash is a
challenging problem because it has more aspect to consider
including more user, and the coin grows in size.

REFERENCES

[1] S. Singh, “Emergence of payment systems in the age of electronic com-
merce: The state of art,” in 2009 First Asian Himalayas International
Conference on Internet, November 2009, pp. 1–18.

[2] D. Chaum, “Blind signature for untraceable payment,” in CRYPTO ’83
Proceedings on Advance in Cryptology. New York: Plenum Press,
1983, pp. 199–203.

[3] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in
CRYPTO ’88 Proceedings on Advances in Cryptology. New York:
Springer-Verlag, 1988, pp. 319–327.

www.ijacsa.thesai.org 590 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

[4] S. Canard and A. Gouget, “Anonymity in transferable e-cash,” in Ap-
plied Cryptography and Network Security, S. M. Bellovin, R. Gennaro,
A. Keromytis, and M. Yung, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 207–223.

[5] C. I. Fan and V. S. M. Huang, “Provably secure integrated on/off-line
electronic cash for flexible and efficient payment,” IEEE Transactions
on Systems, Man and Cybernetics, Part C: Applications and Reviews,
vol. 40, no. 5, pp. 567–579, September 2010.

[6] O. Blazy, S. Canard, G. Fuchsbauer, A. Gouget, H. Sibert, and J. Traore,
“Achieving optimal anonymity in transferable e-cash with a judge,”
AFRICACRYPT, pp. 206–223, July 2011.

[7] J. Zhang, H. Guo, Z. Li, and C. Xu, “Transferable conditional e-
cash with optimal anonymity in the standard model,” IET Information
Security, vol. 9, no. 1, pp. 59–72, December 2015.

[8] S. Nakamoto, “A peer-to-peer electronic cash system,”
http://www.bitcoin.org/bitcoin.pdf, 2009.

[9] W. Y. Liu, Y. A. Luo, and Y. L. Si, “A security multi-bank e-cash
protocol based on smart card,” in Proceedings of the Sixth International
Conference on Machine Learning and Cybernetics. IEEE, August
2007, pp. 3244–3248.

[10] M. A. Salama, N. El-Bendary, and A. E. Hassanien, “Towards secure
mobile agent based e-cash system,” in Proceedings of the First Inter-
national Workshop on Security and Privacy Preserving in e-Societies,
New York, 2011, pp. 1–6.

[11] S. H. Islam, R. Amin, G. P. Biswas, M. S. Obaidat, and M. K. Kan,
“Provably secure pairing-free identity-based partially blind signature
scheme and its application in online e-cash system,” Arabian Journal
for Science and Engineering, vol. 41, no. 8, pp. 3163–3176, August
2016.

[12] X. Zhou, “Threshold cryptosystem based fair off-line e-cash,” in Second
International Symposium on Intelligent Information Technology Appli-
cation, vol. 3. Shanghai: IEEE, 2008, pp. 692–696.

[13] W.-S. Juang, “An efficient and practical fair buyer-anonymity exchange
scheme using bilinear pairing,” in 2013 Eight Asia Joint Conference on
Information Security, 2013, pp. 19–26.

[14] C. Wang, H. Sun, H. Zhang, and Z. Jin, “An improved off-line
electronic cash scheme,” in International Conference on Computational
and Information Sciences. IEEE, 2013, pp. 438–441.

[15] F. U. Ogban and U. Udoh, “A mobile agent-based distributed infor-
mation retrieval system,” International Journal of Natural and Applied
Sciences, vol. 10, pp. 72–77, 01 2015.

[16] G. Liu, “The application of intelligent agents in libraries: a survey,”
Program: Electronic Library & Information Systems, vol. 45, no. 1, pp.
78–97, 2011.

[17] S. U. Guan, S. L. Tan, and F. Hua, “A modularized electronic payment
system for agent-based e-commerce,” Journal of Research and Practice
in Information Technology, vol. 36, no. 2, pp. 67–87, May 2004.

[18] C. Anhalt and S. Kirn, “Towards payment systems for mobile agents,”
in Proceedings of the 4th European Workshop on Multi-Agent Systems,
B. Dunin-Keplicz, A. Omicini, and J. Padget, Eds., vol. 223. CEUR,
December 2006.

[19] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient software-
based fault isolation,” ACM SIGOPS Operationg Systems Review,
vol. 27, no. 5, pp. 203–216, 1993.

[20] S. Venkatesan and C. Chellappan, “Protection of mobile agent platform
through attack identification scanner (ais) by malicious identification
police (mip),” in 2008 First International Conference on Emerging
Trends in Engineering and Technology, July 2008, pp. 1228–1231.

[21] B. Marzougui and K. Barkaoui, “Interaction protocols in multi-agent
systems based on agent petri nets model,” International Journal of
Advanced Computer Science and Applications, vol. 4, no. 7, pp. 166–
173, 2013.

[22] N. A. Mian and F. Ahmad, “Agent based architecture for modeling and
analysis of self adaptive systems using formal methods,” International
Journal of Advanced Computer Science and Applications, vol. 9, no. 1,
pp. 563–567, 2018.

[23] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling
and Validation of Concurrent Systems, 1st ed. Springer Publishing
Company, Incorporated, 2009.

www.ijacsa.thesai.org 591 | P a g e

