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Abstract—Neural Networks supported Chemiresistor array 

system is designed and laboratory tested for the detection of 

emissive gasses from vehicles and other sources of pollution. The 

designed and tested system is based on an integrated PbPc array 

of chemiresistors that sends signals corresponding to emitted 

NO2 gas to Signal Processing Unit. The process comprises using 

relative conductivity values of Edge sensors to Central sensor for 

detected gas as an indicator of response characteristics and 

profiling for NO2 gas pollution level. The process continues up to 

the limit where Edge Sensor values for relative conductivity 

equates, then the relative conductivity for the Edge Sensors is 

used as a control value to shut down the sampling system and 

send a warning message of excessive pollution. Pollution could be 

due to a number of factors besides vehicles, such as gas leaks. 

Optimization of array elements response is carried out using 

Neural Networks (Back Propagation Algorithm). The proposed 

system is promising and could further be developed to become a 

vital and integrated part of Intelligent Transportation Systems 

(ITS) in order to monitor emission of hazardous gases, and could 

be integrated with Road Side Units (RSUs) of urban areas in 

smart cities. 
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I. INTRODUCTION 

Emissions of NOx and NO2 from vehicles are critical to 
quality of air particularly in urban areas, and could very well 
affects air quality at regional and global levels. 

Recently, two important factors are considered that 
contributes to pollution and concentration of NO2: NOx in 
urban areas: 

1) The ratio of NOx that is NO2 coming out of vehicles 

exhausts. 

2) Diesel engines emissions of NOx 

Congested cities and their residents exposed to levels of 
NO2 gas that often exceed the acceptable air quality standards. 
Due mainly to diesel cars. The level of contribution of NOx by 
the diesel car is determined as per area and number of vehicles 
and congestion levels. However, it is found that large number 
of NO2 parts in the NOx emissions of diesel engines is mainly a 
function of intense road traffic usually on artery roads. 

NOx contains NO and NO2, where NO2 is critical as it has 
an adverse health effects in urban areas. Diesel engines are not 
fitted with efficient systems for removing NOx emissions 
similar to petrol engines, thus, resulting in higher ambient 
concentration of NO2 in urban and major cities. 

The primary health effects attributable to NO2 are related to 
respiratory conditions. Inhalation of NO2 causes inflammation 
in the lungs, affecting immunity to lung infections and 
resulting in loss of breath, wheezing, coughing and bronchitis 
with possibility of developing asthma. NO2 can cause has both 
acute and chronic health effects. 

Studies showed that Lead Phthalocyanine (PbPc) is very 
sensitive complex to Dioxide gases; specifically NO2, where its 
conductivity affected more by the adsorption of gases as a 
charge-transfer complex is formed between the Phthalocyanine 
donor and the gas acceptor. 

II. RELATED WORK 

Urbanization adds pressure to the resources such as energy, 
water, sanitation, and public services. Thus, socio-economic 
and environmental issues have become closely related. Cities 
contribute to environmental change on local, regional, and 
global scales. Studies showed that cities accounts for large 
amount of global greenhouse gas emissions as a function of 
energy consumption. City planners and researchers worldwide 
are investigating ways to control traffic in order to improve air 
quality, and provide enhanced living conditions [1-4]. 

The solution is in making cities “smarter” through different 
approaches to resources management and infrastructure, and by 
concentrating on greener environment, and smart governance, 
which will result in a better quality of living for citizens. This 
can be enabled by utilization of Information and 
Communication Technologies (ICTs) tools, which can provide 
eco-friendly solutions for cities. Such work lead to the concept 
of Smart Cities, whereby the vision  is to include the basic 
services in the city, such as clean water, clean environment, 
energy and infrastructure, for all citizens, which can be 
achieved by creating smart environment that covers: 

1) Environmental Sustainability 

2) Energy Consumption Control 
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This can be accomplished by focusing on smart 
transportation that connects different modes of transportation 
into an integrated system, thus, giving city planners the ability 
to better control the flow of traffic. 

Analysis and modelling of urban air quality was most of the 
time based on the assumption that vehicles on the road perform 
similarly to the way they do under development environments, 
this can lead to inaccurate prediction of the vehicles effect and 
contribution to air pollution and harmful emissions. The 
application of PbPc sensor array chemiresistors to the detection 
and subsequent analysis of gases emitted round urban areas and 
congested cities such as NO2, should provide reliable metric 
that can also be used in both real life and in development 
environments and can help in narrowing the gap between the 
development sites and real life applications in real time [5-9]. 

As Smart Cities are associated with a higher quality of life, 
technology makes it possible to compile massive amounts of 
real-time data to optimize the urban infrastructure, thereby 
improving the efficiency of public and transport services. 

A chemiresistor array system (CAS) is generally 
recognized as a system that encompasses array of chemical 
sensors with selective detection capabilities and pattern 
recognition capability, able to specify individual vapor 
components or combination of vapors. The CAS recognizes the 
presence of a chemical through fingerprinting of its chemical 
elements using an array of sensors backed by intelligent 
software for pattern recognition [10-15]. 

There are two major components forming the CAS: 

1) Chemiresistor Sensing Array (CSA). 

2) Intelligent Part employing Artificial Neural Networks 

(ANN). 

Such a combination makes CAS a promising tool for 
detection of chemicals and hazardous gases. Each chemical 
produces a unique characteristic of its own, once exposed to 
the chemiresistor sensing array. The experimental data is used 
to train an intelligent classification system, such as Neural 
Networks in order to optimize the CAS characterisitics and to 
provide an ability to predict future values based on chemical 
level changes [16-20]. 

CAS detects chemicals by interacting with its CSA 
responsive materials, resulting in a change in the material 
characteristics and producing a unique response associated 
with a specific chemical or gas. 

ANN is a learning and classification algorithm, and can 
also be used as an optimizing algorithm.  ANN changes its 
input, hidden, and output neuron weights to interrelate and 
correlate complex relationships among input-output variables.  
Backpropagation (BP) algorithm, is an affective ANN 
technique, which is an iterative gradient algorithm aims at 
decreasing the root mean square error. 

In this paper, a fresh approach to the use and application of 
Chemiresistor Arrays System is proposed which utilizes 
chemical sensing, in particular NO2 together with Neural 
Networks optimization. Such approach will support 
environmental mobility of vehicles through big data collection 

and analysis and vehicle to infrastructure interface (V2I). The 
system can be further developed to support traffic light control 
and green wave for certain vehicles such as diesel engines 
when integrated with Road Side Units (RSUs) and interfaced 
using wireless communication systems [21-22]. 

III. MATERIALS AND METHODS 

Chemiresistor array units are used for the tests. The NO2 
detection system employs a number of chemiresistors with 
vacuum sublimed PbPc films of uniform thickness on Sapphire 
(α-Al2O3) substrates. Fig. 1 shows 4-electrodes, 3-
chemiresistor array device used in the testing, while Fig. 2 
shows a cross sectional view of each chemiresistor within the 
array. Testing of the devices response to donor gases, in 
particular NO2 using two devices is carried out as shown in 
Fig. 3. 

Back Propagation Algorithm (BP) is used to carry out 
training of the Neural Networks system in order to optimize the 
response characteristics of the used chemiresistor arrays shown 
in Fig. 4. 

Back Propagation (BP) works by repeatedly modifies the 
weights of the connections in the network in order to minimize 
the difference between the actual output of the network and the 
desired output. The internal ‘hidden’ units which are not part of 
the input or output stores within their weights the important 
features of the learnt pattern(s), which are captured by the 
interactions of these units. The algorithm is used to efficiently 
train a neural network through a chain rule, where, after each 
forward pass through a network, backpropagation performs a 
backward pass while adjusting the network weights and biases. 

 

Fig. 1. 3-Chemiresistor Integrated Array Device. 

 

Fig. 2. Cross Section of the used PbPc Chemiresistor Array. 
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Fig. 3. PbPc Array Algorithm for  NO2 Detection. 

 

 

Fig. 4. Neural Networks (BP) Traninig System with Training Curve. 

Optimization of the CAS response using BP is carried out 
by reducing the error function through minimization of the 
error function (cost function) described by equation (1). 
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To carry out error mimimization using BP, a gradient 
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Where; 

Alpha
: Learning Rate. 

The learning Rate is increased from 0.1 to 0.9 and 
decreased from 0.9 to 0.1 as shown in Fig. 4, in order to 
compute weight updates using equations (3) and (4). 
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Results 

Tables I and II show data for two PbPc sensor arrays used 
in validating the designed system, while Fig. 5 shows the 
Neural Network model used for training with distributed 
weights. 

TABLE. I. SENSOR ARRAY 1 

Real Test 
Normalized conductivity in relation to Inter-

Electrode Separation  

NO2 Levels 

ppm  

Chemi1,2 

10:33 

Chemi1,3 

10:100 

Chemi2,3 

33:100 

0 0 0 0 

1 0.66 0.34 0.51 

3 0.69 0.44 0.64 

5 0.71 0.47 0.66 

7 0.72 0.48 0.67 

9 0.73 0.49 0.73 

TABLE. II. SENSOR ARRAY 2 

Real Test 
Normalized conductivity in relation to Inter-

Electrode Separation  

NO2 Levels 

ppm  

Chemi1,2 

10:33 

Chemi1,3 

10:100 

Chemi2,3 

33:100 

0 0 0 0 

1 0.64 0.34 0.54 

3 0.67 0.44 0.65 

5 0.68 0.46 0.68 
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Fig. 5. Neural Networks Model used for Trianing, Optimization, and 

Prediction. 

IV. DISCUSSION AND CONCLUSIONS 

Tables III and IV show the predicted results using Neural 
Networks (BP) System, while Fig. 6 and 7 show the optimized 
response curves for the PbPc arrays, with Fig. 8 and 9 showing 
the convergence factor in relation to the relative conductivity 
change of the PbPc sensor array as a function of NO2 gas 
concentration. 

The relative conductivity of the Central Sensor can be 
approximated and related to the edge sensors, using the 
expression in equation (5). In addition, the actual convergence 
factor  k for each gas concentration is also calculated using 

the expression in equations (5), together with Neural Networks 
predicted data, which should fulfill the criteria descripted by 
the expression in equation (6), while latching conditions for the 
system of array sensors is applied using the average 

convergence factor  Avgk as shown in equation (7). 
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The results from the two PbPc sensor array devices showed 
different response sensitivities towards NO2 gas, whereby array 
1 (average convergence factor 3.05) latched at higher 
concentration levels compared with array 2 (average 
convergence factor 3.3).  Both devices have comparable results 
up to 5 PPM of NO2 concentration. This is a design issue, 
which necessitates the use of Neural Networks to predict data 
to enable design optimization and performance enhancement. 

Fig. 6 and 7 show relative conductivity response of both 
devices, which presents the power increase of relative 
conductiviy of the Edge and Center elements of the array. They 
also show the convergence process between the two Edge 
elements as they equate to same value. This is also a design 

issue as the electrode separation between each Edge element 
and the Center element is approximately a factor of 3. 

Fig. 8 and 9 present a clearer view of the field interaction 
between array elements in the form of the convergence factor 
as it initially varies before it decreases and converges to the 
value of approximately 3. Thus, conforms to the electrode 
separation in the original design. 

TABLE. III. NEURAL NETWORKS OPTIMIZATION FOR ARRAY 1 

Prediction 
Normalized conductivity in relation to 

Inter-Electrode Separation  

Convergence 

Factor 

NO2 Levels 

PPM 

Chemi1,2 

10:33 

Chemi1,3 

10:100 

Chemi2,3 

33:100 
k 

0.000 0.000 0.000 0.000 0.0 

0.004 0.002 0.001 0.001 3.0 

0.008 0.004 0.002 0.003 3.5 

0.010 0.005 0.002 0.004 4.5 

0.040 0.022 0.010 0.016 3.8 

0.080 0.050 0.022 0.034 3.8 

0.100 0.065 0.030 0.044 3.6 

0.400 0.375 0.157 0.240 3.9 

0.800 0.618 0.300 0.453 3.6 

1.000 0.660 0.340 0.510 3.4 

1.400 0.690 0.383 0.570 3.3 

1.800 0.696 0.404 0.600 3.2 

2.000 0.695 0.412 0.608 3.2 

2.400 0.692 0.425 0.623 3.1 

2.800 0.690 0.435 0.635 3.0 

3.000 0.690 0.440 0.640 3.0 

3.400 0.691 0.449 0.648 3.0 

3.800 0.695 0.456 0.654 2.9 

4.000 0.697 0.459 0.656 2.9 

4.400 0.703 0.463 0.660 2.9 

4.800 0.710 0.470 0.660 2.9 

5.000 0.710 0.470 0.660 2.9 

5.400 0.714 0.473 0.660 2.9 

5.800 0.716 0.475 0.661 2.9 

6.000 0.717 0.476 0.661 2.9 

6.400 0.719 0.477 0.663 2.9 

6.800 0.720 0.479 0.667 2.9 

7.000 0.720 0.480 0.670 2.9 

7.400 0.721 0.482 0.677 2.9 

7.800 0.722 0.483 0.687 2.9 

8.000 0.723 0.484 0.697 2.9 

8.400 0.725 0.486 0.703 2.9 

8.800 0.728 0.489 0.722 3 

9.000 0.730 0.490 0.730 3 

 

 

 

NO2 Detection Chemiresistor 1 Conductivity  

Change 

Chemiresistor 2 Conductivity 

Change 

Chemiresistor 3 Conductivity 

Change 
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TABLE. IV. NEURAL NETWORKS OPTIMIZATION FOR ARRAY 2 

Prediction 
Normalized conductivity in relation to 

Inter-Electrode Separation  

Convergence 

Factor 

NO2 Levels 

ppm  

Chemi1,2 

10:33 

Chemi1,3 

10:100 

Chemi2,3 

33:100 
k 

0.000 0.000 0.000 0.000 0 

0.004 0.002 0.001 0.001 3 

0.008 0.004 0.002 0.003 3.5 

0.010 0.005 0.002 0.004 4.5 

0.040 0.021 0.010 0.016 3.7 

0.080 0.046 0.022 0.035 3.7 

0.100 0.060 0.028 0.046 3.8 

0.400 0.350 0.152 0.255 4 

0.800 0.595 0.298 0.482 3.6 

1.000 0.640 0.340 0.540 3.4 

1.400 0.673 0.386 0.597 3.3 

1.800 0.679 0.408 0.621 3.2 

2.000 0.678 0.416 0.628 3.1 

2.400 0.674 0.428 0.638 3.1 

2.800 0.671 0.436 0.646 3 

3.000 0.670 0.440 0.650 3 

3.400 0.670 0.446 0.656 3 

3.800 0.671 0.451 0.662 2.95 

4.000 0.673 0.453 0.665 2.95 

4.400 0.676 0.456 0.671 2.95 

4.800 0.679 0.459 0.677 2.95 

5.000 0.680 0.460 0.680 2.96  

 

Fig. 6. Predicted and optimized sensor response for array 1 

 

Fig. 7. Predicted and Optimized Sensor Response for Array 2. 

 

Fig. 8. Predicted Sensor Response and Convergence Coefficient for Array 1. 

 

Fig. 9. Predicted Sensor Response and Convergence Coefficient for Array 2. 

Employing Neural Networks allowed for: 

1) Acquiring results for other NO2 concentration levels. 

2) Design optimization based on prediction. 

3) Detection of expected increase or decrease of NO2 in an 

area as a function of current values correlated with traffic 

volume and other sources of NO2 emission. 

In conclusion, the design and testing of the PbPc sensor 
arrays was successful and more so with the incorporation of 
Neural Networks. Smart cities and smart transportation 
systems, aim to provide less polluted urban areas and such 
chemiresistor arrays can be very useful in this context. 
Developing A wireless Sensor Networks (WSN) version of the 
PbPc array will certainly advance its application and enhance 
the monitoring and reporting facilities through wireless data 
routing and collection to a sink with a cloud interface to control 
centers. 
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