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Abstract—The analysis of the radar response on natural 

surfaces has been subject of intense research during the last 

decades in the field of remote sensing. Unless the availability of 

accurate values of surface roughness parameter, the restitution of 

soil moisture from radar backscattering signal can constantly 

provide inaccurate estimates. Characterization of soil roughness 

is not fully understood, so a wide range of roughness values can 

be obtained for the same studied surface when using different 

measurement methodologies. Various studies have shown a weak 

agreement between experimental measurements of soil physical 

parameters and theoretical values under natural conditions. Due 

to this nonlinearity and its ill-posedness, the inversion of 

backscattering radar signal on soils for restitution of physical soil 

parameters is particularly complex. The aim of the present work 

is the restitution of soil physical parameters from backscattered 

radar signal using an adapted backscattering model to the soil 

proposed description. As our study focuses on little rough soils, 

we have adopted in this work a multi-layered modified multiscale 

bi-dimensional Small Perturbation Model (2D MLS SPM). 

Subsequently, we propose a new way of describing the dielectric 

constant, with the aim of including air fractions in the multiscale 

multilayer description of the soil. Calculating the dielectric 

constant is based on the consideration of a soil comprising two 

phases, a fraction of soil, and an air fraction. For the inversion 

method, a methodology of coupling between neural networks 

(NN) and genetic algorithms (GA) was carried on in order to 

restitute the physical properties of the soil. Samples were 

generated by the original MLS 2D SPM followed by a neural 

network to obtain the statistic soil moisture and MLS roughness 

parameters algorithm. Thereafter, these restored values were 

modelled by the genetic algorithms to resolve, in part or in whole, 

the disagreement between the retrieval and original values. 

Keywords—Inversion; air fractions; multi-layered; multiscale; 

SPM; genetic algorithms 

I. INTRODUCTION AND BACKGROUND 

Although soil moisture shows only a small proportion of 
the amount of water on Earth [12], it plays an extremely 
important role in different environmental sciences. This 
parameter, closely related to the soil dielectric constant, is 
strongly involved in the regulation of evapotranspiration 

phenomenon which directly affects atmospheric dynamics 
[10]. Modelling of this phenomenon is mainly related to a 
better understanding spatial organization structure of 
humidity. 

Soil roughness plays an important role in the capture of 
water [13] [14] [15], promoting its infiltration and reducing its 
downward flow [1]. Therefore, the measurement of soil 
roughness should be taken into account to study and model the 
processes of runoff and erosion of agricultural land. It would 
also be very useful for better understanding the 
hydrodynamics and soils drainage. 

Being two extremely dynamic variables under natural 
conditions, the possibility of achieving their estimations by 
means of remote sensing observations is very interesting for 
many applications [16]. 

Many studies have focused on the interest of radar remote 
sensing to characterize the soil and its parameters [11] [17] 
[18]. 

In this context, previous works [15], have characterized 
natural surfaces as stationary random processes where the 
distribution of heights defining the roughness of the soil is 
considered to be the superposition of a finite number of fractal 
one-dimensional Gaussian processes, each with a different 
spatial scale [8]. 

In the literature, a fractal surface model, where multiscale 
roughness is represented by two new parameters 𝜈 and 𝛾0 
related respectively to the fractal dimension 𝐷 and to the 

standard deviation of heights 𝑠 [15], has been synthesized 
using the wavelet transform for one-dimensional surfaces. 

However, to describe soil surfaces, one-dimensional 
profiles are insufficient because the roughness varies in all 
directions. Thus, in the context of this work, we have extended 
this multiscale description to bi-dimensional multilayered 
surfaces using the adapted bi-dimensional wavelet transform 
and the Mallat multi-resolution algorithm [2] [4], with the 
particularity of the presence of air pockets in the soil volume 
structure and its impact on the backscattering radar signal. 
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This paper is organized into two parts. 

First part will carry the research methodology and it’s 
organized into four sections. 

The first section describes the bi-dimensional multiscale 
description of natural rough surfaces. 

Section 2 shows the radar remote sensing opportunities for 
proposed natural soil characterization. 

The third section deals with the direct problem, that is to 
study the SPM model adapted to the proposed description of 
the natural soil and calculate the received radar signal for a 
given atmosphere conditions and with a given surface 
geometry. 

Section 4 discusses the opposite problem, which consists 
in estimating the geophysical soil parameters from remote 
sensing data obtained from the direct model. 

The second part describes the results of the selected 
inversion algorithm in the restitution of physical soil 
parameters, namely the multiscale roughness and moisture, 
from the radar signal. 

II. RESEARCH METHODOLOGY 

A. Multiscale Description of a Natural Soil 

A natural soil is generally described by its dielectric 
properties as well as its roughness which is directly related to 
the geometry of the surface. Conventionally, natural surfaces 
are described by two statistical parameters calculated from 
micro-topography profiles: a vertical component representing 
the elevation of the surface characteristics above and below its 
mean level, and a horizontal component explaining the lateral 
spacing between these characteristics. Generally, the first 
component corresponds to the amplitude and is expressed as a 
mean square deviation of heights (RMS for Root Mean 
Square), the second component represents horizontal 
variability and is associated with a correlation length (denoted 
𝐿𝐶). The characterization of a surface only by one or the other 
parameter results in an incomplete description of the 
roughness. The larger RMS is, the greater vertical variations 
of the surface. The computation of 𝐿𝐶  supposes to determine 
the autocorrelation function noted ACF, which expresses the 
correlation between pairs of measurement points separated by 
a distance ∆. It varies between -1 and 1 and, by definition, 
reaches its maximum for a distance ∆ = 0. It tends to decrease 
when ∆ increases. The correlation length is then given by the 
value of ∆ for which ACF fall to 𝑒−1 (about 37%) times its 
maximum value. The larger 𝐿𝐶  is, the less the surface is 
showing horizontal variations. 

Further characterization of roughness requires the 
consideration of its multiscale nature. Many studies [9] have 
shown that most natural surfaces can be described by a self-
affine (or fractal) statistic according to fractal Brownian 
motion theory over a wide range of scales ranging from 
micrometer to kilometer [5]. In the case of a self-affine 
surface, an increase of the scale by an 𝑓 factor in the 
horizontal direction results in a scale change 𝑓𝐻 in the vertical 
direction (𝐻 is called the Hurst coefficient and quantifies the 

roughness change rate with the scale), and this to maintain the 
statistic characterization of the surface. 

This assumption involves a single spatial scale for the 
surface characterization and its statistical properties by 
computing its standard deviation of heights and correlation 
length. 

In this work, we consider the distribution of heights 
describing the soil roughness as the superposition of mono-
dimensional Gaussian fractal processes each having a different 
spatial scale [6]. To describe this multiscale roughness in the 
case of bi-dimensional surfaces, we use the parameters ν and 
γ0 respectively related to the fractal dimension and the 
standard deviation of heights using the bi-dimensional wavelet 
transform and the Mallat multi-resolution algorithm [2] [4], to 
better describe natural surfaces. 

B. Radar Backscattering Modeling by a Rough Surface 

1) Proposed description of the studied soil: It’s about 

describing the characteristics of a natural soil through its 

roughness and its dielectric permittivity. The rough surface, 

being considered stationary and ergodic in mean and variance, 

its roughness is entirely defined by the distribution and 

autocorrelation function of its heights. The second 

characteristic parameter is its water content. This is usually 

determined using the dielectric constant of the medium, a 

function of the soil moisture content, its composition, its 

temperature and the frequency of observation of the medium. 

Conceptually, a multilayered approach was selected for the 
soil description and its reflection, since there are not really any 
physical layers but rather a continuous dielectric variability. A 
simplified technique was chosen for the volume. We proposed 
the use of an SPM surface diffusion model while considering 
the surface permittivity. We used for the upper layer a 2D 
multiscale description of soil roughness using the wavelet 
transform and the Mallat algorithm [2] [4]. The lower 
subsurface layer is divided into three fictitious layers 
separated by an assumed plane interface. We then calculated 
an effective resulting permittivity which includes the different 
dielectric permittivities of the three layers. 

2) Introduction of air pockets in the soil volume structure: 

Because of the porosity characteristic of the soil, air can 

circulate through it, it’s the aeration of the soil. More pores are 

numerous, well organized in network (good distribution 

between macro-pores and micro-pores, strong connections 

between the pores), more the air circulate easily towards the 

deep layers. A well oxygenated soil favors the mineralization 

of the organic matter in assimilable elements by the plant, and 

allows the breathing of the living organisms. 

Interior works [7] modified the expression of the dielectric 
constant to take in consideration the presence of air pockets in 
the soil volume structure. The presence of air fractions is an 
influencing factor on relationship between soil moisture and 
the radar backscattering cross section from one study site to 
another and from one parcel to another. 
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3) Reflection of a multilayered medium: In this section, 

we propose the redefinition of the dielectric constant to 

include the air fractions presented in the soil volume structure, 

while taking into account the multiscale multilayer description 

of the soil. 

The soil surface in considered as a three-layered medium, 
where 𝐷 is the depth of radar signal penetration, as illustrated 
in Fig. 1. The multilayer soil model is composed of three 
uniform layers [8]: medium 0 is a half-space, medium 1 with a 
thickness 𝑑1 and a permittivity ε1, medium 2, which 
represents the soil air particles, has 𝑑2 as a thickness and ε2 as 
a permittivity, medium 3, which represents the soil layer 
below the depth of radar signal penetration 𝐷 (𝑑1 + 𝑑2), with 
a permittivity ε3: it’s a semi-infinite layer that does not have a 
thickness. 

𝐸𝑖 and 𝐸𝑟 are respectively the incident and reflected radar 
signal. 

We have introduced the multilayer appearance of the soil 
surface moisture and thereafter, the dielectric constant will be 
redefined according to the new description to take into 
consideration the air / soil composition. 𝜀𝑎𝑝𝑝  is an effective 

permittivity that encompasses the different dielectric 
permittivities of the three layers. 

𝜀𝑎𝑝𝑝 = [𝑣𝑠𝑜𝑙 ∗ 𝜀𝑠𝑜𝑙
𝛼 + (1 − 𝑣𝑠𝑜𝑙) ∗ 𝜀𝑎𝑖𝑟

𝛼 ]
1

𝛼           (1) 

α = 0.5, 𝜀𝑠𝑜𝑙 is the dielectric constant of the soil, 𝜀𝑎𝑖𝑟  is the 
dielectric constant of air, and 𝑣𝑠𝑜𝑙 is the fraction of the soil 
defined as: 

𝑣𝑠𝑜𝑙 = −0.22 𝐿𝑜𝑔(𝑍𝑠) + 0.0058            (2) 

𝑍𝑠 = 𝑠2 𝑙⁄               (3) 

the volumetric water content is given by 𝑚𝑣 : 

𝑚𝑣 = 

−5.3 10−2 + 2.92 10−2𝜀𝑎𝑝𝑝 − 5.5 10−4𝜀𝑎𝑝𝑝
2 +

4.3 10−6𝜀𝑎𝑝𝑝
3              (4) 

C. The Impact of Air Pockets Interfaces on RADAR 

Backscattering using Three Layered 2D MLS SPM 

To evaluate the effect of the air pockets in the soil, a 
sensitivity analysis of the backscattering signal is performed. 

The backscattering coefficients expressions of three 
layered multiscale surfaces, for respectively the vertical and 
parallel polarization VV and HH are computed as follow: 

𝜎𝑣𝑣 = 

8𝑘4𝜎1
2 |

𝑅∥𝑐𝑜𝑠2𝜃

+
𝑠𝑖𝑛2𝜃(1+𝑅∥)

2

2
(1 −

1

𝜀𝑟
)

|

2

𝑊(2𝑘𝑠𝑖𝑛𝜃, 0)          (5) 

𝜎ℎℎ = 8𝑘4𝜎1
2|𝑅⊥𝑐𝑜𝑠2𝜃|2𝑊(2𝑘𝑠𝑖𝑛𝜃, 0)           (6) 

𝑊𝑛(−2𝑘𝑥, 0) =
2

𝜋
∫ ∫ (

𝑟𝑐
𝑖(𝜉,𝜂)

𝑟𝑐
𝑖(0,0)

)
𝑛

cos(2𝑘𝑥𝜉)𝑑𝜉𝑑𝜂
∞

0

∞

0
          (7) 

 

Fig. 1. Multilayered Soil Reflection Model [8]. 

θ is the incidence angle. 𝑊𝑛 is the nth Fourier transform of 
the autocorrelation function given by Mattia, with n = 1 for the 
SPM model [15] [14] [3] [2]. 

To better show the adequacy of the three-layered 2D MLS 
SPM for the description of the soil, we present the table below 
(Table I) which shows a comparison between our proposed 
model and recent studies focusing on one and two layers: 

The figures show the impact of the air pockets on the 
backscattering coefficient for the two polarizations VV and 
HH in an angular tendency from 20 to 70 degrees. 

Fig. 2 and Fig. 3 show the impact of the ν parameter 
related to the fractal dimension on the radar signal 
backscattering, Fig. 4 and Fig. 5 present the impact of the 𝛾 
parameter related to the standard deviation height on the radar 
signal backscattering, on both bare soil (solid line) and soil 
with air pockets (dotted line). 

From these two figures (Fig. 2 and Fig. 3) presenting the 
impact of air pockets on the horizontal dimension of soil 
roughness 𝜈, we can note that with an increase of the fractal 
dimension, the surface becomes smoother, and the value of the 
backscattering coefficient decreases due to the specular 
reflection. 

Fig. 4 and Fig. 5 show the dependence of the vertical 
backscattering coefficient on soil roughness vertical 
dimension 𝛾 . The value of 𝜎𝐻𝐻  increases with 𝛾 , since an 
increase in the standard deviation of heights can cause an 
amplification of the backscattered signal. 

TABLE. I. COMPARISON BETWEEN MLS SPM WITH ONE LAYER, TWO 

LAYERS AND THREE LAYERS FOR ROUGHNESS AND MOISTURE PARAMETERS 

 
Single layered 

MLS SPM [19] 

Two-layered 

MLS SPM [3] 

Three-layered 

MLS SPM 

Relative dielectric 

constant 𝜀𝑟 
𝜀𝑟 𝜀1, 𝜀2 𝜀1, 𝜀2, 𝜀3 ≥ 𝜀𝑟 

Vertical roughness 

𝛾0 related to the 
standard 

deviation of the 
heights 

𝛾1, 𝛾2 𝛾1, 𝛾2 

Horizontal 

roughness 

𝜈 related to the 
fractal 

dimension 𝐷 
𝜈1, 𝜈2 𝜈1, 𝜈2 
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Fig. 2. 𝜎𝑉𝑉 as a Function of Incident Angle θ (°) for different Values of ν 

with γ=0.0031 cm, P=5 and f=5 Ghz. 

 

Fig. 3. 𝜎𝐻𝐻 as a Function of Incident Angle θ (°) for different Values of ν 

with γ=0.0031 cm, P=5 and f=5 Ghz. 

 

Fig. 4. 𝜎𝑉𝑉 as a Function of Incident Angle θ (°) for different Values of γ 

with ν =1.3, P=5 and f=5 Ghz. 

 

Fig. 5. 𝜎𝐻𝐻 as a Function of Incident Angle θ (°) for different Values of γ 

with ν =1.3, P=5 and f=5 Ghz. 

 

Fig. 6. 𝜎𝑉𝑉 as a Function of Incident Angle θ (°) for different values of Humidity. 
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Fig. 7. 𝜎𝐻𝐻 as a Function of Incident Angle θ (°) for different Values of Humidity. 

In the following two figures (Fig. 6 and Fig. 7), we present 
the impact of air pockets in soil volume structure on the radar 
cross section. 

Both figures (Fig. 6 and Fig. 7) show that with an increase 
in the soil moisture value, the amount of the backscattered 
signal will be higher and the penetration depth of the radar 
signal will be smaller. 

We can note for all simulations, the amount of energy 
redirected to the radar system increases with the presence of 
air pockets in the soil texture. This increase reflects the 
inability areas containing air pockets to capture the emitted 
radiation and reflect it, and therefore a considerable portion of 
this radiation is returned to the radar. 

D. Simulation of the Soil Physical Parameters with Volumic 

Air Pockets 

Our objective is to find an inversion method to best restore 
the geophysical soil parameters. The number of retrieved soil 
parameters in the inversion procedure is limited to the number 
of the same parameters appearing in the direct radar signal 
simulation solution. 

It is necessary to know how to deal with the direct 
problem, to have an algorithm calculating the bachscattered 
signal for a given atmosphere conditions and in a given 
surface geometry. 

It is therefore clear that the calculation will be more 
reliable as the modeling of the backscattering radar signal will 
be more accurate. It is then necessary to use a precise and 
efficient inversion method that takes into account the 
information contained in the studied radar signal. 

1) Neural network training: The main objective of the 

inversion algorithm consists in estimating the geophysical soil 

parameters namely the multiscale roughness (𝜈1, 𝜈2, 𝛾1, 𝛾2), 

and the multiscale moisture (𝜀𝑎𝑝𝑝) from the remote sensing 

data obtained from the direct model. This algorithm is based 

on neural networks method witch is trained by learning rules 

using the backpropagation method. Simulated data sets, based 

on the adapted SPM surface scattering model, are used to train 

the neural network (NN). 

The inputs correspond to the observation data, while the 
outputs are the retrieved soil parameters. The adjustment of 
the internal parameters is done using a database that contains 
examples of inputs and outputs. 

As shown in Fig. 8, backscattering coefficients were 
introduced as input parameters of the algorithm for different 
incidence angles measurements ranging from 20° to 70° for 
both horizontal and vertical polarizations (HH and VV). 

 

Fig. 8. Neural Network Inversion Method. 
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2) NN modelization by Gas: Generally evolutionary 

algorithms (EA), and genetic algorithms (GA) in particular, 

are directly derived from faculties of the nature to adapt to the 

environment by evolving through selection and reproduction. 

Neural networks (NN) are also a simplified way to simulate 

the abilities of organisms to adapt to their environment by 

learning. Simply because nature works well on this way, and 

successfully, it has been a source of inspiration for many 

works on hybridization of neural networks (NN) with 

evolutionary algorithms such as genetic algorithms, hoping 

that this combination can help resolve problems more 

effectively that the two methods taken independently. 

The first step in allowing NNs to be handled by a GA is to 
define in which form in the data structure sense the EA will 
see the NN as an individual of a population (Fig. 9). 

The evolution occurs on chromosomes that represent each 
of the individuals in a population. The process of natural 
selection ensures that the most suitable individuals reproduce 
more often and contribute more to future populations. 

During reproduction, the information contained in the 
individuals of the parents is combined and mixed to produce 
the individuals of the children. Crossing result may in turn be 
changed by random perturbations. 

For learning, we adopted an input layer with one hundred 
neurons (relative to populations with 𝜎𝐻𝐻 , 𝜎𝑉𝑉  and the 
incident angle θ), a hidden single-layer NN of twenty neurons, 
and an output layer of five neurons (relative to the parameters 
of soil moisture and roughness 𝜀𝑎𝑝𝑝, 𝛾1, 𝛾2, 𝜈1, 𝜈2 ). These 

latter are derived from a set of weights that are trained with 
NN. 

Both NN and NN-GA hybrid model have been 
implemented with the classical RPG (Retro-propagation 
gradient approach) to establish a comparison between them. 

We start randomly by generating a population of 
individuals. To pass from a generation k to the generation k + 
1, the following three operations are repeated for all the 
elements of the population k. Couples of parents P1 and P2 are 
selected according to their adaptations. 

The crossing operator is applied to them with a probability 
Pc (generally around 0.6) and generates pairs of children C1 
and C2. Other elements P are selected according to their 
adaptation. 

The mutation operator is applied with probability Pm (Pm 
is generally much lower than Pc) and generates mutated 
individuals P0. The children (C1, C2) and the P0 mutated 
individuals are then evaluated before insertion into the new 
population. Different criteria for stopping the algorithm can be 
chosen: 

- The wished number of generations to execute can be 
fixed from the beginning. This is what we are tempted to do 
when we have to find a solution in a limited time. 

- The algorithm can be stopped when the population no 
longer evolves or is no longer fast enough. 

 

Fig. 9. Proposed Methodology. 

The choice of the initial population strongly conditions the 
speed of the algorithm. 

we start by Genome Coding, which is typically based on 
the storage of multilayer perceptron weights in the form of a 
matrix W such that 𝑤𝑖𝑗  corresponds to the weight of the 

connection from neuron j to the neuron i. Then simply put end 
to end each line of the matrix to obtain the genotype of an 
individual. 

The biased roulette principle is used to randomly select 
pairs of reproducing individuals. This principle is based on the 
image of a roulette wheel such that the probability of selecting 
a particular individual is proportional to the value of its 
adaptation function. Thus, the best individuals will have a 
higher probability of being selected for reproduction. 

3) Inversion algorithm results: The main objective of the 

inversion algorithm, which is based on a modeled NN by a 

GA method, is to retrieve physical soil parameters, namely the 

multiscale roughness and moisture, from the radar signal. 

The obtained results with our approach NN-GA show that 
the retrieved parameters are improved compared to the 
inversion model based on NN. Fig. 10, Fig. 11 and Fig. 12 
show that the retrieved dielectric constant with NN-GA are 
better than those obtained by NN. 
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Fig. 10. Optimal Retrieved Fractal Parameter 𝜈1. 

 

Fig. 11. Optimal Retrieved Standard Deviation γ2. 

 

Fig. 12. Optimal Retrieved Dielectric Constant 𝜀𝑎𝑝𝑝. 

III. CONCLUSION 

In this paper we have presented a synergistic method 
between the Neural Network and the modeled Neural Network 
by the genetic algorithms, to retrieve the physical parameters 
in a soil with volumetric air pockets. 

The obtained results show that our proposed approach can, 
with a certain percentage of quadratic error, improve the 
retrieved parameters compared to the inversion model based 
on NN. 

The main perspectives that follow the work carried out in 
this work are: 

 Use other electromagnetic models in addition to the 
SPM model, the field of validity of which is restricted, 
for learning neural networks in order to be able to 
apply the neuronal inversion method to surfaces of any 
roughness. 

 It will be interesting to apply the multiscale description 
on other types of surfaces such as maritime surfaces. 
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