
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

An Innovative Smartphone-based Solution for Traffic
Rule Violation Detection

Waleed Alasmary
Computer Engineering Department

College of Computer and Information Systems
Umm Al-Qura University

Saudi Arabia

Abstract—This paper introduces a novel smartphone-based
solution to detect different traffic rule violations using a variety
of computer vision and networking technologies. We propose the
use of smartphones as participatory sensors via their cameras
to detect the moving and stationary objects (e.g., cars and
lane markers) and understand the resulting driving and traffic
violation of each object. We propose novel framework which
uses a fast in-mobile traffic violation detector for rapid detection
of traffic rule violation. After that, the smartphone transmits
the data to the cloud where more powerful computer vision
and machine learning operations are used to detect the traffic
violation with a higher accuracy. We show that the proposed
framework detection is very accurate by combining a) a Haar-
like feature cascade detector at the in-mobile level, and b) a
deep learning-based classifier, and support-vector machine-based
classifiers in the cloud. The accuracy of the deep convolutional
network is about 92% for true positive and 95% for true negative.
The proposed framework demonstrates a potential for mobile-
based traffic violation detection by especially by combining the
information of accurate relative position and relative speed.
Finally, we propose a real-time scheduling scheme in order to
optimize the use of battery and real-time bandwidth of the
users given partially known navigation information among the
different users in the network, which us the real case. We show
that the navigation information is very important in order to
better utilize the battery and bandwidth for each user for a small
number of users compared to the navigation trajectory length.
That is, the utilization of the resources is directly related to the
number of available participants, and the accuracy of navigation
information.

Keywords—Participatory sensing; traffic violation detection; au-
tomatic detection; applied computer vision; resources optimization

I. INTRODUCTION

There are major challenges in transportation that require
immediate innovative solutions [1]. The first one is road
congestion. The second but most important one is accidents
and fatalities. These are worldwide issues, where major cities
and suburban areas become more congested, and car accidents
with fatalities continue to occur. For example, in Saudi Arabia,
there were 7000 fatalities and 45, 000 accidents in January
2015 [2]. It is clear that the disobeying traffic rules is among
the top causes of fatalities, which motivated the government of
the Kingdom to use smart stationary cameras equipped with
sensors to detect the car speed on the highway, and also other
cameras that could detect cars that crosses red light signal at
intersections. However this solution is considered expensive.
Using a system of stationary cameras requires manpower to

operate. Therefore, we propose a smartphone-based system to
detect traffic rule violation. To the best of our knowledge, this
is the first paper that proposes such a system.

Current intelligent transportation solutions assume an on-
board device within the car [3]. This device can monitor
the location and speed of the car and then the data can be
used to evaluate the traffic violation. A well-known product is
provided by MobilEye that requires installing multiple devices
and sensors into the car [4]. In [5], smartphones are used to
detect the car turning or speeding, and it is intended to collect
the data of the car that has the smartphone in it. In this paper,
we propose a solution to detect the traffic rule violation of
the other cars on the road, without the need to install any
device in the monitored car, rather, we propose the use of
smartphones as monitoring devices. We pursue this research
with the mindset that technology can help in improving road
congestion, and traffic accidents by combining driving traffic
violation detection with participatory sensing.

Our proposed system automatically detects a number of
traffic rule violations on the roads. Specifically, we propose
that each driver willing to participate can download our ap-
plication on his/her smartphone. The major sensor used is the
camera in the device. This is different from the currently used
technologies where an on-board unit monitor the vehicle in
which it is installed. Our proposed system would make each
car act as a monitor for the other vehicles on the roads.

The system has two main components, namely, an in-
mobile component, and an in-cloud component. The in-mobile
component first detects the traffic rule violation on the roads
using based on multiple subsequent time frames. This com-
ponent is fast and had limited resources, and hence limited
accuracy. After that, if a traffic rule violation is detected, the
snapshot of the video-frame is sent to the in-cloud component
which is more intensive in resources and has higher accuracy.

We evaluate our proposed system by validation with video
traces captured by cameras on the cars in the Middle East and
USA. Our system shows a very high accuracy for multiple
traffic scenario detection, which hypothetically represent traffic
violation detection. We used multiple data sets for training
and testing [6]–[21]. We used some images as is, and we
created some data from video traces as will be explained
in Section IV-A. Our results strongly supports the feasibility
of the proposed scheme. Furthermore, we propose a model
to optimize the use of participatory sensors selection under
the limited resources scenario. The main challenge of this
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optimization problem is to simultaneously optimize multiple
resources within a dynamic mobile environment. We show that
the proposed model can achieve near-optimal resource utiliza-
tion results compared to the fully known mobility dynamic.

The contributions of this paper are as follows:

• We propose a novel smartphone-based participatory
sensing system for traffic rule violation detection that
is accommodating to new computer vision, sensing,
and networking technologies.

• We propose the relative positioning and relative speed-
ing concept in out system design in order to infer the
traffic violation from the computer vision algorithms
and the smartphone sensors readings. These two met-
rics allow us to understand the driving context from
which the traffic rule violation can be detected.

• We evaluate the proposed system using multiple data
sets, and videos that are taken by smartphones (or
smartphone like cameras).

• We propose a participatory sensor optimization frame-
work to enhance battery and bandwidth utilization
while guaranteeing smartphone sensing.

In the following section, we discuss the related works to
our proposed framework. Then, in Section II, we explain the
system model and the traffic detection framework, followed by
explanation of the participatory sensor optimization scheme in
Section III. After that Section IV demonstrates the experiment
setup, the data set used for evaluation, and the evaluation
results. We discuss the recent related works in the areas of
applied computer vision and intelligent transportation systems
in Section V. Finally, Section VI concludes the paper and
outlines the position of the proposed framework within current
and future technologies including autonomous vehicles.

II. SYSTEM MODEL

This section introduces an the overview of the proposed
system, which is composed of three phases. The involved
phases are as follows: 1) A fast in-mobile traffic rule vio-
lation detection phase, 2) A high-accuracy and cloud-based
traffic rule violation detection phase, and 3) An in-mobile
enhancement of the traffic rule violation detection phase. Each
of the above mentioned phases is composed of a number of
steps. Each of the following subsection describes the processes
involved in each stage.

A. Fast in-mobile Traffic Violation Detection

This phase utilizes the captured video streams to detect
the vehicles, the background, and the lane-markers. Then the
said detected objects are used to track driving-behavior of all
surrounding vehicles. This phase contains the following steps:

• Vehicles detection and classification.

• Lane marker detection.

• Motion detection.

(a) (b)

(c) (d)

Fig. 1. Output samples of vehicles detection and classification using the
in-mobile detector.

1) In-mobile: Vehicles Detection and Classification: We
propose the use of the Haar-like feature-based cascade clas-
sifier driven by the AdaBoost algorithm as in [22] [23]. One
reason is that this detector is very fast due to the use of integral
images. It is also very accurate given a large number of training
images, which is doable for such a crowd sourcing system.
The main reason though is that optimized implementations
are available for the algorithm (mainly designed for face
detection), and can be integrated to the smartphone without
much loss of speed. There are multiple variants and optimized
detectors that also uses Haar-like features. We discuss them
in Section V. A fast RCNN is the other candidate, but it is
much slower than the Haar feature-based cascade classifier. It
is shown in [24] that the processing time in CPU takes about
2 seconds, and the current smartphones are not powerful as
our desktops. An RCNN can be used whenever the hardware
allows it. This is the reason that deep learning is usually used
in the server-side, for faster processing. Fig. 1 shows some
samples of the outputs of this step. Each successfully detected
vehicles is surrounded by a blue bonding box. 1

2) Lane-markers detection: We use Hough transform to de-
tect the two lane-markers on the street. We can also detect the
two outer lane-markers on a three-lane, but we only focused on
the two-lane-markers ahead of the car. This fast lane-detector
was also used in [22], [23]. The lane-detector nominates lanes,
and we only select the lanes if they are repeated in multiple
frames. The repetition threshold can be adjusted as desired. We
found that setting the repetition threshold to 4 or 5 is sufficient
to detect lanes with high accuracy. ‘ Fig. 2 depicts some sample
of lanes markers detection, the detected left and right lane
markers are shown in yellow and red color, respectively.

3) Motion Detection: Motion detection can be performed
using various methods. We chose our method to be aligned
with the characteristics of the fast in-mobile detector. The main
principle is as follows. Given an object that is detected around
the same area in two consecutive frames in time, we map

1In Section IV-A, we explain which data set we used and the parameters
used for training and testing of the classifier.
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(c) (d)

Fig. 2. Output samples of lane markers detection of the in-mobile phase.

the features of the same object between the two frames. If
all the mapped features move towards the top of the image,
the object is assumed to be moving forward, and vice versa.
Similarly, the object that is detected in the left side of the lane
in one frame and mapped to an object that is detected in the
right side of the same lane in a subsequent frame describes
a motion from left to right, and vice versa. In this setting,
we can detect multiple vehicle movements with respect to the
available lanes. These motions can represent some traffic rule
violations in some contexts. We use the SURF algorithm [25]
for fast detection. We follow the feature matching with the
variant of the random sample consensus (RANSAC), which is
referred to as MSAC [26] and considered robust.

In order to make the motion detection procedure more
accurate, we set a number of heuristic intuitive rules. First,
we divide the image into three areas given the detected lane-
markers. In this way, a detected vehicle bounding box must
have its centroid somehow within in the correct position with
respect to the lane-markers. Moreover, we also condition the
far edges of the bottom points of the bounding box to be
under the vanishing points of the image. These two procedures
eliminate a good number of false positives. We can think
of this detector as a motion inference tool. Combined with
the information about the smartphone, it can understand the
driving violation. For example, assume that the speed of the
monitoring car is X . If the monitored car that is moving in
front is speeding, the monitoring car can detect the speeding
action speeding because the speed is > X . Another example
is relating the camera parameters with my speed to detect the
stalled vehicles. The detector also can infer extra information
for approaching traffic light or a stop sign with high speed.

The false detection of the SURF algorithm are very minor.
Moreover, when SURF is followed by MSAC, it provides
matching points unless there is a very close match between the
two different vehicles. Based on our experimental evaluation,
we have not seen noticeable false detection. There are a few car
detections on the background where there are objects similar to
car structure. As the car is driving on the road, the background
always moves backward. However, object motion is detected if

all the matched points between the two consecutive frames are
in the same direction, which is a strong condition for motion
detection.

B. In-cloud Detector Traffic Violation Detection

The in-cloud detector is a component that is executed in
the cloud. At the server side, we propose the use of a more
powerful object detection and classification algorithms. We
propose the use of the the deformable part-based models, and
Discriminative learning with latent support vector machines
(SVM) [27] [28] as an accurate detector. This detector is one of
the most popular ones before the start of deep learning success
in object detection. The detector has a very high accuracy and
low recall rates, and can work on a regular CPU. We refer
to this object detection method as Discriminatively Trained
Part Based Models (DTDPM). This in-cloud detector has a
processing delay that can take up to 1 second. We performed
multiple experiments on the laptop, and the processing delay
is pretty consistent, but correlated with the image size, but is
very accurate in detecting vehicles, as we will demonstrate in
the evaluation section. We also use the same lane-detection as
in the fast detector. We also use convolutional neural networks
(CNNs) to reduce the false positive detections. CNNs have
several implementations and has a very high accuracy.

We also add an additional layer of verification using a deep
convolutional neural network (CNN). Currently, there is a fast
implementation of CNN [29] on the smartphone. However,
it cannot perform object detection, rather, just classification.
Therefore, our proposed in-mobile and in-cloud car detector
extracts the possible vehicles and use a pre-trained CNN to
remove false detection and affirm correct detections. We will
demonstrate through the experiments that the accuracy of the
CNN classifier is excellent. The CNN used in our model is
based on [30], and has two classes, vehicles and backgrounds.

The lane-markers detection and motion detection is the
same in both the fast in-mobile and in-cloud traffic rule
violation detectors.

C. Data Collection and Dissemination Communication Mod-
els

For data communication, we define two data streams, data
collection and data dissemination. The main focus in this
paper is data collection. We assume that the data dissemination
follows the current state-of-art technology. Data collection is
mandatory, but can be performed in delay-sensitive or delay-
tolerant methods. Sensors can opt in for delay-sensitive data
collection, or they can use delay-tolerant option.

We assume two modes for data collection in our system
model. First, we assume that the smartphone camera is used
for data collection. In this mode, there is no communication
overhead for data collection. Second, we assume that there
are third party cameras that are used for data collection.
These cameras can communicate with the smartphone via
WiFi/Bluetooth. We assume that pairing is set up once, and
repeated automatically every time the user enters the vehicle.
In the sequel, we do not distinguish the two methods. We
assume that the camera captured the data, and then the data is
available at the smartphone for the next stage of processing.
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Fig. 3. Illustration of the Interconnection between the in-phone and in-cloud
detection components.

Dissemination of collected data is according to the user
preference and the available communication interface. We as-
sume that our model can collect the data, and the dissemination
is available according to the device communication capability.
A user with DSRC communication device attached to his/her
smartphone (e.g., mobile accessory by Arada systems DSRC-
enabled devices [31]) can disseminate messages using vehicle-
to-vehicle (V2V), vehicle-to-infrastructure (V2I), or vehicle-
to-any (V2X) communication modes. A user who has a data
subscription on the SIM card can transmit the data to the
data centre, or disseminate warning messages using device-to-
device (D2D) communication. The most convenient and low-
cost option is to transmit data using WiFi offloading by treating
the data in delay-tolerant communication mode.

D. Interconnection between the In-Mobile and In-cloud Com-
ponents

The accuracy of different components of the system are
previously known in certain applications. In this context, we
know the limited computation capability of the smartphone
compared to the cloud. Hence, we use the optimized detection
at the cloud in order to improve the in-phone detector results.
This can be performed in two ways. First, the negative results
of the in-phone component can be neglected once the result is
corrected at the cloud. Second, the neglected information can
be used to improve the in-phone by retraining it. This also can
be performed for improving the true positive detections as well.
The interconnection between the two components is shown in
Fig. 3. Fig. 4 shows sample outputs of correct classifications
of false outputs detects by the CNN classifier using in-cloud
detector. Those results are then fed for training in the in-mobile
detector for better detection.

E. Driving Activity Detection

In this section, we aim at understanding the driving activity
of each detected car on the road. The detected information is
the respective position with every other detected object in the
image. This information provides an understanding of each
car on the road, the location with respect to the road lanes,
and the relative motion with respect to the capturing phone.
The general information we aim to collect in this section is
illustrated in Fig. 5. The figure demonstrates how a car the

(a) (b)

(c) (d)

Fig. 4. Samples of the correct identification of the false positive detections
using the CNN classifier. That is, incorrectly detecting backgrounds as

vehicles. Those detections are then fed into the in-mobile detector.

Fig. 5. The information detected by the driving activity detection model.

road is divided into multiple lanes via the lane markers. The
classifiers detect each car and then in subsequent frames detect
their motion. We also show the regions of elimination of false
positives.

III. PARTICIPATORY SENSING OPTIMIZATION PROBLEM

In this section, we assume that the smartphone parameters
including battery and cellular infrastructure transmission are
accessible by the our system. The user can also specify a
quota that can be used by the application. The objective of
the proposed optimization problem is to utilize the available
resources to provide the best coverage of the roads to avoid
missing any traffic rule violation while at the same time
minimizing the battery usage and the data usage. We approach
this problem in two stages in the following sections.

A. Sensor Selection Problem

Battery consumption is a critical parameter in participatory
sensing. Many users might opt in to participate in improving
the travel quality on the roads, reducing accident rates and
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fatalities, and capturing the traffic rule violators. However,
the participants might refrain from using the proposed sys-
tem because of the associated battery consumption with the
application. Hence, we provide a custom solution based on
each user preference.

It might be argued that an interested participant would
use a charger in his/her car. That could be true. However,
the fact that a monitoring app–even if optimized for battery
consumption, would still use the battery that can be used
for social networking or other entertaining apps is a critical
point for discourage some users. Therefore, we optimize our
model for battery consumption and participant efficiency. A
participant is efficient in this context if his/her smartphone
covers the intended areas of the transportation networks 2.
Therefore, a participant’s efficiency in the sequel refers to the
effective coverage of area.

It is critical to understand that scheduling of the smart-
phones based on their location is a well studied problem in the
literature. The challenge in this context is that we only know
the locations at the current position, and the car mobility can
change in the future. That is, scheduling the participants have
randomness in the future trajectories. Scheduling cars without
taking into consideration the trajectory information of their
future movement might result in lower spatial and temporal
coverage, and under-utilization of the available battery and
transmission bandwidth resources. Hence, we introduce the
concept of an estimated trajectory-based scheduling. There-
fore, the resources are not optimally utilized, but a near-
optimal utilization can be achieved, which results in a practical
solution.

We assume that based on the current location of the car, and
its current speed and heading information, the future locations
of the vehicles can be estimated within a short window of
time. The estimation is not perfect, hence a slight degradation
in the utilization of resources would be expected. Whenever
the mobility information is not available anymore, the only
solution that can be used is a non-optimal solution.

B. Battery Optimization Problem Formulation

Assume that some users do not want to use their app
continuously. Therefore, we define BQi as the battery quota that
is allowed by user i for the crowdsourcing process. Suppose
we have N participants. Let L be the number of participants
where BQi is unlimited. On the other hand, let M be the set
of participants where BQi is limited. M are the focus of our
resource allocator. Note that if N can provide the required
spatial and temporal coverage of roads, then we do not have
to use the M participants. However, we do not consider this
case in our study. We consider the case where we are forced
use the M resource limited participants. We assume that the
location of all participants in the system are known at the
scheduling time. Let ai[t] denote the activity of fast detector
on the smartphone i at time t. That is

ai[t] =

{
1 if fast detector is activated
0 otherwise .

2Accuracy is mainly related to the computer vision algorithms discussed in
the previous sections, and is not considered as a metric here.

Then selection among the M participants to run the fast
detector is performed via the following optimization problem
in a centralized fashion3:

Minimize
ai[t]

M∑
i=1

T∑
t=1

ai[t] (1)

subject to
M∑
i=1

ai[t]� bi[t] = 1, ∀t ∈ {1, · · · , T}, (2)

T∑
t=1

ai[t] ≤ BQi , ∀i ∈ {1, · · · ,M}, (3)

ai[t] ∈ {0, 1}, bi[t] ∈ {0, 1}. (4)

where bi[t] is an indicator that is set to 1 if the mobility is
estimated in the near future; otherwise is set to 04. Moreover,
BQi < Bi is the amount of battery that is allocated for the fast
detector at one scheduling epochs. In other words, the user
specify Bi = kBQi , where k is a predetermined parameter that
demonstrates the length of acceptable predictability of mobility
information. The above optimization problem allocates only
one participant to cover an uncovered area for each time instant
(Constraint 2). Moreover, it schedules sensors such as the
battery consumed over time is related to the allocated battery
consumption by the participant (constraint 3). Furthermore, it
allocates participants according to their predicted availability
in the uncovered locations using the variable bi[t] (constraint
2).

C. Realtime Transmission Problem Formulation

For the offloading communication option, all participating
participants can collect data and transmit them using WiFi,
whenever there is an available connection. However, when
delay-sensitive data transmission is limited by the user, we
optimize the transmission according to the provided quota set
by each user. We also provide a single transmission for each
captured event among all users. Let

Txi[t] =

{
1 for delay-sensitive transmission
0 otherwise ,

and DQ
i , the normalized number of transmission times of

captured traffic violations using the fast detector. Normally,
the fast detector is used, then the transmission is established.
Therefore, the delay-sensitive transmission scheduling is per-
formed by the following scheduler:

Minimize
ai[t]

L∑
i=1

T∑
t=1

Txi[t] (5)

subject to
L∑
i=1

Txi[t]bi[t] = 1, ∀t ∈ {1, · · · , T}, (6)

T∑
t=1

Txi[t] ≤ D
Q
i , ∀i ∈ {1, · · · ,M}, (7)

Txi[t] ∈ {0, 1}, bi[t] ∈ {0, 1}. (8)

3The central controller can be the fusion center or a cluster-head node within
a group of nodes.

4Whenever bi[t] = 0, the scheduler loses location information and would
results in under-utilization of the resources.
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This optimization problem would results in transmitting only
one detected traffic violation in the same area (Constraint
6). The transmission quota of each participant is satisfied
in Constraint 7. Note that we do not perform any battery
constraint in the transmission. However, adding a battery
constraint for transmission is doable. It should add a parameter
that will constraint the number of transmissions. We assume
that DQ

i includes that information. In other words, the user
enters the number of transmission time quota, and we calculate
DQ
i accordingly.

D. Battery and Transmission Optimization

It might be argued that problems (1)-(4) and (5)-(8) can
be performed as a single optimization problem. However, the
concept in our crowd sourcing system is that each user might
chose to fully utilize activation, but not transmission, or vice
versa. In other words, capturing an event does not necessarily
require a delay-sensitive transmission. In fact, it might be
expected that most users of such a crowd sourcing system
will perform sensing without any delay-sensitive transmission
as long as the transmission over the cellular network is not
free. The incentive model that we use in the sequel does not
require the users to pay extra money, unless they are willing
to. Therefore, covering the traffic violation of the roads is the
main objective of this work whether a realtime transmission
occurs or not (realtime transmission of vehicular information
as a separate topic that is widely researched). In addition
to that, transmission might affect the battery consumption
especially over cellular infrastructure. This directly reflects in
our problem where we actually excluded the group of workers
who are offering limited battery consumption. Adding that
group of workers would result in chaining the parameters in
problem (5)-(7), but not the scheduler design.

Therefore, we also add a third optimization problem,
where each activated camera is activating the fast detector
and transmitting given the fact it has a battery limitation and
transmission budget. Let ci[t] = ai[t]� Txi[t], where � is the
binary product. Then the combined battery and transmission
optimization problem becomes

Minimize
ci[t]

M∑
i=1

T∑
t=1

ci[t] (9)

subject to
M∑
i=1

ci[t]� bi[t] = 1, ∀t ∈ {1, · · · , T}, (10)

T∑
t=1

ci[t] ≤ BQi , ∀i ∈ {1, · · · ,M}, (11)

T∑
t=1

ci[t] ≤ DQ
i , ∀i ∈ {1, · · · ,M}, (12)

ci[t] ∈ {0, 1}, bi[t] ∈ {0, 1}. (13)

This optimization problem actually combines the two set of
constraints (2)-(4) and (6)-(8), which results in combining
the fast detector activation and transmission according to the
availability of battery power and transmission quota.

TABLE I. LIST OF DATA SETS USED FOR TRAINING THE CLASSIFIERS AND
VEHICLE DETECTORS.

System Component Training Data Size
Fast detector Caltech car data set [6], [7] 1,182
(Positive)
Fast detector Caltech background data set [8] 1,599
(Negative)
CNN detector Extracted cars from [14], [15] 1,186
(Positive)
CNN detector Caltech background data set [8] 1,599
(Negative)

IV. PERFORMANCE EVALUATION

A. Experimental Setup

The proposed framework can be tested on a smartphone on
the roads. However, such an experiment would consume extra
time and effort for collecting the data and testing. Therefore,
we chose to setup our evaluation procedure as follows. First,
we downloaded several vehicles and backgrounds data sets
from internet for training and some testing [6]–[13]. Second,
we downloaded different videos from YouTube that are taken
by smartphones and are used to capture the road [14]–[21].
The experiment we performed uses two separate training and
testing sets for each part of the system. In other words, we
used different training sets for different parts of the system,
and the testing data is different from those data sets. A detailed
information on how we trained the data is shown in Table I. For
the positive training of the fast detector, we use the extended
data that can be found at [7]. For the negative samples of
the fast detector, we used Caltech background data set and
added some negative images from [9]. For the CNN detector,
we used extracted positive training samples from two videos
using the car detector in [27], [28], and then removed images
that have large background potions. For the negative samples,
we removed any background images in [8] that contains cars
in them. For the CNN detector, we used transfer learning of
the pre-trained network [30].

For testing the CNN detector, we used the positive samples
that contains cars in data set in [10]. We removed the back-
ground, and just used the bounding box of the car. We used the
negative background samples in [11] for background detection.
Note that the testing data were not used in the training of the
fast detector nor the CNN detector at all. The CNN network
has two outputs indicting whether the image is a car or not.
For the testing of the system framework, we use the videos
in [16]–[21]. Neither the videos nor images extracted from
the videos were used for training at all. The videos represent
different cities, different driving conditions including sunny,
during and after sunset, night time, raining time, and snowing
time.

The design of out experiment is based on the currently
available data sets and videos. We believe that the accuracy
of our proposed model can be enhanced given larger number
of sets, which can be though a large-scale crowd sourcing or
deployment of the system.

B. Performance Metrics

To evaluate the proposed system, define two categories of
metrics, namely, accuracy metrics, and efficiency metrics. The
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accuracy metrics are meant to evaluate the accuracy of the
components of the driver detector. The efficiency are meant
to evaluate the efficiency of the components of the framework
including the driving detectors, and the resource scheduler.

Accuracy Metrics:

• Accuracy: The accuracy of the traffic violation detec-
tion is directly related to the accuracy of the computer
vision algorithms. We define the accuracy as the
percentage of correct classification using the machine
learning algorithm.

• Number of detected objects: We use the number of
identified objects as an indicator for the machine
learning algorithm. It provides an intuition on the
accuracy of the algorithm when we compare different
algorithms with the same data set.

• Above Horizon: The horizon in our experiment is the
vanishing point intersecting the two detected lanes. It
is a measure of false positive vehicle detection.

Efficiency Metrics:

• Processing time: The time it takes to complete a
specific computer vision operation.

• Battery usage metric: We define battery usage metric
as the number of times the battery is used within
the assigned budget by the participant, divided by the
scheduling time. The lower this metric reflects a better
use of the battery due to a better scheduling of the
workers. Having a smaller battery usage metric during
a scheduling epoch prolongs the use time of the each
participant, and hence tends to provide more coverage
on the roads.

• Bandwidth usage metric: Similar to the battery usage
metric, the bandwidth usage metric is the number
of times a transmission occurs given the assigned
transmission budget, divided by the scheduling time. A
lower bandwidth usage metric indicate better schedul-
ing of the workers in favour of transmission budget.

Traffic Violation Metrics:

• Detected motion: This is the motion of the monitored
vehicle. It can be detected as moving forward or
moving backward between subsequent frames.

• Relative position with respect to lanes: This is the
relative position of the detected cars with respect to
each of the detected lanes. In other words, we know
if the car is to the right of a lane or to the left.

C. Experimental Results

1) CNN Classifier: The CNN classifier reached very small
incorrect classifications based on our training and testing.
In order to show that, we test on labeled data of cars and
backgrounds, and we show the results in Table II. We have
tested the data over 16, 186 car images from [10], and the
accuracy is more than 92%. We have also testing the data
over 1, 156 backgrounds from [11], and the accuracy is more
than 95%. We believe that the training data could be improved

TABLE II. THE ACCURACY AND PROCESSING TIME FOR THE CNN
CLASSIFIER.

Classification Accuracy Processing Time
Car 92% 1.3799 seconds (on CPU)
Background 95% 1.3763 seconds (on CPU)

in order to generalize the system to get a better accuracy. We
also notice in the same figure that the processing time is large
due to the fact of using CNN on Matlab, and Matlab is known
to be slow, and the implementation of the CNN is currently not
optimized for speed. However, for realtime implantation, SDKs
such as [29] can be used. A recently optimized implementation
for speed has been published achieves an average precision of
at most 88.7% on smartphones [32].

2) Single Video Resolution for Training and Testing:
We now demonstrate the accuracy metrics of the proposed
framework on average. We use the video from YouTube [16].
We run the algorithm over the videos and plot the performance
metrics in Fig. 7(a), (b), and (c). We use one video to show the
relative performance between the fast and in-cloud detectors.
In Fig. 7(a), we the number of frames fed to each detector,
the number of detected cars, and the results of post processing
after detection. We can see the number of detected cars is
somehow close between the two detectors. However, after pre-
processing, more than 2/3rd of the vehicles that were detected
by the fast detector are eliminated due to false detections,
detection of elements above the horizon, or the bounding box
is not properly aligned between the detected lane markers. We
noticed that if we relax the lane markers constraint, then the
number of vehicles after post-processing becomes closer to the
in-cloud detector. It is also expected that the in-cloud detector
is more accurate especially in eliminating the false negatives.
However, to minimize the number of false detections in the
fast detector, we used the CNN detector and post-processing.

In Fig. 7(b), we show the number of detected motions. That
is, out of the multiple detected cars, in which a small number
of the detections might be false, the number of relative motions
is much smaller than the number of vehicles. This is due to
the fact that a detected motion has to be between two images
of the same vehicles, and the feature matching-based motion
detection is very strict in favour of accuracy. The accuracy
arises from the fact that we only detect a vehicle motion if
all matched feature points move in the same direction. This
procedure eliminates the noise in the background (i.e., another
vehicle detected within the bounding box, or the sidewalks).
We can see that the number of matching in in-cloud detector
is lower than the fast detector. We checked multiple frames in
the in-cloud detector, and we found that the detector usually
provides a bounding box that contains a noticeable portion
of the background. Features matched to the background will
reduce the accuracy of the motion detector. The same figure
shows the number of detected lane marker is the same for
both detectors, which is normal for a Hough transform-based
lane-marker detector. However, the number of detected relative
positions with respect to the lane marker is much lower than
the number of the detected cars using the either fast or in-cloud
detectors. This is due to the fact that we do not consider a lane-
marker until it gets repeated for multiple consecutive frames,
and that we require the centroid and the edges of the bounding
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box to be in the same relative position to the lane-marker.
Finally, the figure shows that we detected 543 false positive
detections above the horizon. This is how post-processing
eliminates such false detections. The in-cloud detector did not
results in any cars that are positioned above the horizon.

We show the processing times for each detector including
the lane marker detector in Fig. 7(c). We can see that the fast
detector is very fast while the in-cloud detector takes about 2
seconds (0.511 × 4 as the results are scaled in the figure for
the first column). The lane marker detection is very fast, too.

3) Different Video Resolution for Training and Testing:
What we want to achieve in this section is detection of
the traffic violation with multiple video characteristics, each
has a different resolution, frame rate, etc. We will shortly
demonstrate the results for different resolutions of a video,
and discuss the detected traffic violations.

We want to mention that we did not change the parameters
of the fast or lane detectors at all, although the detector could
be optimized for different resolutions. These parameters are
set in away that is suitable for a resolution that is either
360p and 720p. However, we don’t use any parameter tuning,
and we test the robustness of the detector across different
frame resolutions. For example, the search space of the lane
marker detection area is the same for all resolutions. Hence, it
performs poorly for the low resolution (144p) because it takes
the most of the image in the search space, and for the high
resolution (720p) because the search area is too small and it
becomes hard to detect lane markers. The fix for this issue is
to set the search area for the lane marker as a percentage of the
image size. We found that this hard thresholding works very
well, but we don’t put the result due to the space limitations
of the paper.

Another example for parameter tuning is the merge thresh-
old of the fast detector. The merge threshold used to generate
all the results is the same. However, it could be related
to the size of the input image. We found that the detector
struggles to find cars within the 144p video. Actually the
images were not clear at all. Increasing the merge threshold
could help in this case as multiple weak detections that are
not accurate accumulate to select an object within the input
image. Similarly, In the higher resolution, the merge search
window size for the fast detector could be enlarged in order
to capture cars with bigger sizes. These parameters can be
optimally selected given the device type, the camera resolution,
or the application settings.

An interesting test was performed when testing the fast
detector using multiple resolutions of the same video [16],
namely, 144p, 180p, 360p, and 720p. We generated these
videos from the same YouTube link. We would like to mention
that we trained the classifier with images that has different
resolution. In Fig. 8(a), we can see that the number of fames
is the same for all resolutions except for 144p, where some
frame are lost during conversion. The figure shows that there is
a pattern in the number of detections that follows the increase
in the resolution. However, Fig. 8(b) shows that these numbers
might be deceiving. For example, most of the detections do
not result in the same pattern when detecting the motion, the
lane markers, or relative positions. Hence, the fast detector
should be trained for several resolutions in order to perform

similarly regardless of the input video resolution. We did
not use this criterion for the generation of data, but it is an
interesting observation. Finally, we see a clear trend between
the resolution and the processing time of the fast detector,
and the lane-marker detector in Fig. 8(c). As the resolution
increases, the processing time increases, and vice versa.

4) Battery and Bandwidth Optimization: For the evaluation
of the optimization problem, we set the the optimization epoch
time to T = 10. We then restrict the battery and bandwidth
for each participant, by choosing a batter or bandwidth that
are uniformly distributed in the range [1, f(T, δ)], where δ is
an integer. We chose δ to enable smaller for the bandwidth
constraints in the experiment (i.e., the bandwidth constraint
are more stringent because some participants might not have
unlimited data plans. However, the simulations can be per-
formed in different ways as we show next. We set BQi = bTδ c
for δ = 3, and DQ

i = bTδ c for δ = 2, and we plot the results in
Fig. 6 (a). The figure shows the batter and bandwidth metrics
vs the number of participants.

First, we observe that knowing the navigation information
(dashed lines in the figure) has a lower use of the battery and
bandwidth compared to the estimated navigation information
(solid lines in the figure) regardless of the used metric or the
optimization problem. The dashed lines are mostly higher than
the solid lines, which means the scheme used more resources
either in terms of batter or bandwidth. We also observe for
this setting there is not a significant difference for performing
the joint optimization versus a metric specific optimization
(at least for the estimated navigation information case, i.e.,
solid lines). Hence, if the resources are scarce compared to the
optimization length. It can also be inferred from the figure that
as the resources increase, the resources utilization improves
for the solid lines. However, when the navigation information
is known, the combined battery and bandwidth optimization
provides significant improvement over separate optimization,
especially for the lower number of participants case.

We change the BQi = T − δ for δ = 2, and DQ
i = T − δ

for δ = 1, and we plot the results in Fig. 6 (b). In this
case, the bandwidth constrains should very close to the battery
constraints as the difference in δ is small. As expected, the
solid lines became closer to each others, which means that the
solving either of the problems would not make a significant dif-
ference. Interestingly, losing the navigation information would
also result in a significant gap between the solid lines and
dashed lines, which means that using accurate navigation in-
formation (i.e., bi[t]) would improve the utilization of resources
for a small number of participants. However, if the number of
participants is large, then, the navigation information cannot
provide significant improvement.

V. RELATED WORK

Car mobility and traffic violation detection has been studied
from different perspectives. One part studies the computer
vision interpretation of the car mobility. Another aspect is
the communication methodology. Third, the different specific
applications in the context. We provide the necessary review
of the current works.
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Fig. 6. Evaluation of the battery and bandwidth utilization metrics by solving the battery optimization problem (1)-(3), the bandwidth optimization problem
(5)-(7), and the combined battery and bandwidth optimization problem (9)-(12).

A. Visual Processing of Traffic Information

Haar-Like Cascade detector with AdaBoosting [33] is
considered one of the fast detectors with a rate that can reach
50 frames per second because it deals with the integral image,
and the learning procedure is performed through AdaBoosting
which chooses a small number of features. In [34], a fast
detector is used to classify the car from the background. In
[23], the Cascade classifier is used similarly to alarm the driver
if the car is closely tailgating the car in front of it [22]. The
authors suggested some pre-processing of the data such as
alignments of the cars in training set, and providing different
version of the image in the original data set. Different other
algorithms can be used for classifications and detection of cars
i images. For example, in [35], a method combining temporal
difference with and edge detector is used to detect cars. Such
methods is widely proposed in the literature, and considered
fast in terms of processing. However, these methods do not
work properly with cars of different sizes (e.g., buses and
trucks), and cause low accuracy of detection. Deep learning
and neural networks resulted into exceptional performance
in terms of localizing and detecting objects using traditional
and Region-based convolutional neural networks (CNN and
R-CNN) [30] [36] [37].

Lane detection has been a very active research topic in
visual sensing of intelligent vehicles. The top-view or some-
times referred to as “bird’s view” is a transformation method
that is widely used in the literature for detecting the lanes
on the road as in [38] [22] [39]. This method is formally
referred to as, the inverse perspective mapping (IPM). In [22],
the authors used the IPM procedure followed by a Hough
transform. In [39], a robust and fast lane detector is proposed
based on IPM, removing the outliers and reach excellent spline
fitting using the well-known RANSAC algorithm. In [38],
the authors used a combined IPM transformation and Hough

transform line detector to detect the lanes. In [35], a modified
Hough transform with a hardcoded search area is used for lane
detection. A robust and fast line detector is proposed in [40]
shows a potential to detect lines on roads.

The distance between the vehicle ahead of the camera (or
time to contact) has been studied in the literature. In [41],
the authors proposed a robust, fast, and accurate estimation of
time of contact between the car that has the camera within
and the car in-front of it. In [22], the authors used the pinhole
model to estimate the distance from the car ahead. In [42],
a modified Harris corner detector is used to track vehicles
motion. The famous feature detector used in the literature
is Scale-Invariant Feature Transform (SIFT) [43]. A faster
implementation version of SIFT is the Speeded-up Robust
Features algorithm (SURF) [25]. It is also worth mentioning
that combining other sensors with visual sensing could result
in better understanding of the environment. A good source of
information for visual processing on the roads is in [44]. The
paper discusses many references and how they detect objects,
lanes, motion using different machine learning algorithm,
probabilistic methods, and using monocular and stereo-vision.
A general architecture for video surveillance systems, namely,
hierarchical and networked vehicle surveillance, is proposed
where different used techniques in the literature are discussed
[45]. The general architectural system is overviewed, but no
performance evaluation is presented. A comparison between
roadside (pole-mounted, stationary) and in-vehicle (mobile
platforms) systems are presented in [46], but the authors focus
on camera-based roadside monitoring systems, with special
attention to omnidirectional setups. Another good source of
information for safety analysis and the traffic behaviour at
intersections with focus of visual sensing technology is in [47].
Different performance metrics are introduced, and are used to
evaluate analyze some of the algorithms in the literature.
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Fig. 7. Traffic violation metrics of the fast in-mobile and in-cloud detector
using the testing video [16]. a) We compare the number of detected objects

in the smartphone and the server, b) we illustrate the detected traffic
violation within the smartphone and the server, and c) we compare the

processing time for the different components of the system.

B. Communication Modes in Transportation Networks

Vehicles can communicate over the dedicated short range
communications (DSRC) spectrum or the cellular commu-
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Fig. 8. Traffic violation metrics of the fast in-mobile and in-cloud detector
using the testing video [16] with multiple resolutions. a) We compare the

number of detected objects in the smartphone and the server, b) we illustrate
the detected traffic violation within the smartphone and the server, and c) we

compare the processing time for the different components of the system.

nication infrastructure. The communication can occur in a
regular cellular infrastructure mode, where the vehicles relay
the information to the backend as a routing stage for the
destination vehicle. Another option is that vehicles can directly
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communicate in a device-to-device mode using 5G or over
the DSRC spectrum. A more delay-tolerant transmission can
occur via WiFi offloading. Communication between vehicles
has been widely studied in the recent literature [48], [49],
[50]. In [51], the authors proposed a method for optimizing
the collection of visual data crowd sourced by vehicular
networks. In [52], a solution to mitigate the communication
channel congestion is proposed using compressive sampling
of packets. Reliability of transmission and delay of packets
reception are still considered open research areas in vehicular
communications.

C. Applications of Connected Visual Processing in Trans-
portation

Normal cars on the roads can be used as active or passive
participants for crowd sourcing. They can capture images or
videos [53], [51], or provide the traffic state on the road.
Moreover, visual understanding of the driving scene is be-
coming a crucial part of autonomous vehicles [54]. Connected
vehicles can be used to optimize vehicles routing and fuel
consumption [55], or optimize traffic light operation [56].
Visual information of the roads can feed the algorithms with
additional information of the road state, and the number of
vehicles.

Safety is the top issue in driving, and visual processing
can be an asset to complement the communication capability
where the missed information can be crucial. Unlike most of
the work that is currently focused on autonomous driving, a
costly equipment that can be given to specific users such as
transportation officers, we propose a unique solution that is
low-cost, can be used for a variety of driving detection, and is
pervasive in nature.

VI. CONCLUSION

This paper propose a novel solution that provides accurate
and low-cost traffic violation detection. We design a framework
that uses the current cameras in smartphones, and implemented
a fast detector that works on the smartphones. The fast detector
works with good accuracy. Therefore, we propose the use the
deep CNN classifier to distinguish cars from backgrounds,
which has a very high accuracy. After that, we process the
videos on the servers-side using a more accurate detector
that tolerate-delay. After detecting cars in different frames,
we use feature matching following by an outlier detector
algorithm to match the positions of the cars within the frames.
The motion detector can classify the motion of the vehicle
in different directions and relative to the lane markers. The
sensory information of the phone such as GPS, gyroscope,
compass, and accelerometer are used to detect the relative
behaviour to the monitoring car. This can be an over- or under-
speeding vehicle, a vehicle driving over the lane marker or
switching lanes, etc. We demonstrated that the accuracy of the
proposed system is directly related to the accuracy of the used
computer vision algorithms. Moreover, the more data are used
to train object detectors and classifier, the better becomes the
accuracy. We also proposed a method to utilize the resources of
the participants according to the limited battery and bandwidth
of each participant, and the availability of the navigation infor-
mation. We show that the navigation information is important
for a lower number of participants, but loses importance as the

number of participants increases. We also demonstrated that
battery and bandwidth optimization can be combined, but that
does not provide significant improvement unless the amount of
resources have a large variance (i.e., the battery and bandwidth
are not close in value on average). Finally, we conclude that
our solution can be pervasive and can be a low-cost asset to any
driving detection facility, and that we do not compete with self-
driving vehicles, rather, the proposed solution can be integrated
to them.
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