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Abstract—Unlike sub-metering, which requires individual ap-
pliances to be equipped with their own meters, non-intrusive
load monitoring (NILM) use algorithms to discover appliance
individual consumption from the aggregated overall energy read-
ing. Approaches that uses low frequency sampled data are more
applicable in a real world smart meters that has typical sampling
capability of ≤ 1Hz. In this paper, a systematic literature
review on deep-learning-based approaches for NILM problem
is conducted, aiming to analyse the four key aspects pertaining
to deep learning adoption. This includes deep learning model
adoption, features selection that are used to train the model,
used data set and model accuracy. In our study, analyses the
performance of four different deep learning approaches, namely,
denoising autoencoder (DAE), recurrent long short-term memory
(LSTM) , Recurrent gate recurrent unit (GRU), and sequence to
point. Our experiments will be conducted using the two data
sets, namely, REDD and UK-DALE. According to our analysis,
the sequence to point model has achieved the best results with an
average mean absolute error (MAE) of 14.98 watt when compared
to other counterpart algorithms.

Keywords—NILM; deep learning; load disaggregation; recur-
rent long short-term memory; gate recurrent unit

I. INTRODUCTION

Energy disaggregation, also called non-intrusive load moni-
toring NILM, is the method of decomposing the aggregated en-
ergy consumption of the whole household down to individual
appliance usage. The problem was firstly introduced in Hart’s
seminal paper in 1992 [1], and has been investigated inten-
sively since then. NILM aims to allow the household occupants
to understand the consumption of each appliance and hence
take effective action towards reducing the power consumption.
Reporting individual appliance consumption could lead to
energy consumption reduction by more than 15% [2], [3].
Numerous NILM algorithms have been proposed, where they
can be divided into two main categories according to type of
data they employ, namely: low frequency and high frequency.
The former approach uses data that are collected in low
sampling rate typically (< 1Hz), while the latter relies on data
that are collected at high sampling rate (> 50Hz). Researchers
have been focusing on low frequency approaches as they can
be readily applied to current smart meters [4]–[7].

One of the most widely used metric in measuring an energy
disaggregation algorithm is the mean absolute error (MAE),
which can be formulates as:

MAE =
1

T

T∑
t=1

∣∣∣ŷ(i)t − y
(i)
t

∣∣∣ (1)

where y
(i)
t and ŷ

(i)
t are the actual and estimated power

consumption of the ith appliance at t instance, respectively.
The appliances that are usually picked for testing are: kettle,
microwave, fridge, dish washer and washing machine. Note
that, the analysis uses MAE as one of the metric measurement.

Recently, deep learning techniques have been widely used
in solving the low-frequency-based NILM problem, due to
their capabilities of extracting features and patterns [4]–[9].
For example, three models were proposed in [5]: first model
was based on denoising autoencoder (DAE) that is aiming
to reconstruct a clean target from the noisy data input. The
second was based a convolutional neural network (CNN)-
trained model with aim to estimate the start time, end time
and mean power demand. While the third was based on
the long short-term memory (LSTM) recurrent neural net-
work (RNN) architecture. The study has concluded that the
DAE, CNN,and LSTM-based RNN architectures performed
adequately well achieving MAE score of 18, 14 and 70 in
watts respectively, when compared to non-deep learning-based
techniques counterparts of combinatorial optimization (CO)
and factorial hidden Markov model (FHMM) both achieved
higher error, i.e. MAE of 70 and 170 respectively [5]. Note
that, all of the discussed approaches in [5] were compared
using the Domestic Appliance-Level Electricity (UK-DALE)
data set [10] and using active power as input features.

II. BACKGROUND

In [11], a hybrid model based on both hidden markov
model (HMM) and deep neural network (DNN) was proposed.
It works by training HMM with two emission probabilities,
one for the single load to be extracted and the other for
the aggregate power signal. To elaborate a little, Gaussian
distribution was used to model observations of the single
load whereas observations of the aggregate signal are modeled
with a DNN. Aiming to learn more features, MoWan He
et al. [12] modified the RNN of [5] by adding multiple
parallel convolutional layers with varying filter size to detect
features from aggregated signal. This idea was borrowed from
GoogleLeNet [13] model for image recognition and it’s also
used in natural language processing.

All approaches so far tackled NILM as a sequence to
sequence, given a sequence of aggregated power try to find
the sequence of the appliance disaggregated power. However,
in [6] a sequence to point model was proposed, where given
a sequence of aggregated power find the mid-point in the
appliance disaggregated power sequence. By applying sliding
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window on the aggregated data, the model will cover all
points in the disaggregated signal. This new approach was
compared to the autoencoder approach of [5] and has achieved
a significant low error of MAE= 15.47 across all appliances
compared to 93.49 achieved by DAE counterpart.

Typically, the active power which is the actual power that
is consumed measured in watts, was the only feature that was
used in energy disaggregation in low frequency deep learning-
based approaches. However, M. Valenti et al. [7] introduced
the idea of using reactive power, The wasted power resulting
from inductive and capacitive loads measured in volt-amperes
reactive, with the active power. Two different data-sets were
used, namely UK-DALE [10] and Almanac of Minutely Power
data set (AMPds) [14], where the model of in [7] was able to
outperform the model proposed in [5] by around 8.4% and
8.4% using UK-DALE data set and AMPds, respectively.

D. Murray et al. [4] presented a study on the transferability
of neural network approaches across different data-set. The
purpose of the study was to measure the scalability of neural
network approaches in large scale smart meter deployment.
Two architecture were proposed, a CNN architecture with
28,696,641 parameters and a gate recurrent unit (GRU) archi-
tecture with 4,861 parameters [4]. Evaluation was conducted
across three data sets: REDD data set [15], UK-DALE [10],
and REFIT [16], where models were trained on one data set
and tested on another. Results from [4] showed that the two
proposed architecture preformed well in transferability test
with minimal performance drop compared to training and test-
ing on the same data set. Although Both GRU-based network
and CNN-based network showed similar performance, the
GRU-based network was easier to train and less complex due
to having less trainable parameters compared to CNN. In [17],
C. Shin et al. explored a new direction for energy disaggrega-
tion by combining regression and classification network. By
multiplying regression output with classification probability
to form the final estimates, their proposed model which is
employing subtask gated networks (SGN), outputs the power
estimation gated with on/off classification. In their experiment
in REDD and UK-DALE data-sets, they reported that SGN
showed 15and30% improved performance on average when
compared to of the FHMM [18], and DAE of [5].

Against this background, we will analyze the performance
of four different deep learning approaches, namely, DAE,
Recurrent LSTM, Recurrent GRU, and Sequence to point,
aiming to evaluate their accuracy within the NILM problem
context. Our experiments will conducted using the two, well-
known, data-sets [15] and UK-DALE [10]. The rest of the
paper is organised as follows. The experiment design will be
detailed in Section III, in which the data sets selection criteria
will be explained. In Section IV the experiment performance
is quantified. Finally, our conclusions will be offered in Sec-
tion V.

III. EXPERIMENTAL DESIGN

This section will discuss our experiment set-up in which
we selected the two most widely used data set, namely
REDD [15], and UK-DALE [10]. During our experiment, we
will conduct a transfer-ability test on each of the following
four models:

• Denoising Autoencoder: Denoising autoencoder
(DAE) was introduced by J. Kelly et al. [5]. It’s a
sequence to sequence model that works by attempting
to reconstruct a clean target from a noisy input. They
showed that denoising autoencoders performed better
than other architectures for sequence to sequence
learning. The Keras implementation of the model (the
building of layers) was taken from a reimplementation
of Kelly DAE model in Keras by Taiwan Power
Company1.

• Recurrent Neural Network (LSTM): The recurrent
LSTM model was also introduced by J. Kelly et al. [5].
It’s a point to point model that keeps a memory of the
previous entered point. The model implements LSTM
layer to overcome the vanishing gradient problem
where gradient information disappears over time.

• Sequence to Point:
Sequence to point was introduced by C. Zhang et al
[6]. It’s a CNN model where it maps a sequence of
the input power to a midpoint in the sequence of the
appliance power consumption.

• Recurrent network with GRU: The idea of using gate
recurrent unit (GRU) instead of LSTM in recurrent
network was proposed by D. Murray et al. [4], Krys-
talakos et al. [9] and [19]. Since the there is different
models with different implementations, we will use
the LSTM model from (b) but we replace the use of
LSTM with GRU to medicate the poor performance
of LSTM achieved by J.Kelly experiment.

A. Data Set Selection

The data set that was selected for this experiment are
REDD [15] and UK-DALE [10] data set. These two data set
was the most used data set from our literature review. Due to
the different sampling of the two data set, we re-sampled the
data set to 1 sample per 6 seconds. For UK-DALE, we used
data from house #1 and house #2 to train our models while we
used data from house #5 for testing. For REDD, we used data
from house #1 and house #2 to train and data from house #3
for testing. Since UK-DALE data set has data of a period of
more than 4 years and REDD data set has a period of around
3 months, we only selected a small portion window frame
of UK-DALE that is roughly of around 6 months and its the
same time window that was used by J. Kelly et al. [5] in their
experiment. The Data sets were converted to a NILMTK [18]
compatible format NILMTK 2 (non-intrusive load monitoring
toolkit) is a python library that simplify extracting, processing
and handling data from NILM data set.

B. Appliance Selection

We want to test our model of the two type of appliances,
on/off state and the multi-state appliances. Also, the selected
appliance needed to exist on both the data set to be used for
the transferability test. Two appliance were selected for the
experiment, microwave which represents on/off state appliance
and the dish washer which represents the multi-state appliance.

1github.com/hyl0327/neuralnilmtp
2github.com/nilmtk/nilmtk
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We wanted to include the washing machine to our test, but
due to some issues we faced during code implementation that
prevented us from extracting and performing data augmenta-
tion on washing machine data from REDD data set we had to
exclude it from our test.

C. Data Augmentation

Here we prepared the data according to the experiment
design of J. Kelly et al. [5]. Instead of taking a portion of
main data and the a portion of matching time-frame from the
appliance, we follow a complex procedure where we select
the data by the activation of the appliance. We select all
the activation of the desired appliance in our data set that
satisfy the criteria in Table I. This insures that only complete
activation event of an appliance is used for the experiment.
These activations are then matched with the main power data
that aligns with it. Finally, a random portions of the main
power data are selected with the condition that the target
appliance is not active during the selected time-frame.
Synthetic data were also used in the experiment. We created
synthetic data by combining the activations of multiple appli-
ances with the target appliance to create a new input data.
This procedure was suggested by J. Kelly et al. [5] paper
which helped increasing the amount of the data to be used for
training that is according to our activation selection criteria.
Synthetic data were only used for training and it was created
by combining the activation of the following appliances: kettle,
washing machine, dish washer, microwave and fridge. The
code for performing data augmentation and synthesising was
taken from J. Kelly et al. [5] github repository3, although
we had to modify it since it does not work anymore due to
the incompatibility of the python version using in the J.Kelly
project with the minimum version of the dependencies it needs.

TABLE I. CRITERIA FOR SELECTING ACTIVATION, THE SAME CRITERIA
USED IN J.KELLY ET AL. [5] EXPERIMENT

Appliance Max power
(watts)

On power
threshold
(watts)

Min. on
duration
(secs)

Min. off
duration
(Sec)

Microwave 3000 200 12 30
Dish washer 2500 10 1800 1800

D. Data Normalization

There is different approaches for normalizing energy data.
In C.Zhang et al. [6] experiment, they subtracted the input
and the target data by the mean and then divides them by the
standard deviation. While in J. Kelly et al. [5] experiment, they
only divided the input by the standard deviation of a random
subset from the whole input, while for the target data they
divided it by it’s maximum power draw. However, they updated
their project code to divides the target data by a standard
deviation of a randomly selected subset from the whole target
data. A common approach when normalizing data for deep
learning is to just divide both the input and the target values
by the maximum value in the input data. We performed a
quick test using these approaches on small portion of data, and
we found that by using the standard deviation of a randomly
selected subset of the input and the target and then dividing

3github.com/JackKelly/neuralnilm

them by their the computed standard deviation achieved better
results. Hence we selected this approach for our experiment.

E. Training

The models were implemented using TensorFlow with
Keras and were trained on our personal machine with NVIDIA
GTX 970. The window length of data used are depending on
the appliance and is taken from J. Kelly et al. [5] experiment.
For microwave we used a window length of 288 sample
(1728 seconds) while the dish washer we reduced the window
length to 1024 sample (6144 seconds) from 1536 sample (9126
seconds) due to getting out of memory error in our computer.
Furthermore, the window length used for training the sequence
to point model were reduced to 288 samples for both appliance,
this was done to overcome the out of memory error since when
training the sequence to point model we need to apply a sliding
window approach on the input data and map each subset to a
single point. The training epochs varies from model to model.
For DAE we used epoch of 30, while for RNN LSTM and
GRU we reduced the number of epoch to 20 due to it taking
longer to train in our hardware. For the sequence to point
model, we used an epoch of only 10, this was done because it
takes roughly around 40 minute per a single epoch due to the
increase in the amount of data when sliding over the input.

F. Evaluation Criteria

Each approach is trained on an on/off state appliance and
on a multi-state appliance to showcase it’s capabilities in not
only detecting the simple patterns of on/off appliances, but to
also detect the complex patterns of the multi-state appliances
like the dish washer. Furthermore, the transferability test
will showcase models capabilities in generalizing the learned
features to other unseen, new instances of the same appliance.
Each model will try to estimate the active power (measured
in watts) of each appliance when given the active power of
the total load. In this experiment, will be using the mean
absolute error (MAE) to measure the estimation accuracy of
each models under the different mentioned circumstances. The
formula for MAE can be defined as follows:

MAE =

∑n
i=1 abs(yi − xi)

n

The sum of the of the differences between the prediction value
(yi) and the true value (xi) is then divided by the number of
samples (n).

G. Validity Evaluation

In our experiment, we want to conduct a transferability
test on each trained model. Due to the differences in power
consumption of each house in the two data set used, this
will result in different computed standard deviation that is
used for normalizing the data. To overcome this issue, the
input data on both data sets were normalized using the same
standard deviation. The standard deviation that is used are the
average of the standard deviation of two randomly selected
subsets of each data set. For the target appliance data, it was
normalized in regular manner. although this will results in the
appliance being normalized differently in each data set, we
believe that this won’t hurt the results of the appliance as
the normalization will not affect it’s power distribution (i.e.
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assuming that microwave on REDD data set consumes 1100
watt and microwave on UK-DALE consume 1500 watts, when
both are normalized that will be in the range of small numbers
that are almost identical to each other. After prediction when
we multiple the predicted number by the standard deviation
that was used for normalizing it, it should results on both
1100 and 1500 values being brought back). Our experiment
results unfortunately might not be generalized, since we only
used a small portion of the data sets. This also accompanied
by using low and uneven epoch per model during training.
This was necessary due to the limited hardware power on the
conducted computer which takes a long time to train these
networks and the time constraint on our experiment. Another
validity concern regarding the transferability test is that all our
models does not have dropout layers, which helps in reducing
overfitting. The decision to not add dropout layer was that
the original architecture of each model from their respective
research paper did not include dropout layers. Also since we
are performing low number of epochs during training, we felt
that using dropout layers could have negative effects to our
results.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In Table II we showcase the mean absolute error of
microwave and dishwasher when trained on each models in
REDD data set. While Table III shows the results on UK-
DALE data set. The sequence to point model achieved the
highest accuracy on both data set and both appliances. This
can be attributed to the deep architecture that consists of
5 Convolution layers, which adds more parameter that can
capture more feature on power patterns. Although it took the
sequence to point the longest to train, we only trained it for
10 epochs compared to 30 of DAE and 20 to the RNN’s
models and we used a shorter window length compared to
DAE and to the suggested window length by C.Zhang et al.
[6] to coup with our shortage in GPU memory. The DAE model
outperformed both recurrent notworks on both data sets and
appliances, which confirms J. Kelly et al. [5] finding that CNN
models outperforms RNN model. On the other hand, the use
GRU instead of LSTM did improve the performance on on/off
state machine (microwave) while significantly improving the
performance on the multi-state appliance (dishwasher). Look-
ing at the results from both data sets we can notice that UK-
DALE produce a greater challenge than REDD data set to our
models, as UK-DALE contains more appliances per house that
makes the input power signal more noisy. In Fig. 1 we visualize
some example disaggregations that was performed by the four
models on both data sets.

TABLE II. THE APPLIANCE MEAN ABSOLUTE ERROR (MAE) IN WATTS
FOR REDD DATA SET. BEST RESULTS ARE SHOWN IN BOLD.

Appliance DAE RNN LSTM Seq2Point RNN GRU
Microwave 26.39 42.04 13.15 34.58

Dish washer 51.02 90.76 9.93 62.77

Regarding the transferability test, the results can be seen
in Table IV for training on REDD and testing on UK-DALE,
and Table V and the average MAE of both when trained and
tested on same data set or different can be seen in Fig. 2. We
can see that on UK-DALE to REDD data sets, the sequence to

TABLE III. THE APPLIANCE MEAN ABSOLUTE ERROR (MAE) IN WATTS
FOR UK-DALE DATA SET. BEST RESULTS ARE SHOWN IN BOLD.

Appliance DAE RNN LSTM Seq2Point RNN GRU
Microwave 39.61 57.12 20.21 46.64

Dish washer 61.17 93.18 16.61 65.73

point model achieves better results than the others. However,
on the REDD to UK-DALE data sets it fails behind the DAE
and RNN LSTM. Although sequence to point model achieved
better results in same data set tested and when trained on UK-
DALE and tested on REDD, it sufferers the biggest increase
in MAE when trained on REDD and tested on UK-DALE.
We believe it was due to REDD data set containing less data
(in terms of time-frame window and number of activations
for trained appliance) compared to UK-DALE, this and with
the low number of epoch used for training the sequence to
point model might had an effect in it’s performance when
trained and tested on different data sets. The low number of
data on the REDD data set also affected other models when
trained on REDD and tested on UK-DALE (compared the other
way around). The RNN LSTM model seems to be the least
affected by testing on different data set than the one trained
on, followed up by RNN GRU. This could be an indication on
the capability’s of RNN in transferring well to other data sets.
Overall, the sequence to point model still has the best average
MAE on both tests despite having a massive increase in error
when transferred to other data sets.

TABLE IV. THE APPLIANCE MEAN ABSOLUTE ERROR (MAE) IN WATTS
WHEN TRAINED ON REDD DATA SET AND TESTED ON UK-DALE DATA

SET. BEST RESULTS ARE SHOWN IN BOLD.

Appliance DAE RNN LSTM Seq2Point RNN GRU
Microwave 46.19 56.96 66.80 59.98
Dish washer 152.69 92.94 100.78 148.35

TABLE V. THE APPLIANCE MEAN ABSOLUTE ERROR (MAE) IN WATTS
WHEN TRAINED ON UK-DALE DATA SET AND TESTED ON REDD DATA

SET. BEST RESULTS ARE SHOWN IN BOLD.

Appliance DAE RNN LSTM Seq2Point RNN GRU
Microwave 49.22 42.14 41.97 54.39

Dish washer 87.35 138.90 78.60 88.26

V. CONCLUSION

A brief background on energy disaggregation techniques
were discussed. Then a brief summary of deep learning-
based approaches using low frequency data was presented. We
implemented four models selected from our research literature
that we mentioned in our literature review. We applied the
four models on two data sets, REDD and UK-DALE which
are the two most used data sets in energy disaggregation
research papers. We conducted an experiment were we trained
the mentioned four models twice for each of the two data sets.
The models were then tested on both the same data set (testing
on unseen data from another house) and on the other data set.
The comparison was carried out between the four models using
mean absolute error on two scenarios, training and tested on
the same data set and training and testing on two different data
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Fig. 1. Example of disaggregation results for microwave and dishwasher on both REDD and UK-DALE data set. The Y-axis corresponds to watts.

Fig. 2. The average MAE of each model when trained and tested on the
same data set or on different data set.

sets. We noticed that the sequence to point model proposed by
C.Zhang et al. [6] achieved the best results with an average
MAE of 14.98 watts when tested on the same data set and
72.0 watts when transferred to a different data set. While on
the other hand, both recurrent models performed the worst in
the same data set testing and achieving close to the average
score in the transferability test. Hence, the transferability is
the most challenging issuing that is limiting the scalability of
NILM-based solutions.
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