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Abstract—Mobile-edge computing (MEC) is a new paradigm
with a great potential to extend mobile users capabilities because-
of its proximity. It can contribute efficiently to optimize the energy
consumption to preserve privacy, and reduce the bottlenecks of
the network traffic. In addition, intensive-computation offloading
is an active research area that can lessen latencies and energy
consumption. Nevertheless, within multi-user networks with a
multi-task scenario, select the tasks to offload is complex and
critical. Actually, these selections and the resources’ allocation
have to be carefully considered as they affect the resulting
energies and delays. In this work, we study a scenario con-
sidering a user-adaptive offloading where each user runs a list
of heavy computation-tasks. Every task has to be processed in
its associated MEC server within a fixed deadline. Hence, the
proposed optimization problem target the minimization of a
weighted-sum normalized function depending on three metrics.
The first is energy consumption, the second is the total processing
delays, and the third is the unsatisfied processing workload. The
solution of the general problem is obtained using the solutions
of two sub-problems. Also, all solutions are evaluated using a
set of simulation experiments. Finally, the execution times are
very encouraging for moderate sizes, and the proposed heuristic
solutions give satisfactory results in terms of users cost function
in pseudo-polynomial times.

Keywords—Mobile edge computing; user-adaptive offloading;
computation-intensive offloading; per-task delay; tasks satisfaction
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I. INTRODUCTION

A variety of recent Smart Mobile Devices (SMD) have
capabilities to process some emerging attractive computation-
intensive applications. Besides, these applications which are
resource-hungry led to appear a novel kind of constraints
related to resources insufficiency. They yield new defies
particularly with regard to energetic and latency concerns.
The offloading technique [1] in the context of Mobile Edge
Computing (MEC) [2], [3] offers a chance to free these devices
from generated heavy tasks by migrating them to a nearby edge
infrastructure with extra powerful resources. Therefore, the
power consumption of a mobile device as well as the latency
responses can be reduced if the device can offload some of its
heavy tasks to a MEC server.

The multi-user offloading problems with the single-task
scenario in MEC networks was extensively considered. Previ-
ous works studied the energy consumption or processing delay
optimization. To reduce the overall energy consumption, the

authors of [4], studied the offloading decisions and the alloca-
tion of communication resources. Alike, in [5] an optimization
problem is derived to select the best offloading policy while
saving the energy consumption. The next work [6] present, in
our knowledge, the first try to enhance the energy consumption
while considering devices with multiple independent tasks.
But, the authors impractically consider mobile devices with the
same tasks’ number. Lately, the authors of [7] studied a single-
user scenario with multi-task setting while they optimize radio
resources and local frequency. For the issues of joint resources
optimization in MEC networks, many previous works jointly
addressed the radio and computation resources optimization for
the multi-user scenarios [8]. Besides, in [9] the authors jointly
decide the allocation of resources (remote computation and
communication) to optimize the energy consumption while de-
vices intend to offload their tasks to a MEC server within a 5G
heterogeneous network. Likewise in [10], the authors jointly
optimize the offloading decisions and resources’ allocation
(both computation and communication). Nevertheless, they
neglected the energy consumption during tasks processing at
the server. Also, withing a cloud Fog environment in [11], the
problem of resource allocation to optimize energy consumption
with load balancing is studied.

Different to [12] where the system’s energy only is op-
timized while all the offloadable tasks of a given SMD are
constrained to the same delay, this paper presents a generaliza-
tion scenario regarding mainly the following three points: the
first generalization point relies on the per-task delay property
where we consider every task with its proper delay constraint.
The second point concerns the existence of a one-to-many
association that links every SMD to many available MEC
servers. Accordingly, each task has to be processed in its
associated ES. Finally, the third point relies on the user-
adaptive offloading property where we target the optimization
of a normalized objective function that considers not only the
energy consumption metric, but two other important metrics.
The first is the sum of the accumulated processing delays,
and the second is the total offloaded workload. Thus, the
proposed system architecture offers the possibility for every
user to adapt its offloading concerns according to its needs
or/and constraints.

We organized the rest of this work as follows. We describe
the system’s model in Section II . The obtained optimization
problems are presented in Section III , and their resolution
approach is summarized in Section IV . Evaluation and results
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Fig. 1. A multi-server multi-task mobile edge-computing system

are presented in Section V . Finally, Section V I concludes the
paper.

II. SYSTEM MODEL

The adopted system’s architecture in this work is shown
in Fig. 1. It involves a set of Macro Cell (MC) where each
MC is optionally equipped with an Edge Server (ES). The
set of M available, supposed heterogeneous, edge servers
is denoted S = {s1, s2, ..., sM}. Besides their traditional
services, all macro-cells with ES can provide a set of indepen-
dent computation-offloading services using the virtualization
technology. Furthermore, we propose a distributed solution in
each MC that considers its communication resources and the
offloading decisions related to all SMDs within its coverage.
Accordingly, a given MC, in this work, consists of a set of N
Smart Mobile Devices (SMDs) denoted E = {e1, e2, ..., eN}.
Each SMD is characterized by the parameters that are briefly
presented in Table I.

Mainly, SMD i holds a list of ni independent heavy tasks
denoted τi =

{
τ1
i , τ

2
i , ..., τ

ni
i

}
. These tasks are assumed to

be computationally intensive and delay sensitive. In addition,
each task is viewed as an atomic input-data task, and cannot
be divided into sub-tasks. Moreover, it is characterized by
the following three properties τ ji , 〈dji , λ

j
i , L

j
i 〉. In bits, the

first property refers to the amount of the input parameters
and program codes to transfer from the SMD to the edge
server. In cycles, the second property specifies the workload
referring to the computation amount needed to accomplish the
task’s processing. In seconds, the third property identifies the
maximum tolerated delay within which τ ji has to be processed
locally or at its associated edge server.

Moreover, within a given SMD i, its tasks are grouped
into a set of ngi groups denoted Gi = {g1

1 , g
2
1 , ..., g

ng
i

1 }. Each
group gji is associated to a service hosted in an ES. The
tasks of a given group are processed locally or transmitted via
the current MC to their associated edge server. Accordingly,
the processing frequencies related to SMD i are fLi for its
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Fig. 2. Group-server association example

local processing, and fSi,k for remote processing at server sk.
For ease of use, the edge server sk is denoted k. Moreover,
we use a mapping function gi(.) to represent the association
GROUP-SERVER of the tasks’ of SMD i. Fig. 2 shows
the list τ1 and the corresponding group-server associations.
Accordingly, the mapping function g1(.) is defined by the
following mapping list [(j, g1(j))]j∈[[1;6]]. This list contains
three groups where the first g1 = {τ2

1 , τ
3
1 , τ

5
1 } is associated

to server s1; the second group g2 = {τ4
1 , τ

6
1 } is associated

to server s2, and the third g3 = {τ1
1 } is associated to

server s3. Thus, the g1 function is given by the mapping
list [(2, 1), (3, 1), (5, 1), (4, 2), (6, 2), (1, 3)]. Here g1(j) = k
refers to an association of task τ j1 with server sk. Moreover,
it is assumed that the offloading process to remote servers
experiences additional delay. Similar to the model in [7], we
consider that this delay is proportional to the length of the data
with a scaling factor δk that depends on the backhaul between
the remote MC that shelter the ES sk and the current MC.
Then, the total experienced delay of a d bytes task equals δk.d.
Moreover, due to the complexity of evaluating the delay and
energy consumption of the communication process between
remote MCs and without loss of generality, we ignore the
power consumption occurred at the backhaul network.
Further, the network model of our previous work [12] is
adopted. Thus, we assume that ei uses an estimated uplink rate
ri in each allocated subchannel. Additionally, with a number
βi of allocated subchannels, the total of its allocated uplink
rate is Ri = βiri.

A. The Offloading Model

All tasks are time constrained and can be processed either
locally or offloaded to the edge server. Thus, the binary
offloading decision variable for task τ ji is denoted αji where
αji = 1 refers to an offloading decision, whereas αji = 0
indicates a local processing decision.

αji ∈ {0; 1} ; i ∈ E; j ∈ [[1;ni]] (1)

Additionally, the processing satisfaction of task τ ji is intro-
duced using the binary variable γji where γji = 0 refers to a
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TABLE I. IMPORTANT NOTATIONS

Notation Definition

E Set of smart mobile devices
N Total number of smart mobile devices
K Total number of allocatable subchannels
Kt Maximum allocatable number of subchannels per-SMD
Nt Number of tasks threshold to enable ”Heuristic Tasks Distribution”
Nm Average tasks’ number for all SMDs
ni Number of tasks handled by SMD i
τi Computation tasks’ set of SMD i
πi The parameters’ set of SMD i
Di,0, Di Total initial and offloaded tasks’ data size at SMD i
Λi,0,Λi Total initial and offloaded tasks’ workload at SMD i
fL
i Local CPU frequency of SMD i (cycles/s)
fS
i,k Allocated CPU frequency for SMD i at sk (cycles/s)
ξLi Energy coefficient depending on the chip architecture of SMD i and fL

i

ξSi,k Energy coefficient depending on the chip architecture of sk and fS
i,k

pTi Data transmission power of SMD i
ri Uplink rate of SMD i
δi,k Backhaul delay scaling factor related to sk in SMD i

satisfied processing, otherwise γji = 1.

γji ∈ {0; 1} ; i ∈ E; j ∈ [[1;ni]] (2)

This variable is defined such that tLi,j + tOi,j 6 Lji ⇐⇒ γji = 0.
Here Lji is the τ ji task’s latency requirement. tLi,j + tOi,j is the
time to process τ ji and it is given in equations (7) and (10).
This expression is formulated using the following constraint
where M is a sufficiently large constant:

−Mγji6L
j
i − t

L
i,j− tOi,j<M(1−γji ) ;i∈E;j∈[[1;ni]] (3)

The total number of subchannels assigned to ei is denoted βi
where:

βi ∈ [[0;Kt]] ; i ∈ E (4)

Here Kt is a threshold value that is chosen according to
N in such a way that it can take K where N = 1; and
decreases with increasing value of N. Additionally, the sum of
all allocated subchannels must not exceed K the total available
subchannels, which gives:∑

i∈E
βi 6 K (5)

The decision βi = 0 forbids offloading for ei. In this case, it
has to locally process all its tasks; whereas βi 6= 0 indicates
that ei has to offload at least one task. This fact leads to the
following offloading property (βi = 0) ⇐⇒ (

∑ni

j=1 α
j
i = 0)

which must hold for every SMD i. It can be formulated as:

βi +

ni∑
j=1

αji 6 2βi

ni∑
j=1

αji ; i ∈ E (6)

B. Processing Model

If ei locally executes task τ ji , its processing time in seconds
lasts λj

i

fi,L
. Then, with its processing order, the actual local

processing time of task τ ji is:

tLi,j = (1− αji )
j∑

k=1

(1− αki )
λki
fi,L

(7)

If ei offload task τ ji to server sk, its offloading time tOi,j
includes both, the transmission time tTransi,j and the waiting
time tWait

i,j ; which gives tOi,j = tTransi,j + tWait
i,j . The second

part includes the backhaul delay tDelayi,j , the execution time
tExeci,j , and the time to receive the result out from the server
tResi,j ; which gives tWait

i,j = tDelayi,j + tExeci,j + tResi,j . Because the
data size of the result is much smaller than the input data size,
we ignore the time and the energy consumption of receiving
out the result( see [6], [8], [13], [14] ). Furthermore, without
considering the delays relative to the processing order of task
τ ji , these delays in seconds are given by :(

tTransi,j , tDelayi,j , tExeci,j

)
=

(
dji
βiri

, δgi(j)d
j
i ,

λji
fSi,gi(j)

)
(8)

Now, with its processing order, the actual transmission delay

of task τ ji is tTransi,j =
αji
βiri

∑j
k=1 α

k
i d
k
i . For ei and with the

sequential processing of the tasks’ group in each server, the
waiting delay of task τ ji is:

tWait
i,j =δgi(j)

j∑
k=1

1(gi(j)=gi(k))αki d
k
i +

1

fS
i,gi(j)

j∑
k=1

1(gi(j)=gi(k))αki λ
k
i

(9)
Subsequently, its offloading delay is:

tOi,j=
αji
βiri

j∑
k=1

αki d
k
i +

j∑
k=1

(
1(gi(j)=gi(k))αki

(
δgi(j)d

k
i +

λki
fS
i,gi(j)

))
(10)

Also, for ei and the tasks’ processing orders we have:

tTransi =
1

βiri

ni∑
j=1

αjid
j
i =

Di

βiri
(11)

C. Energetic Model

In this section, all energy expressions are given in Joule.
Then, the processing of task τ ji consumes the amount of
energy ei,j = ξiλ

j
i where ξi is a power coefficient depending

on the processing unit’s chip architecture and the processing
frequency [9], [14]. Thus, the local energy consumption of
task τ ji is eLi,j = ξi,Lλ

j
i . Accordingly, the ei’s local energy

consumption is:

eLi = ξi,L

ni∑
j=1

(
1− αji

)
λji = ξi,L(Λi,0 − Λi) (12)

Here, ξi,LΛi,0 = ELi,0 is the energy consumption of the local
processing of all tasks.

Furthermore, the energy consumption of the offloading pro-
cess is eOi = eTransi + eExeci . Here eTransi is the transmission
consumption occurred at ei, and eExeci is the energy consump-
tion occurred during the processing of offloaded tasks within
all ESs. The first is obtained by multiplying the transmission
period in the offloading processes by the transmission power.
Thus:

eTransi = PTi t
Trans
i =

PTi Di

βiri
(13)

Again, the energy consumption while executing task τ ji at its
dedicated edge server is eExeci,j = ξSi,gi(j)λ

j
i [9], [14]. As a
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result, the overall offloading energy consumption occurred at
ei is :

eOi =

 PTi Di

βiri
+
∑ni

j=1 ξ
S
i,gi(j)

αjiλ
j
i ;βi 6= 0

0 ;βi = 0
(14)

D. The Cost Function

Now, the total ei’s energy consumption can be formulated
using its tasks’ offloading allocations given by a vector of ni
binary variables: αi =

(
α1
i , ..., α

ni
i

)
and its allocated number

of uplink subchannel(s) βi. This energy includes the local
processing consumption (if some tasks are locally processed)
and the offloading process consumption (if some tasks are
offloaded). It is formulated as:

Ei(αi,βi)=

 ξi,L(Λi,0−Λi)+
PTi Di

βiri
+

ni∑
j=1

ξS
i,gi(j)

αjiλ
j
i ;βi 6=0

ξi,LΛi,0 ;βi=0

(15)
Similarly, w.r.t. αi and βi, the ei’s overall processing time
denoted Ti (αi, βi) includes the processing delays of the local
and the offloaded tasks using equations (7) and (10). Thus,
we have:

Ti (αi, βi) =

ni∑
j=1

(
tLi,j + tOi,j

)
(16)

Finally, w.r.t. the ei’s tasks satisfactions given by a ni binary
variables’ vector γi =

(
γ1
i , ..., γ

ni
i

)
, the total workload of its

unsatisfied tasks is:

Wi (γi) =

ni∑
j=1

γji λ
j
i ; i ∈ E (17)

At this stage, we formulate a multi-criteria offloading with an
elastic budget model for every SMD. Thus, each device looks
at three metrics: its energy consumption and latencies while
processing all its tasks, and its unsatisfied total processing
workload. The proposed multi-objective function for each
SMD is expressed with a weighted sum of the three proposed
metrics. Moreover, the contribution of ei is formulated using
the following weighted-sum function:

Fi(αi,βi,γi)=xi Ei(αi,βi)

EL
i,0

+yi
Ti(αi,βi)

Li
+(1−xi−yi)Wi(γi)

Λi,0
(18)

Here, xi and yi are two parameters related to SMD i that
determine its offloading policy. Their values are choosen by
the SMD policy such that the following three weights xi, yi
and 1 − xi − yi are in the interval [0,1]. By deciding these
weights, the user can adjust the priority to give to each metric.
This operation depends on its preference regarding delay-
sensitivity, energetic constraints, and its processing capability.
For example, (xi, yi) can be set to (0,1) for SMDs running
delay sensitive applications whereas they can be set to (1,0)
for energy-constrained devices. Also, for SMDs with bad
processing capability, (xi, yi) can be set to (0,0).
Additionally, the three denominators in this expression are
variable-independent terms that serve to normalize the cost
function. As a result, the overall cost function of all SMDs is
finally expressed as:

F (α, β, γ) =
∑
i∈E

Fi (αi, βi, γi) (19)

The variables are given by α (a global vector composed
of N vectors, each vector αi of length ni contains the ei’s
tasks offloading decisions), γ (a global vector composed of
N vectors, each vector γi of length ni contains the ei’s tasks
satisfactions variables) and β (a global vector containing N
radio spectrum allocation βi for all SMDs).

III. THE OPTIMIZATION PROBLEMS

A. The General Problem Formulation

In our proposed optimization problem, we target to mini-
mize three important metrics that influence the system’s perfor-
mance and the users’ satisfaction. Accordingly, we formulate
our optimization problem which we denote problem P1 as :

P1:minimize
{α,β,γ}

F(α,β,γ)

s.t. (1),(2),(3),(4),(5),(6)
(20)

B. Problem Decomposition

The P1 problem is an integer programming optimization
problem. To deal with its high computational complexity, we
decompose it into a sub-optimal scheme. P1 decides for the
offloading and satisfaction of tasks as well as the subchannels
allocations. Thus, we derive a set of sub-problems denoted
User-adaptive Offloading and Satisfaction Decisions (UOSD)
where each instance concerns a given SMD and a subchannels
allocation.

1) The User-Adaptive Offloading and Satisfaction Deci-
sions sub-problem: The UOSD sub-problem for user ei is
denoted P2(i, βi). Its formulation uses a known fixed number
of subchannels βi which satisfies βi ∈ [[1;Kt]]. Then, the ob-
jective function is Fi (αi, βi, γi). Accordingly, the variables of
decision are the following two vectors αi =

(
α1
i , α

2
i , ..., α

ni
i

)
and γi =

(
γ1
i , γ

2
i , ..., γ

ni
i

)
. Finally, it is formulated as:

P2(i,βi): minimize
{αi,γi}

Fi(αi,βi,γi)

s.t. (C21) αji ,γ
j
i ∈{0;1} ;j∈J1;niK.

(C22) −Mγji6L
j
i − t

L
i,j− tOi,j<M(1−γji ) ;j∈J1;niK.

(C23)

ni∑
j=1

αji>1

(21)

2) The Subchannels Allocations sub-problem: The UOSD
sub-problem’s instances related to ei are obtained by varying
the value of βi in the interval [[1;Kt]] with only one possible
allocation. The expected result is the vector of subchannels
allocation given by β = (β1, β2, ..., βN ). Consequently, we
build a matrix M with N rows and Kt + 1 columns. The
first column of M contains the cost functions obtained with
βi = 0. For the other Kt columns, every cell Mij stores the
solution of problem P2(i, j). Then, to decide an allocation
of βi in row Mi, we use a binary indicator xji to denote the
decision of the Mij element selection in row Mi (xji = 1
refers to the allocation βi = j and xji = 0 leads to ignore
the Mij cell in the cost function). Furthermore, one possible
value for βi gives the constraint

∑Kt

j=0 x
j
i = 1. Additionally,

the total allocation of subchannels for ei in row i is exactly∑Kt

j=0 j.x
j
i . Therefore, the total allocation of subchannels gives
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the number
∑
i∈E
∑Kt

j=0 j.x
j
i and must be less or equal to K.

Consequently, the general formulation of the resulting problem
becomes:

P3: minimize
{xj

i}

∑
i∈E

Kt∑
j=0

xjiMij

s.t. (C31)
∑
i∈E

Kt∑
j=0

j.xji6K.

(C32)

Kt∑
j=0

xji=1 ;i∈E.

(C33) xji∈{0;1} ;i∈E;j∈J0;KtK.

(22)

This formulation corresponds to a general case of the LSP
problem presented in [15]. Also, it is the minimization form
of a special case of the Multiple-Choice Knapsack Problem
(MCKP) [16] where the weights are the integers in [[0;Kt]].
For more details about this last problem, interested readers can
refer to [17], [16]

IV. PROBLEMS’ RESOLUTION

To solve problem P3 we propose two algorithms: the
first is the recent BISSA [17] solution which demonstrated
its effectiveness in our previous work [12]. It is a pseudo-
polynomial time complexity algorithm. The second is the Exact
Brute Force Search algorithm which we denote (MCKP-BFS).
With the condition K � Kt, its time complexity equals
O(Kt

N ). Its pseudo-code is summarized in Algorithm 1. To
run this algorithm, we use the matrix M that is build s.t.
its first column contains the results of the local processing.
Its last Kt columns of N rows are built s.t. each cell Mij

contains the P2(i, j) sub-problem solution given by three
components (α∗i,j , γ

∗
i,j , F

∗
i,j). The pseudo-code represents a

recursive implementation of the MCKP-BFS solution. M is
the matrix, N is the rows count, Kt is the columns count -
1, and k is a variable representing the number of available
subchannels.

A. The UOSD Exact Solution

On the one hand, the tasks distribution sub-problem
P2 (i, βi) relies on determining αi and γi that correspond
to the minimum cost function for SMD i. The exhaustive
search over all possible solutions using a Brute Force Search
that we denote (BFS-TD) is an O(2ni) time complexity
solution. It is presented in Algorithm 2. While resolving the
global problem, this solution is used in the first phase to
construct matrix M. It is based on solving N ∗Kt instances
of sub-problem P2 (i, βi). Then, M is used as an input to
the second sub-problem P3.

1) Experiment 1: To investigate the feasibility and limita-
tion of Algorithm 2, we carry the first experiment where we
measure the achieved times of each phase. additionally, the
construction of M is highly influenced by the distribution of
the tasks’ count ni in each row, whereas the MCKP resolution
is not affected. To achieve that, we vary N between 10 and
100 while we take K=600, Kt=15, and ni in 8;9, and we use
the simulation parameters described in Table II .

Algorithm 1 : MCKP-BFS

Require: M,N,Kt, and k
Ensure: the subchannels allocation β∗ = (β∗1 , β

∗
2 , ..., β

∗
N );

1: if k < 0 then
2: return ∅;
3: end if
4: if N = 1 then
5: return β = (min(k,Kt));
6: else
7: F ∗ ←∞;
8: for βN = 0 to Kt do
9: X ← MCKP-BFS(M,N − 1,Kt, k − βN );

10: if X 6= ∅ then
11: β+ ← (X,βN ) =

(
β+

1 , ..., β
+
N−1, βN

)
;

12: α←
(
α∗

1,β+
1

, ..., α∗
N−1,β+

N−1

, α∗N,βN
,

)
;

13: γ ←
(
γ∗

1,β+
1

, ..., γ∗
N−1,β+

N−1

, γ∗N,βN
,

)
;

14: F ←
∑N
i=1M [i]

[
β+
i

]
;

15: if F < F ∗ then
16: (F ∗, β∗)← (F, β+)
17: end if
18: end if
19: end for
20: end if

Algorithm 2 : Brute Force Search based Tasks distribution
with βi subchannel

Require: πi, βi
Ensure: the offloading and satisfaction vectors α∗i , γ∗i and the

corresponding cost F ∗
1: if βi = 0 then
2: α∗i ← 0ni ;
3: Build γ∗i using α∗i , βi and equation (3);
4: F ∗ ← Fi (α∗i , γ

∗
i , βi) according to (18);

5: else
6: F ∗ ←∞;
7: for k=1 to 2ni − 1 do
8: αi ← bin(i);
9: Build γi using αi, βi and equation (3);

10: F ← Fi (αi, γi, βi) according to (18);
11: if F < F ∗ then
12: (α∗i , γ

∗
i , F

∗)← (αi, γi, F )
13: end if
14: end for
15: end if
16: return (α∗i , γ

∗
i , F

∗)

Fig. 3 shows the average execution time of the BFS-TD
algorithm (for both values ni = 8 and 9) and BISSA solution
while we vary the total number of SMDs N between 10 and
100. In view of the obtained results, the MCKP resolution
using BISSA realizes stable execution times. Indeed, for N=10
the corresponding execution times for BFS-TD(ni=8), BFS-
TD(ni=9), BISSA are respectively 15.92, 69.87, 0.01ms. For
N=50 they respectively reach 264.9,5 393.76 and 0.07ms. For
N=100 they respectively reach 244.95, 383.76 and 5.61ms.
It shows also an important increasing of the execution time
w.r.t. N. Accordingly, this experiment shows that the exact
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resolutions of the first sub-problem is time consuming espe-
cially for important values of ni and highly exceeds the MCKP
resolution time using BISSA. Subsequently, an approximate
solution is solicited which is the concern of the following
section.

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

on
 T

im
e 

av
er

ag
e 

(m
s)

N

BFS-TD (ni=8)
BFS-TD (ni=9)
BISSA

0

2

4

30 40 50 60

Fig. 3. Execution Time with N; K=600, Kt=15, ni ∈ {8; 9}

B. The UOSD Heuristic Solution

On the other hand, given the binary form of the problem
and the small decision time constraint, we propose a Simulated
Annealing based heuristic solution. This heuristic optimization
technique is characterized by its simplicity and general appli-
cability features while being very efficient in terms of speed
compared to other techniques. Probabilistically, this algorithm
accepts not only cost gain, but also cost degradation in order
to leave the local minima.

Accordingly, we propose to implement a relevant vari-
ant: Very Fast Simulated Annealing [18] which we denote
VFSA-TD. Different to the classical Simulated Annealing
(SA) algorithm which we adopted in our previous work [12]
which denote SA-TD, This variant is characterized with a
small convergence time. In this algorithm, the thermodynamic
system’s energy is represented by the cost function Fi. During
the solutions’ space probabilistic iteration, the acceptance of
the current state is done according to the following principle:
we obviously accept the new state when its energy is less than
its previous energy; otherwise, the new state is accepted when
the probability min

{
exp

(
F∗−Fnew

T

)
, 1
}

is greater than a
random value p. Here p is picked from a uniform distribution
U [0, 1]. Besides, a decreasing temperature, leads to a decrease
in the probability for the system to shift to a new state.
The temperature schedule in the SA-TD and the VFSA-TD
algorithms are respectively given by:

Tk = T0(ak) (23)

Tk = T0exp
(
−0.5k

1
2ni

)
(24)

Here, k is the current iteration number, a is a decreasing factor
s.t. 0.5 < a < 1. The detail of the solution is presented in
Algorithm (3).

Algorithm 3 : Fast Simulated Annealing Tasks Distribution
with βi subchannel

Require: πi,βi,kmax,T0, and an initial non-empty offloading
vector α0

Ensure: the offloading and satisfaction vectors α∗i , γ∗i and the
corresponding cost F ∗

1: if βi=0 then
2: α∗i←0ni ;
3: Build γ∗i using α∗i ,βi and equation (3);
4: F ∗←Fi(α∗i ,γ∗i ,βi) according to (18);
5: else
6: α∗i←αi←α0;
7: Build γi using αi,βi and equation (3);
8: Calculate F ∗=Fi(α∗i ,γ∗i ,βi) according to (18);
9: for k=1 to kmax do

10: T←T0e
−0.5k

1
2ni ;

11: αnew←rand neighbour(αi);
12: if αnew 6=0ni

then
13: αi←αnew;
14: Build γnew using αnew,βi and equation (3);
15: Fnew←Fi(αnew,γnew,βi) according to (18)

16: if min
{
e

F∗−Fnew
T ,1

}
>random(0,1) then

17: (α∗i ,γ
∗
i ,F
∗)←(αnew,γnew,Fnew)

18: end if
19: end if
20: end for
21: end if
22: return (α∗i ,γ

∗
i ,F
∗)

As input, Algorithm 3 requires the parameters’ vector πi of
SMD i, the allocated subchannel(s) number βi, the maximum
iterations count parameter kmax, the initial temperature value
T0, and an initial offloading decision vector α0. In lines 1 to
5, we handle the all-local case. We build the tasks’ satisfaction
vector (line 7), then we initialize the optimal cost F ∗(line 8).
Then we use a for loop (line 9) to repeat the annealing process
using kmax iterations. At each step, the temperature value T is
updated (line 10); then, we generate a neighboring state αnew
of the current state αi (line 11). If it is non-null, we build
its corresponding tasks’ satisfaction vector (line 14), then we
calculate the new cost Fnew(line 15). Then, we try to accept
the new state using a probabilistic test(lines 16 to 18). Here,
random(0, 1) is a function’s call that uniformly generates a
random number in [0, 1].

Despite the exponential temporal complexity of the BFS-
TD method compared to the pseudo-linear complexity of SA-
based methods, the BFS-TD temporal performance is accept-
able for moderate values of the number of tasks ni. Even,
they are largely superior for the values in the interval [1,8].
Subsequently, to exploit this fact, we introduce an integer
threshold parameter Nt. It is used s.t. if ni > Nt we use
the SA based approximate heuristic solutions; otherwise, we
use the exact Brute Force Search solution.

V. EVALUATION AND RESULTS

In this section, we present the proposed experiments used to
evaluate our proposed solutions. We were mainly based on the
execution time and the cost function metrics. An algorithm’s
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execution time is given by its averaged running-time, while
its cost function is given by the averaged realizations of the
cost function F. Besides, all presented results in this work are
averaged with 100 times executions.

A. Simulation Setup

All developed C++ simulation programs were built with
GCC version 6.4.0. and run using a 2.4GHz Intel Core i5
processor in a PC with a maximum 8GB of RAM. Moreover,
the basic parameters of the simulation experiments are listed
in Table II .

TABLE II. SIMULATIONS’ PARAMETERS

Parameter values

ni [2, 13]
Di,0 [0.2, 2] MB
Λi,0 [1, 2] GCycle
Lj

i [10, 1000] seconds
fL
i [100, 300] MHz
fS
i,k [3, 4] GHz
ξLi [1, 10] ∗ 10−10s−2

ξSi,k [9, 40] ∗ 10−11s−2

PT
i 0.1 Watt
ri [200, 400] Kb/s
δi,k {0} ∪ [1, 2] ∗ 10−3 s/Kb
T0 300

B. Experiment 2

The second experiment studies the performance of the
BISSA algorithm compared to the optimal MCKP-BFS al-
gorithm. In this experiment we vary the SMDs’ number (N)
between 2 and a maximum feasible experimentation value
N = 8. Fig. 4 shows the averaged two metrics (per-SMD
cost function and execution time) w.r.t. the total number of
SMDs N. The right side of this figure shows the variation of
the execution time of the proposed solutions. Accordingly, the
BISSA solution realizes stable averaged execution times. In
fact, with ni = 4 and N = 8 it reaches only 0.42; whereas the
optimal MCKP-BFS solution attains 185696.81ms. Similarly,
with ni = 8 and N = 8 it reaches 5.37ms; whereas the
optimal MCKP-BFS solution attains 143568.47ms. Besides,
the cost function achievement for these solutions is shown in
the left part of this figure. It shows that the obtained results are
the same for both solutions. Indeed, this experiment shows that
the more is the number of SMDs the more is the execution time
high, especially with an exponential variation for the optimal
MCKP-BFS solution, and a stable execution times for BISSA.

C. Experiment 3

Now, we introduce the third experiment where we study
the solutions’ performance related to sub-problem P2 (i, βi).
Thus, for one SMD only, we vary ni between 2 and 30 while
we record the average of the minimum of the cost function
using the optimal BFS-TD method, the SA-TD, and the VFSA-
TD heuristic methods. In each case we show the averaged
execution time. Fig. 5 and 6 depict the experiment’s results.
They show the cost function besides the execution time w.r.t.
ni.
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ni ∈ {4; 8}

Hence, according to Fig. 5 that shows the obtained results
in terms of Cost achievements, a small distance separating the
results of all three methods is noticed.
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Moreover, Fig. 6 shows the execution’s time achievements.
The obtained results illustrate important times’ values for the
BFS-TD method. Indeed, for ni = 20 and 30 the execution
time attains respectively 121.45 and 201544.20ms. In this part
of the figure and for clarity reason, we zoomed the figure to
show the achievements of the heuristic solutions. as reported
in the figure, for ni = 20 and 30, both SA-TD and VFSA-TD
heuristic methods give a stable averaged execution time that
respectively attains only 0.030 and 0.086 ms for SA-TD,
and 0.024 and 0.072 ms for VFSA-TD. Furthermore, as
mentioned before, the BFS-TD achievements for small values
of ni between 2 and 8 in terms of execution time outrun both
heuristic methods’ performance. Consequently, the threshold
Nt = 8 has to be set for a logical use of the heuristic methods.

VI. CONCLUSIONS

This paper considers a user-adaptive offloading problem
with resource allocation in a multi-server Mobile Edge Com-
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Fig. 6. Execution time performance ni ∈ [2; 30]

puting network. We considered N smart mobile devices pos-
sessing many computation-intensive tasks each. The resulting
optimization problem jointly optimizes the energy, the process-
ing delays, and the unsatisfied processing workloads. Due to its
combinatorial nature that leads to high complexity solutions,
we decomposed it using a sub-problem in a first phase to build
a matrix. Then, the optimal resource allocation is decided by
solving a second sub-problem. To evaluate the components
of the general solution, we designed a set of experiments
to evaluate their performance using simulations. Accordingly,
the first sub-problem exact solution is time consuming for
experiments with large number of tasks. Consequently, we
proposed an approximate solution based on the Very Fast
Simulated Annealing algorithm. This solution is very efficient
in terms of its execution time as well as its results. On the
other hand, the BISSA solution for the obtained MCKP special
case is much efficient and gives, in reasonable execution time,
comparable result to the exact resolution. In perspectives,
we plan to study services migration with backhauls’ delays
optimization in this proposed system.
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