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Abstract—In Machine Learning K-nearest Neighbor is a 

renowned supervised learning method. The traditional KNN has 

the unlike requirement of specifying ‘K’ value in advance for all 

test samples. The earlier solutions of predicting ‘K’ values are 

mainly focused on finding optimal-k-values for all samples. The 

time complexity to obtain the optimal-k-values in the previous 

method is too high. In this paper, a Modified K-Nearest Neighbor 

algorithm with Variant K is proposed. The KNN algorithm is 

divided in the training and testing phase to find K value for every 

test sample. To get the optimal K value the data is trained for 

various K values with Min-Heap data structure of 2*K size. K 

values are decided based on the percentage of training data 

considered from every class. The Indian Classical Music is 

considered as a case study to classify it in different Ragas. The 

Pitch Class Distribution features are input to the proposed 

algorithm. It is observed that the use of Min-Heap has reduced 

the space complexity nonetheless Accuracy and F1-score for the 

proposed method are increased than traditional KNN algorithm 

as well as Support Vector Machine, Decision Tree Classifier for 

Self-Generated Dataset and Comp-Music Dataset. 
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I. INTRODUCTION 

The K-nearest neighbors is a simple and effective 
classification algorithm. The most important advantage is that 
the classification results can be easily interpreted. Despite all 
these advantages, it has shortcomings like high computational 
cost, large memory requirement, and equal-weighted features 
and in last deciding appropriate value of the input parameter K 
[1]. There are many variants of the KNN algorithm proposed to 
overcome these shortcomings. In [2, 3] the author proposed a 
weighted KNN. In [2] first learns weights for different 
attributes and according to the weights assigned, each attribute 
would affect the process of classification that much only. In [3] 
inverse of Euclidean distance is considered as the weight for 
load forecasting. In [4] various distance functions are 
implemented with KNN on a medical dataset with different 
types of attributes. In [5] authors used various pitch 
distributions as feature set for KNN with different distance 
functions in Raga Identification. 

In [6] authors pointed out that traditional KNN has 
limitations to solve few problems like imbalance, noisy, sparse 
dataset. The authors proposed Hybrid KNN (HBKNN) to sort 
out these problems. 

In KNN variations the researchers combined KNN with K-
means clustering algorithm to reduce the computation 
complexity. In [7] authors applied this approach to improve 
accuracy in air quality assessment. This approach worked well 
for Big data as well in [8]. 

The basic assumption of the standard KNN is fixed K value 
for all data points to classify. However, many datasets have 
uneven distributions of data points, or even experts also not 
able to predict optimal K value. So many researchers proposed 
various methods for predicting k value. In [9] authors proposed 
a local mean representation-based k-nearest neighbor classifier 
(LMRKNN) method. In this method the representation-based 
distances calculated by the categorical k-local mean vectors 
instead of the simple majority vote for making the 
classification decision. The LMRKNN is outperformed on 
many real datasets downloaded from the University of 
California, Irvine (UCI), and Knowledge Extraction based on 
Evolutionary Learning (KEEL) repositories than traditional 
KNN. In [10] authors proposed an algorithm called Adaptive 
K-nearest neighbor (AdaKNN) algorithm which uses the 
density and distribution of the neighborhood of a test point and 
learns a suitable K for it with the help of artificial neural 
networks. This strategy for rightly classifying the test point is 
employed by Wettschereck and Dietterich in [11] in which, the 
value of K is determined for different portions of input space 
by applying cross-validation in its local neighborhood. The 
Ada-KNN2 is proposed as an extension to the Ada-KNN 
algorithm in which the neural network is replaced with a 
heuristic learning method based on local density indicator of a 
test point and information about its neighboring training points. 

The large value of K would increase the computational cost 
and time in case of large data sets. To solve this problem, in 
[12] the variant value of K is proposed so that the early break 
of the algorithm can be possible, which ultimately saves 
computational time. 

In [13] Adaptive KNN algorithm is developed by choosing 
optimal k for each item by maximizing its expected accuracy 
computed on similar points. The evaluation is done on three 
different datasets of Geo-Spatial Data. 

In [14] the author employed a correlation Matrix, to 
reconstruct test data and assign different K values to the 
different test data points. The proposed algorithm achieved 
high accuracy and efficiency in applications of classification, 
regression, and missing data assertion. 
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The prediction of K value with the cross-validation method 
is usually time-consuming. In [15] authors introduced the 
training phase in the KNN classification algorithm and 
proposed a k*Tree method to learn different optimal k values 
for different test samples. The proposed K*Tree method 
reduced the running cost of the test phase. The efficient 
working of the proposed method is observed using 20 different 
real datasets. 

In ICM the lots of work done in Raga recognition using 
KNN algorithm [5, 16, 17, 18, 19]. The researchers focused 
either on Features or compared using the different classifiers. 
The classifiers are used in their traditional form. In Data 
Mining as the application changes, the keen thinking about the 
parameters used in classifiers is required. The impact of these 
parameters on the performance also need to be observed. 

The paper is organized as follows: Section II briefs about 
the proposed Modified Variant K Nearest Neighbor (MVKNN) 
algorithm. Section III gives details of experimental results and 
the analysis. Section IV Conclusion. 

II. PROPOSED ALGORITHM 

The Ragas is the central notion of Indian Classical Music. 
Usually, researchers find Pitch Class Distribution (PCD) 
features and apply classifiers. In literature authors used 
traditional classifiers. The traditional KNN works as follows. 

__________________________________________________ 

Traditional KNN Algorithm 

__________________________________________________ 

Procedure: - To find a class label for test input using KNN 

Input: - D the set of Test samples, T the set of training 
samples,  

Output: - P the class labels of test samples 

__________________________________________________ 

Steps 

1. SET „K‟ Value 

2. Read training samples  

3. Read test samples 

4. P= { } 

5. For each d in D 

 5.1 For each t in T 

 5.1.1  Dis = distance(d,t) 

 Endfor 

 Endfor  

 5.2 Sort Dis in ascending order 

5.3 Select first „K‟ entries  

5.4 Find class labels of first „K‟ entries 

5.5 Allocate class label of maximum in first „K‟ entries 

In traditional KNN the K value is expected to provide in 
advanced which is very impractical. In this section, a Modified 
K Nearest Neighbor algorithm using variant K value for each 
test sample is proposed. 
__________________________________________________ 

Modified Variant K Nearest Neighbor (MVKNN) 

algorithm using Min_Heap for Raga Identification 

__________________________________________________ 

Procedure: - To find class label for test input 

Input: - D the set of Test samples, T the set of training 

samples,  

Output: - P the class labels of test samples 

__________________________________________________ 

Steps  

1. Read training samples  

2. Read test samples 

3. P= { } 

4. For each c in C do // C the count of samples belong to each class 

in training set (T) 

 4.1 C{c} = count (t) where class_label(t)==c 

 Endfor 

5. For each c in C do 

 5.1 K{c} = round(C{c} *100/length(T) ) 

 5.2 M_K = max(K) 

 Endfor 

6. For each t in T do 

 6.1 For each t1=t+1 in T do 

 6.1.1 Dis = distance(d,t) 

 6.1.2 Add Dis in min_heap[t][t1]of size M_K{c} 

 6.1.3 Add „t1‟ in neighbor_heap[t] of size M_K{c} 

 6.1.4 Add Dis in min_heap[t1][t]of size M_K{c} 

 6.1.5 Add „t‟ in neighbor_heap[t1] of size M_K{c} 

 Endfor  

 Endfor 

7. For each k in K do 

 7.1 Class_neighbor{1.k} =findClass(neighbor_heap) 

 7.2 P{d} = max(count(Class_neighbor)) 

 7.3 TP[k,c]= countif(class_label(t)==class_label(P)) 

 Endfor 

8. For each c in C do 

 8.1 K_test[c] = max(TP[c,k]) 

 Endfor 

9. For each d in D do 

 9.1 For each t in T do 

 9.1.1 T_label = class_label(t) 

 9.1.2 Dis = distance(d,t) 

 9.1.3 Add Dis in min_heap of size K_test{T_label} 

 9.1.4 Add „t‟ in neighbour_heap of size K{T_label} 

 Endfor 

 9.2 Class_neighbors{1..K} = findClass(neighbour_heap{1..K}) 

 9.3 P{d} = max(count(Class_neighbour)) 

 Endfor 

Note: 

\\ findClass(n) returns class label of samples in mean-heap 

\\ max() returns class label appearing in 'K' nearest neighbor 

\\ count() returns number of training samples class label is equal to 

predicted class label. 

_________________________________________________ 

The traditional KNN does not have a training phase. It 
calculates the distance between every sample in test data with 
every sample in training data. The most nearest „K‟ neighbors 
are identified for every sample based on distance. The class 
having maximum count belong to „K‟ nearest Neighbor is 
assign to test sample. 
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In the proposed method algorithm is divided in two phases 
training and testing. In step 4.1 the samples per class are 
present in training data are calculated. The step5.1 calculates K 
value for each class label considering its percentage 
contribution in training data. In steps 6 and 6.1 the Euclidean 
distance is calculated between every sample in training data 
and stored in Min-Heap of size 2M_K. In this M_K is the 
maximum size of Heap. 

Ones the Min Heap is ready, in step 7.1 the class labels are 
identified for every test sample from first entries in Min-Heap. 
The class label with maximum count will be assigned to the 
test sample in step 7.2. Step 7.3 counts the correctly classified 
samples for every class and stored in the TP array. Where TP 
gives True Positive values for each class. The steps 7.1 to 7.3 
are executed for every distinct value of K which was calculated 
in step 5.1. The value of K will vary from minimum to 
maximum value of K for classes calculated in step 5.1. After 
calculating TP for all different „K‟ values. The optimal 'K' 
value for every class is calculated by finding maximum trup 
positive count of every class. This completes the training 
phase. In the best case for all classes, the same 'K' may come. 
In the worst-case, every class will get different optimal 'K'. 

In testing phase distance between every test sample and 
training sample is calculated and the Min-Heap is constructed 
for maximum optimal 'K' value which has got from the training 
phase. The nearest neighbors are identified from the first K 
entries in Min-Heap. The class label of maximum count of 
neighbors is assigned to the test sample. 

The computational complexity of KNN is one of the 
limitations of KNN. In traditional KNN training phase is not 
available. The Time complexity of traditional KNN is  (  
 )   (        )   (   )  The complexity for 
calculating distance between every testing sample with training 
samples is  (   ). After calculating the distance between 
samples the sorting algorithm with average-case complexity N 
log2N is required to sort the distance array. So to sort D tuples 
the sorting complexity will be  (        ) . To get „K‟ 
nearest neighbor from sorted data will be O(K) which will be 
finally O(D*K) for D test samples. Even if instead of sorting 
the Heap data structure is used to get 'K' nearest neighbor, 
complexity will reduced to O(D*Tlog2T) + O(D*Klog2T). 

In MVKNN training and testing phases are introduced. The 
complexity of training phase is (O(T*(T+1)/2) + O(T*Tlog2K) 
+ O(K*Klog2K))}. In the worst-case, number of distinct K 
values, will become equal to the distinct value of percentage of 
records belonging to the number of classes present in Dataset, 
and in the best case, only the same K value is for all classes. 
The complexity to calculate the distance between every 
training sample with other training sample is O(T*(T-1)/2). To 
find the K nearest neighbor first it will create „T‟ number of 
Min-Heap of 2K size. So the complexity to create the T 
number of Min-Heap with T elements of size 2K will be 
O(T*Tlog2K). To get K nearest neighbor Delete_min operation 
will be performed K times so its complexity will be 
O(Klog2K). 

The testing phase complexity will be O(D*T) + 
O(D*Tlog2K) + O(Klog2K). The O(D*T) is complexity for 
calculating distance between every test sample with training 

sample. The O(D*Tlog2K) is complexity for creating Min-
Heap of K size for T distance values. The Heap will be 
generated for every test sample. 

The computation complexity of traditional KNN is higher 
than the computation complexity of the testing phase. If the 
complexity of both training and testing phase in MVKNN is 
considered then it is higher than traditional KNN but as we 
know the training of classifier is done only ones and are not 
required to perform whenever testing is executed. So based on 
this assumption the computational complexity of MVKNN 
testing phase is lower than traditional KNN. 

The computational calculations can be understand more 
clearly by taking a small example. 

Let us consider total samples 1000. Take a 70:30 ratio for 
training and testing. So T= 700 and D= 300, the number of 
classes present in the dataset are 8. 

The total computations in traditional KNN will be. 

Distance calculations = 210000. 

Finding K nearest neighbor = 20, 32,949. 

Total computations = 22, 42, 949. 

The total computations in the training phase of MVKNN for 

the worst case will be. 

Distance calculations = 2, 45, 350. 

Finding K nearest neighbor = 25, 14, 780. 

Total computations = 27, 60, 130. 

The total computations in the testing phase of MVKNN for the 

worst case will be. 

Distance calculations = 210000. 

Finding K nearest neighbor = 10, 75, 379. 

Total computations = 12, 85, 379. 

This case study shows that computation for the training 
phase in the worst-case nearly one and half times of 
computations in traditional KNN. The testing computations are 
almost half of the computations in traditional KNN. So this 
work may conclude that MVKNN is computationally efficient 
than traditional KNN provided training should be performed 
occasionally. 

The space complexity is also reduced. In traditional KNN 
O(D*T) memory will be required to store the distance in sorted 
array or Heap form. Wherein MVKNN space complexity for 
the training phase is O(T*log2K) and testing phase 
O(T*log2K). 

III. EXPERIMENTAL RESULTS 

The proposed algorithm is presented as an extension of the 
traditional KNN algorithm. The performance of both 
algorithms is compared with our data set and CompMusic 
dataset. 

In our dataset, 1450 samples of 8 different Ragas are 
present sung by different singers. The samples are stored in 
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.wav format with sampling frequency 44100Hz and 16bps. The 
frame size is considered as 20ms with 25% overlapping. 

CompMusic dataset [16, 17] includes full-length audio 
recordings with the Raga label. It is a collection of several 
artists' vocal as well as instrumental performances. The clips 
were extracted from the live performances and CD recordings 
of 13 artists. Total 129 tunes for 08 ragas are considered. The 
dataset is downloaded as per instructions given in [20]. The 
duration of each tune averages 5-6 minutes. The tunes are 
converted to mono-channel, 44100 Hz sampling rate, 16 bit 
PCM. 

The Pitch values are calculated as mentioned in [21]. The 
Pitch values are divided into 36 bins and constructed Pitch 
Class Distribution of every sample. Fig. 1 show the PCD for 
one sample of Raag Asavari. The PCD of the sample shows the 
frequency count of every bin. This sample is sung in the 
second octave so the Notes are present between bin numbers 
13 to 25. 

The PCD is calculated for all the samples and created a 
feature vector to give input to traditional KNN and MVKNN 
algorithm. 

The experimentation for traditional KNN is done for 
varying K values from 1 to sqrt(T). The elbow method is 
applied and observed that after K=11, the accuracy is nearly 
constant up to K=20. Similarly with Decision Tree and SVM 
classifiers are also implemented with same datasets. Accuracy 
and F1 score is calculate as per following equations 1 and 2 
respectively [22]. The results are documented in Table I.  

          
(     )

(           )
             (1) 

          
    

(          )
             (2) 

The PCD input is given to the MVKNN algorithm. For one 
instance the dataset is split into 30% testing and 70% training 
using train_test_split in Python. The training is performed for 
k=10, 11, 12, 13, 14 distinct „K‟ values using Min-Heap. The 
confusion matrix containing True Positive, True Negative, 
False Positive and False Negative values is calculated for 
given dataset. The True Positive values are observed in every 
class for each „K‟. The „K‟ having maximum True Positives is 
taken as an optimal K value for that class during the testing 
phase. In Table II the optimal K values are shown for every 
class for one instance. 

 

Fig. 1. PCD for One Sample. 

TABLE I. RESULTS OF DECISION TREE, SVM CLASSIFIER 

 Self-Generated Data CompMusic Data 

Decision Tree Accuracy 94.02% 86.33% 

SVM Accuracy 84.74% 82.72% 

Decision Tree F1-Score 79.30% 49.13 % 

SVM F1-Score 38.99% 38.70% 

TABLE II. OPTIMAL K VALUE FOR EACH CLASS 

Class No. 1 2 3 4 5 6 7 8 

K value 14 12 14 13 13 13 11 12 

Table III shows a comparison of Accuracy and F1-score of 
traditional KNN and MVKNN for self-Generated data and 
CompMusic data. It is observed that Accuracy and F1-Score 
are improved for both datasets. 

TABLE III. RESULTS OF KNN AND MVKNN 

 Self-Generated Data CompMusic Data 

KNN Accuracy 89.46% 86.02% 

MVKNN Accuracy 95.82% 89.45% 

KNN F1-Score 57.90% 44.11 % 

MVKNN F1-Score 83.28% 57.81% 

The experimentation is done several times by taking an 
equal number of samples belonging to each class as well as by 
making imbalanced classes. It is observed that the variation in 
„K‟ values always improved results than the same value of 'K'. 

IV. CONCLUSION 

In this paper, the survey of modified KNN algorithms is 
done. The KNN algorithm for variant K values for every test 
sample is proposed. The training phase is introduced to identify 
the optimal K value. The use of the Min-Heap data structure of 
'K' size has reduced the space complexity. The algorithm was 
implemented using Indian Classical Music for classifying it 
based on the Raga. The PCD features of two different datasets 
are considered as an input vector. The Accuracy and F1-score 
measures are considered for comparing performance. The 
improvement in Accuracy and F1-score is observed using the 
proposed MVKNN algorithm in comparison with traditional 
KNN, Decision Tree and SVM. In Indian Classical Music, the 
repeating patterns play a very important role for Raga 
identification. In the future, the plan to apply the proposed 
algorithm on high dimensional feature vector of repeating 
patterns in a signal to improve the results of Raga 
identification. 
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