
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Optimizing the C4.5 Decision Tree Algorithm using
MSD-Splitting

Patrick Rim1

California Institute of Technology
Pasadena, CA 91125, USA

Erin Liu2
Troy High School

Fullerton, CA 92831, USA

Abstract—We propose an optimization of Dr. Ross Quin-
lan’s C4.5 decision tree algorithm, used for data mining and
classification. We will show that by discretizing and binning a
data set’s continuous attributes into four groups using our novel
technique called MSD-Splitting, we can significantly improve both
the algorithm’s accuracy and efficiency, especially when applied
to large data sets. We applied both the standard C4.5 algorithm
and our optimized C4.5 algorithm to two data sets obtained from
UC Irvine’s Machine Learning Repository: Census Income and
Heart Disease. In our initial model, we discretized continuous
attributes by splitting them into two groups at the point with the
minimum expected information requirement, in accordance with
the standard C4.5 algorithm. Using five-fold cross-validation, we
calculated the average accuracy of our initial model for each
data set. Our initial model yielded a 75.72% average accuracy
across both data sets. The average execution time of our initial
model was 1,541.57 s for the Census Income data set and 50.54 s
for the Heart Disease data set. We then optimized our model by
applying MSD-Splitting, which discretizes continuous attributes
by splitting them into four groups using the mean and the two
values one standard deviation away from the mean as split points.
The accuracy of our model improved by an average of 5.11%
across both data sets, while the average execution time reduced
by an average of 96.72% for the larger Census Income data set
and 46.38% for the Heart Disease data set.

Keywords—C4.5 Algorithm; decision tree; data mining; ma-
chine learning; classification

I. INTRODUCTION

In machine learning, classification is a type of supervised
learning with many useful applications, from catching spam
emails [1] to categorizing tumor scans [2]. Classification
problems analyze data sets containing a collection of records
that each have a set of attributes and a class label. The task
is to create a model that maps each record’s attribute set
onto its class label. A classification model can be used for
descriptive purposes by summarizing the attributes in a data
set that correlate with a specific class label [3]. It can also be
used for predictive purposes by classifying new records with
unknown class labels [3].

There are many different ways to create a classification
model based on a data set, but they all follow a similar
approach. First, the data set must be split into a set of
training data and a set of testing data. The training data is
composed of records where the class label is included [4]. Each
classification technique applies a different learning algorithm
to the training data in order to build the classification model.
Once the model is constructed, it is then applied to the testing
data, which is composed of records where the class label is

removed [4]. The accuracy of the model can then be calculated
by comparing the class labels predicted by the model to the
actual class labels of the testing data.

There are two general types of attributes in a data set.
Discrete attributes are composed of values from a finite or
countably infinite set, such as the set of natural numbers or
non-numeric values [5]. Continuous attributes are composed
of values from an uncountably infinite set, such as the set of
real numbers, which includes all decimal values [5]. Many
learning algorithms can only use discrete attributes [6]. Thus,
these algorithms must employ different methods to discretize
continuous attributes. One such algorithm, the C4.5 decision
tree algorithm, splits continuous attributes into two groups at
a split point that minimizes the expected information require-
ment [7]. In order to do this, the C4.5 algorithm calculates
the expected information requirement for each possible split
point. However, this method is inefficient and can consume
large amounts of time, especially when applied to large data
sets [8].

In this paper, we propose an optimization of the C4.5
decision tree algorithm that discretizes continuous attributes
using our novel technique called MSD-Splitting. We will show
that our optimization significantly improves both the accuracy
and efficiency of the C4.5 algorithm. This paper is structured
as follows: Section 2 describes relevant related work. Section
3 details the steps of the standard C4.5 decision tree algorithm.
Section 4 describes MSD-Splitting and how it optimizes the
C4.5 algorithm. In Section 5, we discuss and compare the
results of the standard C4.5 algorithm and our optimized C4.5
algorithm when applied to two different data sets. In Section
6, we summarize our findings and present our conclusion.

II. RELATED WORK

There has been an extensive amount of work done on the
Census Income and Heart Disease data sets from UC Irvine’s
Machine Learning Repository using various approaches. One
work done by Chakrabarty and Biswas [9] applies the Gradient
Booster Classifier Model to the Census Income data set and
calculates its accuracy. Another work done by Hedeshi and
Abadeh [10] applies a fuzzy-boosting PSO approach to the
Heart Disease data set to detect coronary artery disease.

There has also been an extensive amount of work done on
the C4.5 decision tree algorithm, including the calculation of
its accuracy and efficiency when applied to various data sets.
For instance, a work done by Budiman et al. [11] calculates
the accuracy of the C4.5 algorithm when applied to a student

www.ijacsa.thesai.org 41 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

data set. Another work done by Chauhan and Chauhan [12]
calculates the accuracy of the C4.5 algorithm when applied to
data sets of various sizes, as well as data sets containing noisy
or missing data. Hssina, Merbouha, Ezzikouri, and Erritali [13]
calculated the efficiency of the C4.5 algorithm when applied
to a data set describing weather by measuring execution time.
However, none of these works offer an optimization of the
C4.5 algorithm.

There are works done that do offer an optimization to either
the accuracy or the efficiency of the C4.5 algorithm. A work
done by Muslim, Nurzahputra, and Prasetiyo [14] shows that
the accuracy of the C4.5 algorithm can be improved by using
the Split Feature Reduction Model and Bagging Ensemble.
Agrawal and Gupta [8] showed that applying L’Hospital’s
Rule to the C4.5 algorithm improves its efficiency. Another
work done by Yang and Chen [15] proposes a novel algorithm
called Taiga that improves the efficiency of the C4.5 algorithm.
However, these works do not offer an improvement to both the
accuracy and efficiency of the C4.5 algorithm.

For this reason, we applied our novel technique of MSD-
Splitting to the C4.5 algorithm in order to improve both the
accuracy and efficiency of the algorithm. The efficiency of
our optimized C4.5 algorithm improves from the efficiency of
the standard C4.5 algorithm to a greater degree when applied
to larger data sets. Since we created the technique of MSD-
Splitting, there is currently no work in the literature that
references it.

III. C4.5 DECISION TREE ALGORITHM

Decision tree induction is a common classification tech-
nique used to build models [16]. The learning algorithms that
decision trees use differ in the methods that they employ to
select the attribute that is used to split the records at a given
point in the tree. Dr. Ross Quinlan was instrumental in the
development of decision tree learning algorithms, inventing
the widespread ID3 and C4.5 algorithms [17][18]. These
two algorithms both select attributes using a concept called
information gain [17][18]. We will now describe the steps of
the standard C4.5 algorithm.

A. Information Gain

To determine which attribute to use to split the records in a
given node, which is a point on the decision tree, information
gain is calculated for all of the attributes, and the one with the
highest information gain is selected [19]. Information gain is
the expected drop in entropy after the records in a node are split
using a certain attribute [19]. In other words, it is a measure
of how much information the model gains from splitting the
records in a node using a certain attribute. Information gain is
calculated using the following formula [19]:

Gain(A) = Entropy(D)− EntropyA(D) (1)

where A is a given attribute in a data set D.

Entropy, which is the expected information needed to
classify a record in a given node, is calculated using the
following formula [19]:

Entropy(D) = −
m∑
i=1

pi log2(pi) (2)

where m is the total number of classes and pi is the probability
that any given record in the node belongs to the class i.

EntropyA, which is the information needed to classify the
records in a given node after it is partitioned using a certain
attribute, is calculated using the following formula [19]:

EntropyA(D) =

n∑
j=1

pj · Entropy(Dj) (3)

where n is the number of partitions, pj is the probability that
any given record in the node is in partition j, and Dj is the
subset of records that are in partition j.

B. Gain Ratio

In Quinlan’s ID3 algorithm, information gain was used
exclusively to select splitting attributes [17]. However, the
attribute selection method of using the highest information gain
has an inherent bias towards attributes that have a larger num-
ber of different values, because these attributes will produce
a larger number of outcomes to be summed when chosen as
the splitting attribute [18]. Due to this issue, Quinlan invented
the C4.5 algorithm, a successor of the ID3 algorithm, which
optimizes the information gain calculation process [18]. In the
C4.5 algorithm, the information gain calculation is normalized
to account for the number of outcomes a particular attribute
will produce [18]. This normalized attribute selection measure
is known as gain ratio. Gain ratio is the ratio of the information
gain of a certain attribute to its split information [20]. It is
calculated using the following formula [20]:

GainRatio(A) = Gain(A)/SplitInfo(A) (4)

where A is a given attribute in a data set D.

SplitInfo, which is used to normalize the information gain
calculation, is calculated using the following formula [20]:

SplitInfo(A) = −
n∑

j=1

pj log2(pj) (5)

where n is the number of partitions and pj is the probability
that any given record in the node is in partition j. Since
SplitInfo increases as the number of partitions increases, it
normalizes the information gain of attributes with a large
number of partitions.

C. Splitting Continuous Attributes

As mentioned previously, the C4.5 algorithm can only use
discrete attributes to classify a data set [6]. The C4.5 algo-
rithm divides records based on discrete attributes by creating
branches on the decision tree for each distinct value [18].
However, this is difficult with continuous attributes as there
may be too many distinct values. Creating a branch on the
decision tree for each distinct value can lead to overfitting,
an error where a model is too specific to a particular set of
data, causing it to perform poorly when given new, unseen data
[21]. The standard C4.5 algorithm addresses this problem by
splitting continuous attributes into two groups at an ideal split
point [18]. The set of possible split points is given by the set of
the midpoints between any two adjacent values in the attribute.
The ideal split point for a given continuous attribute is the point

www.ijacsa.thesai.org 42 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

with the minimum expected information requirement [7]. The
expected information requirement calculation is equivalent to
the EntropyA calculation [19].

D. Decision Tree Building

Building the decision tree is a recursive process, as shown
in Fig. 1. First, all of the records in the training data are
placed in the top node, or the root node, of the decision tree.
The attribute with the highest gain ratio is chosen as the first
splitting attribute [22]. Once the data set is split into different
nodes based on the first attribute, each node is then split based
on the attribute with the highest gain ratio when applied to the
data in the node. Each node is given a majority label based
on the class label of the majority of the records in the node
[22]. This process is continued until one of the three stopping
conditions is met: 1) all of the records in the node belong to
the same class; 2) the node is empty; 3) none of the attributes
provide any further information gain [22]. Once a stopping
condition is met, the final node is considered a leaf and is given
a class label [22]. Once every record in the data set is placed
into a leaf, the decision tree building process is complete.

Fig. 1. Flowchart of the Recursive C4.5 Decision Tree Building Algorithm.

As an example, Fig. 2 shows the top two levels of our
decision tree for the Heart Disease data set. Our model
calculated that the ‘Chest Pain’ attribute yielded the highest
gain ratio for the root node, which is why it was chosen as the

first splitting attribute. Then, we can see that four new nodes
were created based on the values of the ‘Chest Pain’ attribute.
We can also see that for each node, our model chose different
attributes as the next splitting attribute. These attributes were
chosen because they yielded the highest gain ratio for their
respective nodes.

Fig. 2. Our Decision Tree for the Heart Disease Data Set.

Fig. 3 shows a segment of the bottom end of a generic
decision tree. Leaves are created when one of the stopping
conditions is met. They can be created on different levels of
the decision tree.

Fig. 3. Generic Diagram of Decision Tree Leaves.

In practice, the records in a leaf are not always guaranteed
to have the same class label. For instance, the records in a
leaf may still consist of different class labels while none of
the attributes provide further information gain. In this case,
the leaf is labeled with the class label of the majority of the
records in the leaf [22].

E. Classifying New Data

Once the decision tree is built, it can be used to classify
new, unclassified data [16]. Each new record is passed through
the tree and branched at each node based on its attribute values
until it is finally classified into a leaf [23]. The record is then
labeled with the class label of the leaf. If the record reaches a

www.ijacsa.thesai.org 43 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

node that does not contain a branch for the record’s attribute
value, the record is labeled with the majority label of the node
[22].

IV. MSD-SPLITTING

We will now describe MSD-Splitting and how it improves
the accuracy and efficiency of the C4.5 algorithm. MSD-
Splitting is short for Mean and Standard Deviation Splitting.
The mean (µ) of an attribute is the average of its values. It is
calculated using the following formula [24]:

µ =

∑n
i=1 xi
n

(6)

where xi is the i-th value and n is the total number of values
in the attribute.

The standard deviation (σ) of an attribute is a measure of
the dispersion of its values. It is calculated using the following
formula [25]:

σ =

√∑n
i=1(xi − µ)2

n
(7)

where xi is the i-th value, µ is the mean, and n is the total
number of values in the attribute.

Thus, we can write the two values that are one standard
deviation away from the mean as

µ− σ, µ+ σ

where µ is the mean and σ is the standard deviation of the
attribute.

Standard deviation is important because it measures the
typical dispersion of the values in the attribute [25]. Thus,
values within one standard deviation away from the mean can
be considered to have a lower than typical deviation, while
values more than one standard deviation away from the mean
can be considered to have a higher than typical deviation.

MSD-Splitting splits each continuous attribute into four
groups, using its mean (µ) and the values one standard
deviation away from the mean (µ− σ, µ+ σ) as logical split
points. A value x in the attribute is binned into one of four
groups, which are defined as follows:

1) x < µ− σ: below mean, high deviation
2) µ− σ ≤ x < µ: below mean, low deviation
3) µ ≤ x < µ+ σ: above/at mean, low deviation
4) x ≥ µ+ σ: above mean, high deviation

The values in each of these four groups are estimated to
share a similar deviation and to be closely related to each
other. The four groups are labeled on the graph of a normal
distribution in Fig. 4.

A. Application to the C4.5 Algorithm

The standard C4.5 algorithm splits continuous attributes
into two groups by choosing one split point with the minimum
expected information requirement [7]. However, this process
is often inaccurate and inefficient. The two groups will likely
provide little information gain because the values in each of
the two groups are not likely to be closely related to each
other. Attributes with low information gain are detrimental to

Fig. 4. Four Groups Created by MSD-Splitting on the Graph of a Normal
Distribution.

the overall accuracy of the model [26]. Furthermore, iterating
through every possible split point in a large data set and
calculating the expected information requirement for each
point can consume large amounts of time [8].

Our optimized C4.5 algorithm instead splits continuous
attributes using MSD-Splitting. By doing so, we improve both
the accuracy and efficiency of the C4.5 algorithm.

B. Effect on Accuracy

Increasing the number of groups into which the values are
binned means that the values in each group will generally be
more closely related to each other [27]. Splitting continuous
attributes using MSD-Splitting doubles the number of groups
from two to four. The values in each of the four groups
are likely to be more closely related to each other than the
values in each of the two groups created by the standard C4.5
algorithm. It is then likely that the discretized attributes will
provide higher information gain when it is discretized using
MSD-Splitting rather than using the standard C4.5 algorithm’s
method. Attributes with higher information gain improve the
overall accuracy of the classification model [26].

Furthermore, since the groups are created using logical split
points that group values with low deviation together and values
with high deviation together, we estimate that the values in
each group will be even more closely related to each other.
Thus, the discretized attributes are even more likely to provide
higher information gain [28], improving the overall accuracy
of the model.

C. Effect on Efficiency

Discretizing continuous attributes using MSD-Splitting can
significantly improve the efficiency of the C4.5 algorithm,
especially when it is applied to large data sets. The standard
C4.5 algorithm iterates through each possible split point and
calculates its expected information requirement. The expected
information requirement calculation, which is equivalent to
Equation 3, has a linear time complexity [29]. Then, running
this calculation for every possible split point has a quadratic
time complexity, or a time complexity of O(n2). On the
other hand, finding the split points for the MSD-Splitting
method only requires the calculation of the attribute’s mean
and standard deviation, which has a linear time complexity, or

www.ijacsa.thesai.org 44 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

TABLE I. ACCURACY OF INITIAL AND OPTIMIZED MODELS

Data Set Group Accuracy of Initial Model (%) Accuracy of Optimized Model (%) % Change
Census Income 1234 test5 78.64 80.49 +2.35%
Census Income 1235 test4 78.46 81.28 +3.59%
Census Income 1245 test3 79.84 81.57 +2.17%
Census Income 1345 test2 78.13 81.20 +3.93%
Census Income 2345 test1 79.16 81.94 +3.51%
Census Income Average 78.85 81.30 +3.11%
Heart Disease 1234 test5 67.21 73.77 +9.76%
Heart Disease 1235 test4 73.77 78.69 +6.67%
Heart Disease 1245 test3 80.33 81.97 +2.04%
Heart Disease 1345 test2 63.33 66.67 +5.27%
Heart Disease 2345 test1 78.33 88.33 +12.77%
Heart Disease Average 72.59 77.89 +7.29%

Overall Average 75.72 79.59 +5.11%

TABLE II. EXECUTION TIME OF INITIAL AND OPTIMIZED MODELS

Data Set Group Exec Time of Initial Model (s) Exec Time of Optimized Model (s) % Change
Census Income 1234 test5 1567.50 48.40 -96.91%
Census Income 1235 test4 1575.55 50.98 -96.76%
Census Income 1245 test3 1569.91 48.74 -96.90%
Census Income 1345 test2 1456.98 53.30 -96.34%
Census Income 2345 test1 1537.94 51.30 -96.66%
Census Income Average 1541.57 50.54 -96.72%
Heart Disease 1234 test5 0.04379 0.02660 -39.25%
Heart Disease 1235 test4 0.03903 0.01905 -51.20%
Heart Disease 1245 test3 0.04052 0.02186 -46.06%
Heart Disease 1345 test2 0.03790 0.01968 -48.09%
Heart Disease 2345 test1 0.04137 0.02146 -48.12%
Heart Disease Average 0.04052 0.02173 -46.38%

a time complexity of O(n). Since O(n) is more efficient than
O(n2), we can see that MSD-Splitting improves the efficiency
of the C4.5 algorithm. The improvement in efficiency will be
greater for larger data sets due to the quadratic time complexity
of the standard C4.5 algorithm’s method of finding the ideal
split point, which grows at a faster rate as the number of values
and possible split points increases [30].

V. EXPERIMENTAL RESULTS

We ran both the standard C4.5 algorithm and our optimized
C4.5 algorithm with MSD-Splitting on two data sets obtained
from UC Irvine’s Machine Learning Repository: Census In-
come, used to predict whether a person’s income exceeds
$50,000 per year, and Heart Disease, used to predict whether
a person has heart disease [31]. The Census Income data set
contains 48,842 records and 14 attributes, while the Heart
Disease data set contains 303 records and 76 attributes. We
worked with the commonly used Cleveland subset of the Heart
Disease data set with 14 attributes. In our initial model, we
applied the standard C4.5 algorithm to both data sets, splitting
continuous attributes by minimizing the expected information
requirement. In our optimized model, we applied our optimized
C4.5 algorithm with MSD-Splitting. We then calculated the
accuracy and efficiency of our initial and optimized models.

A. Accuracy

To calculate the accuracy of our two models, we split
both data sets into five groups and performed five-fold cross-
validation for each data set where we ran both models on each
data set five times, using one of the groups as the testing data
and the other four groups as the training data for each trial
[32]. The first trial used the first group of the data set as the
testing data, the second trial used the second group as the
testing data, and so on. We then averaged the results of each
of the five trials to obtain the accuracy of our two models for
each data set.

Table I displays the accuracy of our initial and optimized
models applied to the Census Income and Heart Disease data
sets. The table also displays the % change in accuracy between
our two models for each data set.

B. Efficiency

To calculate the efficiency of our two models, we measured
the average execution time of both models for each data set,
where a low execution time equals high efficiency and a high
execution time equals low efficiency. We calculated average
execution time using the same five-fold cross-validation tech-
nique that we used to calculate the accuracy of our two models.

www.ijacsa.thesai.org 45 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Table II displays the execution time of our initial and
optimized models applied to the Census Income and Heart
Disease data sets. The table also displays the % change in
execution time between our two models for each data set.

Since the Census Income data set is significantly larger
than the Heart Disease data set, the difference between the
execution time of our initial model and our optimized model
is significantly greater for the Census Income data set than
for the Heart Disease data set. This is due to the behavior
of the previously mentioned quadratic time complexity of our
initial model [30]. In order to account for the different sizes
of the data sets, we must compare the efficiency of our two
models separately for each data set. Since the overall average
execution time and the overall average % change in execution
time between our two models do not provide any meaningful
information, we chose not to display this information.

C. Discussion

We can see that the overall average accuracy of our initial
model is 75.72%, while the overall average accuracy of our
optimized model is 79.59%. We can calculate that our opti-
mized model has a 5.11% increase in accuracy from our initial
model. Since the only portion of the C4.5 algorithm that was
changed between our two models was the method of splitting
continuous attributes, we can conclude that splitting continuous
attributes using MSD-Splitting rather than by minimizing the
expected information requirement increases the accuracy of the
C4.5 algorithm.

Our optimized model has a 96.72% decrease in execution
time from our initial model when applied to the Census Income
data set, compared to a smaller 46.38% decrease when applied
to the Heart Disease data set.

Since the execution time of the standard C4.5 algorithm’s
method of finding the ideal split point increases quadratically
with the number of values and possible split points, our initial
model takes significantly longer to run when applied to data
sets that have continuous attributes with many distinct values.
Larger data sets tend to have more distinct values in their
continuous attributes than smaller data sets. Thus, our initial
model has a longer execution time when applied to larger data
sets. While the execution time of the standard C4.5 algorithm’s
method of finding the ideal split point increases quadratically,
the execution time of our optimized C4.5 algorithm’s method
of finding the split points only increases linearly. This explains
why the efficiency of our optimized model improves from the
efficiency of our initial model to a greater degree when applied
to the larger Census Income data set than when it is applied
to the smaller Heart Disease data set.

Again, since the only portion of the C4.5 algorithm that
was changed between models was the method of splitting
continuous attributes, we can conclude that splitting continuous
attributes using MSD-Splitting rather than by minimizing the
expected information requirement increases the efficiency of
the C4.5 algorithm, especially when applied to larger data sets.

VI. CONCLUSION

In this paper, we described our novel technique of MSD-
Splitting and how it improves the accuracy and efficiency of the

C4.5 decision tree algorithm. In our initial model, we applied
the standard C4.5 algorithm to two different data sets. Then, in
our optimized model, we applied our optimized C4.5 algorithm
with MSD-Splitting to the same two data sets. After calculating
the accuracy and efficiency of our initial and optimized models,
we can conclude that splitting continuous attributes using
MSD-Splitting significantly improves the accuracy of the C4.5
algorithm. We can also conclude that MSD-Splitting signifi-
cantly improves the efficiency of the C4.5 algorithm, especially
when applied to large data sets. This is because the execution
time of the standard C4.5 algorithm has a quadratic time
complexity, while our optimized C4.5 algorithm with MSD-
Splitting has a more efficient linear time complexity. Since
the increase in execution time of the standard C4.5 algorithm
grows faster as the size of the data set increases, our optimized
C4.5 algorithm will have an even greater improvement in
efficiency from the standard C4.5 algorithm when applied to
data sets that are even larger than the ones that we used.
For this reason, we believe that our optimized C4.5 algorithm
with MSD-Splitting is ideal for classification tasks involving
extremely large data sets.

Classifying data sets is critically important in the increas-
ingly consequential fields of data mining and machine learning.
As the amount of data that we create grows exponentially [33],
we must be able to extract and interpret useful information
from this data as accurately and efficiently as possible. By
optimizing the widespread C4.5 decision tree algorithm, we
refine and expedite the data classification process.

ACKNOWLEDGMENT

This research was conducted at California State University,
Fullerton. We would like to thank our research supervisor Dr.
Shawn X. Wang, professor of computer science at California
State University, Fullerton, for providing invaluable guidance
and support.

REFERENCES

[1] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O.
Adetunmbi, and O. E. Ajibuwa, “Machine learning for email spam
filtering: review, approaches and open research problems,” Heliyon, vol.
5, no. 6, Jun. 2019.

[2] T. T. Tang, J. A. Zawaski, K. N. Francis, A. A. Qutub, and M. W.
Gaber, “Image-based Classification of Tumor Type and Growth Rate
using Machine Learning: a preclinical study,” Scientific Reports, vol. 9,
no. 1, Aug. 2019.

[3] J. L. Rastrollo-Guerrero, J. A. Gómez-Pulido, and A. Durán-Domı́nguez,
“Analyzing and Predicting Students’ Performance by Means of Machine
Learning: A Review,” Applied Sciences, vol. 10, no. 3, p. 1042, Feb.
2020.

[4] M. A. Shafique and E. Hato, “Formation of Training and Testing
Datasets, for Transportation Mode Identification,” Journal of Traffic and
Logistics Engineering, vol. 3, no. 1, Jun. 2015.

[5] J. Han, M. Kamber, and J. Pei, “2 - Getting to Know Your Data,” in
Data Mining, 3rd ed., Morgan Kaufmann, 2012, pp. 39–82.

[6] U. M. Fayyad and K. B. Irani, “On the handling of continuous-valued
attributes in decision tree generation,” Machine Learning, vol. 8, no. 1,
pp. 87–102, 1992.

[7] J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” Journal
of Artificial Intelligence Research, vol. 4, pp. 77–90, Mar. 1996.

[8] G. L. Agrawal and H. Gupta, “Optimization of C4.5 Decision Tree Algo-
rithm for Data Mining Application,” International Journal of Emerging
Technology and Advanced Engineering, vol. 3, no. 3, Mar. 2013.

www.ijacsa.thesai.org 46 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

[9] N. Chakrabarty and S. Biswas, “A Statistical Approach to Adult Census
Income Level Prediction,” 2018 International Conference on Advances in
Computing, Communication Control and Networking (ICACCCN), Oct.
2018.

[10] N. G. Hedeshi and M. S. Abadeh, “Coronary Artery Disease Detection
Using a Fuzzy-Boosting PSO Approach,” Computational Intelligence and
Neuroscience, pp. 1–12, Apr. 2014.

[11] E. H. Budiman, H. H. Haviluddin, N. H. Dengan, A. H. Kridalaksana,
M. H. Wati, and Purnawansyah, “Performance of Decision Tree C4.5
Algorithm in Student Academic Evaluation,” Lecture Notes in Electrical
Engineering, Feb. 2018.

[12] H. Chauhan and A. Chauhan, “Implementation of decision tree algo-
rithm c4.5,” International Journal of Scientific and Research Publica-
tions, vol. 3, no. 10, Oct. 2013.

[13] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, “A comparative
study of decision tree ID3 and C4.5,” International Journal of Advanced
Computer Science and Applications (IJACSA), Special Issue on Advances
in Vehicular Ad Hoc Networking and Applications, Jun. 2014.

[14] M. A. Muslim, A. Nurzahputra, and B. Prasetiyo, “Improving accuracy
of C4.5 algorithm using split feature reduction model and bagging
ensemble for credit card risk prediction,” 2018 International Conference
on Information and Communications Technology (ICOIACT), Mar. 2018.

[15] Y. Yang and W. Chen, “Taiga: performance optimization of the C4.5
decision tree construction algorithm,” Tsinghua Science and Technology,
vol. 21, no. 4, pp. 415–425, Aug. 2016.

[16] R. H. A. Alsagheer, A. F. H. Alharan, and A. S. A. Al-Haboobi, “Pop-
ular Decision Tree Algorithms of Data Mining Techniques: A Review,”
International Journal of Computer Science and Mobile Computing, vol.
6, no. 6, pp. 133–142, Jun. 2017.

[17] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, Mar. 1986.

[18] S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross
Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Machine Learning,
vol. 16, no. 3, pp. 235–240, Sep. 1994.

[19] S. Singh and P. Gupta, “Comparative Study ID3, CART, and C4.5
Decision Tree Algorithm: A Survey,” International Journal of Advanced
Information Science and Technology (IJAIST), vol. 27, Jul. 2014.

[20] A. Rizka, S. Efendi, and P. Sirait, “Gain ratio in weighting attributes
on simple additive weighting,” IOP Conference Series: Materials Science
and Engineering, Oct. 2018.

[21] R. Jothikumar and B. R. V. Siva, “C4.5 classification algorithm with
back-track pruning for accurate prediction of heart disease,” Biomedical
Research, 2016.

[22] P. Tan, M. Steinbach, A. Karpatne, and V. Kumar, “Chapter 4: Clas-
sification: Basic Concepts, Decision Trees, and Model Evaluation,” in
Introduction to Data Mining, Pearson Addison-Wesley, 2006.

[23] H. Sharma and S. Kumar, “A Survey on Decision Tree Algorithms
of Classification in Data Mining,” International Journal of Science and
Research (IJSR), vol. 5, no. 4, pp. 2094–2097, Apr. 2016.

[24] H. Hassani, M. Ghodsi, and G. Howell, “A note on standard deviation
and standard error,” Teaching Mathematics and its Applications, May
2010.

[25] P. J. Barde and M. P. Barde, “What to use to express the variability
of data: Standard deviation or standard error of mean?,” Perspectives in
Clinical Research, vol. 3, no. 3, pp. 113–116, 2012.

[26] D. Rajeshingo and J. P. A. Jebamalar, “Accuracy Improvement of
C4.5 using K means Clustering,” International Journal of Science and
Research (IJSR), 2015, ISSN 2319-7064.

[27] D. G. Altman and P. G. Royston, “The cost of dichotomising continuous
variables,” BMJ Statistics Notes, May 2006.

[28] H. Dag, K. E. Sayin, I. Yenidogan, S. Albayrak, and C. Acar, “Compar-
ison of feature selection algorithms for medical data,” 2012 International
Symposium on Innovations in Intelligent Systems and Applications, Jul.
2012.

[29] J. Su and H. Zhang, “A Fast Decision Tree Learning Algorithm,”
AAAI’06: Proceedings of the 21st national conference on Artificial
intelligence, vol. 1, pp. 500–505, Jul. 2006.

[30] E. A. Graf, J. H. Fife, H. Howell, and E. Marquez, “The Development of
a Quadratic Functions Learning Progression and Associated Task Shells,”
ETS Research Report Series, vol. 2018, no. 1, pp. 1–28, Dec. 2018.

[31] B. Becker and R. Detrano, UCI Machine Learning Repository, 1996.
[Online]. Available: http://archive.ics.uci.edu/ml.

[32] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” IJCAI’95: Proceedings of the 14th
international joint conference on Artificial intelligence, vol. 2, pp.
1137–1143, Aug. 1995.

[33] R. Devakunchari, “Analysis on big data over the years,” International
Journal of Scientific and Research Publications, vol. 4, no. 1, Jan. 2014.

www.ijacsa.thesai.org 47 | P a g e

