
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

Static vs. Dynamic Modelling of Acoustic Speech
Features for Detection of Dementia

Muhammad Shehram Shah Syed1
RMIT University, Australia

Zafi Sherhan Syed2
Mehran University, Pakistan

Elena Pirogova3
RMIT University, Australia

Margaret Lech4
RMIT University, Australia

Abstract—Dementia is a chronic neurological disease that
causes cognitive disabilities and significantly impacts daily ac-
tivities of affected individuals. It is known that early detection
of dementia can improve the quality of life of patients through
a specialized care program. Recently, there has been a growing
interest in speech-based screening of neurological diseases such
as dementia. The focus is on continuous monitoring of changes
in speech of dementia patients, aiming to identify the early onset
of the disease which could facilitate development of preventative
treatment care. In this work, we propose a dynamic (temporal)
modeling of acoustic speech characteristics aiming at identifying
the signs of dementia. The classification performance of the
proposed framework is compared with a baseline static modeling
of acoustic speech features. Experimental results show that the
proposed dynamic approach outperforms the static method.
It achieves the classification accuracy of 74.55% compared to
66.92% obtained using the static models.
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I. INTRODUCTION

Dementia affects a large number of people worldwide. It is
estimated that currently more than 50 million individuals suffer
from this disease and the number is expected to grow to 75.63
million by the end of 2030 [1].Dementia is an umbrella term
for a set of progressive neurological diseases that lead to im-
pairment or even complete loss of language, memory, thought
processes, and problem-solving abilities which compromise the
quality of living in affected individuals. There are various types
of dementia. In Alzheimer’s dementia, nerve cells connections
and communication are impaired, eventually leading to nerve
cells death and tissue loss throughout the brain. Over time, the
brain shrinks dramatically, affecting nearly all its functions.
Dementia can also be caused by prolonged suffering from
high blood pressure as well as strokes, known as vascular
dementia) [2], [3]. Alzheimer’s disease disrupts both the way
electrical charges travel within nerve cells and the activity of
neurotransmitters, thus affecting functions of memory, move-
ment, and thinking ability, which depend on the region of the
brain being affected.

Traditional methods for diagnosis are based on neurophys-
iological tests [4], [5] and neuroimaging (MRI) [6]. However,
in recent years there has been a growing focus on less invasive
sensing technologies, in particular, speech-based diagnosis and
monitoring of dementia [7]. This year, at the Interspeech 2020

conference, Alzheimer’s Dementia Recognition through Spon-
taneous Speech (ADReSS) Challenge was organized which
encouraged researchers to develop automated methods for
detecting Alzheimer’s dementia from speech recordings of
patients [8].

This study is focused on developing a method for auto-
mated detection of dementia using the dataset provided as
part of the ADReSS challenge. Here, we propose a framework
based on temporal modelling of acoustic features and demon-
strate its effectiveness for the task of identifying individuals
with dementia. The performance of the temporal models is
bench-marked against the static models which are based on
functionals of descriptive statistics. The paper is organized
as follows: In section II, we present a brief literature review,
in section III we provide a summary of the ADReSS challenge
dataset. In section IV we detail the methodology of the tempo-
ral modelling framework. Experimental results and discussion
are provided in section V and section VI, summary and future
outlook are presented in section VII.

II. RELATED WORK

The ADReSS dataset, central to this study, is the baseline
paper relevant to the ADReSS challenge by Luz et al. [8].
The dataset consists of speech recordings of subjects from
two groups, healthy individuals and Alzheimer’s dementia
sufferers. For the classification baseline, Luz et al. com-
puted four types of acoustic feature sets, (i) emobase [9],
(ii) Computational Paralinguistics Challenge (ComParE) [10],
(iii) Extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [11], and (iv) Multi-Resolution Cochleagram
(MRCG) [12], to represent speech characteristics of sub-
jects from the two groups. Here, the functionals based static
modelling was used to generate a representation for speech
recordings using the above mentioned acoustic feature sets.
Results showed that ComParE provided the best classification
performance amongst the four feature sets. In [13], Haider
et al. investigated the feasibility of paralinguistic features for
recognizing Alzheimer’s dementia from recordings of sponta-
neous speech. Notably, while the authors used the same feature
sets as [8], they found the eGeMAPS feature set to provide the
best classification performance. This suggests that the efficacy
of feature sets largely depends on the dataset itself.
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Literature shows that it has been a common approach of
using linguistic features for the task of recognizing dementia
from speech. Fraser et al. [14] computed a large number of
features to capture linguistic phenomena, such as grammar
constituents, information content, part-of-speech, psycholin-
guistics, the richness of vocabulary, and the syntactic complex-
ity of speech transcripts. In addition to these features, Fraser et
al. also investigated the existence of acoustic abnormality using
features derived from the Mel Frequency Cepstral Coefficients
(MFCCs) [15] which provide information about the spectral
characteristics of speech. Based on their investigation, it was
reported that individuals with dementia have a semantically im-
poverished, syntactically and information deficient language,
in addition to abnormal speech. Another notable research
by Mirheidari et al. [16], the authors constructed a feature
vector consisting of acoustic and linguistic features for the
task at hand. In addition, they also computed conversational
features that are tuned towards identifying individuals with
memory disorders [17]. Their research findings suggest that
conversational features provide the best classification perfor-
mance when transcripts are annotated manually. However,
when automated speech recognition was used, the classification
accuracy significantly decreased from 96.70% to 76.70%. A
decrease in accuracy was also observed for linguistic features
with automatically generated transcripts. These results high-
light the limitations of automated screening methods based on
transcripts, especially when high-fidelity speech transcription
is not possible, which can be the case for people suffering
from diseases affecting their speaking capability. In the current
work, therefore, we focus only on the audio modality.

III. DATASET

To validate the proposed methodology, we used the dataset
provided by the ADReSS challenge at Interspeech 2020. This
is advantageous as our experiments can be reproduced by other
researchers, since the dataset is available in the public domain.
The dataset includes speech recordings from 144 subjects in
total; one-half of those are individuals with dementia, whereas
the other half are healthy individuals. The recordings have
an average duration of 75.30 seconds, a standard deviation of
38.38 seconds, and a maximum duration of 268.48 seconds.
Given the significant variation in the duration of speech
recordings, we segment each recording into 10 seconds based
on non-overlapping chunks for training classifiers on equal
duration of speech. At the evaluation stage of the classifier,
majority voting was conducted for classification performance
analysis. This means that the class with higher probability was
assigned to the input sample. A summary of dataset distribution
is provided in Table I.

TABLE I. DISTRIBUTION OF SUBJECTS WITH DEMENTIA AND THOSE
WHO ARE HEALTHY IN THE ADRESS DATASET

Gender Label

Healthy Dementia

Male 36 36
Female 42 42

Σ 72 72

IV. METHODOLOGY

We hypothesize that temporal characteristics of speech
acoustics can be useful for distinguishing between healthy
and dementia individuals. The hypothesis is based on the fact
that patients with dementia reveal a lack of speech fluency
and exhibit other rhythmic issues (pause and forget, difficulty
joining or following a conversation).

For this analysis, we started by computing low-level acous-
tic speech descriptors (LLDs) preserving the paralinguistic
aspect of speech. The LLDs are extracted from speech wave-
forms segment by segment, thus preserving the temporal
characteristics. We normalize the LLD features using standard
scaling (z-scores), and then pass them to a recurrent se-
quence network for generating an embedding that preserves the
temporal characteristics of speech. Finally, a fully connected
dense classifier is applied to identify subjects with dementia
and healthy. The functional block diagram of the proposed
temporal modelling framework is shown in Fig. 1.

Fig. 1. Block Diagram of Temporal (Dynamic) Modelling of Speech
Acoustic Features.

A. Audio Features for Speech Paralinguistics

The term speech paralinguistics refers to non-verbal and
non-linguistic aspects of speech. As per Schuller et al. [18],
paralinguistics are important facets of communication, when
human-beings naturally communicate their underlying emo-
tional states without explicitly describing them. It has been
shown that audio (acoustic) features representing speech par-
alinguistics can also be used to screen individuals for various
disorders, such as autism, bipolar disorder, depression, demen-
tia, and Parkinson’s disease (they can effectively characterize
manifestations of mental and neurological disorders based on
speech) [19], [20], [21], [13]. Here, we utilize three expert-
knowledge based acoustic feature sets that are known to
adequately represent characteristics of speech paralinguistics.
These feature sets include the Interspeech 2010 Paralinguistics
Challenge feature set (IS10-Paralinguistics) [22], the Inter-
speech 2013 Computational Paralinguistics Challenge (Com-
ParE) feature set [18], and the Extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) feature [11]. Given that
these feature sets are well known, we refer the reader to [22],
[18], [11] for further details on the feature sets.

B. Temporal Modeling of Acoustic Features

Recurrent neural networks (RNNs) are a special class of
deep neural networks that can learn temporal characteristics
from time-series data. In the context of this work, RNNs are
used to model temporal variations in speech paralinguistics
within utterances of subjects from the two groups. Although
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there are various types of recurrent models, the two most
popular structures include the Long-Short Term Memory and
the Gated Recurrent Unit. Both of these provide various im-
provements over the legacy recurrent neural network structure
(also known as vanilla RNNs) which has been difficult to train
historically [23], [24]. This study makes use of four variations
of the LSTM and one variation of the GRU for performing the
temporal modeling.

1) Long Short Term Memory (LSTM): The LSTM was in-
vented by Hochreiter and Schmidhuber [25] aiming to alleviate
the vanishing/exploding gradient problem of vanilla RNNs. An
LSTM cell, shown in Fig. 2, consists of four interacting layers
which include forget gate, input gate, update layer, and output
gate. Each of these can be considered fully connected networks
in their own right, and are therefore trainable. These layers
enable the LSTM cell to learn temporal patterns by managing
hidden state ht, cell state Ct, and the output of LSTM cell yt.

Fig. 2. Illustration of an LSTM Cell (Adopted from [26] ).

The first layer in an LSTM cell is the forget gate, which
is responsible for identifying parts of the previous cell state
(Ct−1) that should be removed during the forthcoming update.
If this is the first time step of the training process, the previous
cell state is generated through random initialization. Next starts
the process of updating the cell state with new information.
Here, the input gate first identifies the location of values within
the cell state which should be updated (and by how much).
Then, a candidate vector of cell state values is prepared by
passing the combination of input and hidden state through a
tanh activation to squash their values between -1 and 1. Now,
the cell state is updated by the summation of two products: (1)
the output of forget gate and the cell state from the previous
time-step (ft ∗ Ct−1) and (2) the input gate output and the
candidate cell state (it ∗ C̃t). The output gate makes decisions
about the parts of the cell state which should be produced as
the output of the LSTM cell. Finally, the hidden state of the
LSTM cell is updated for the next time-step by multiplying the
cell output by the tanh squashed cell state. Mathematically,
the process flow within the LSTM can be summarized as
follows, with xt representing the input N -dimensional acoustic
features:

ft = σ (Wf · [ht−1, xt] + bf )

it = σ (Wi · [ht−1, xt] + bi)

C̃t = σ (Wc · [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

Fig. 3. Illustration of an GRU Cell (Adapted from [26] ).

ot = σ (Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)

A bidirectional LSTM (BLSTM) is similar to an LSTM
network, except that instead of the just processing the input
in the forward direction for one LSTM cell, a BLSTM has
another cell side by side which is fed the input in a reversed
manner. By doing this, a BLSTM is able to learn from future
occurrences in sequences, and is able to form more complex
models than the simple LSTM. BLSTMs have been used
in a variety of applications successfully (automatic speech
recognition [27], voice conversion [28], etc.).

2) Gated recurrrent unit: The GRU is a temporal sequence
network proposed by Cho et al. [29] with a cell structure that
is more simplified than LSTM’s cell structure and also has a
fewer number of parameters. The GRU cell, as shown in Fig. 2,
achieves the reduced complexity by combining the functions
of forget and input gates from the LSTM cell into a single
update gate.

Mathematically, the process flow within the GRU cell can
be summarized as:

zt = σ (Wz · [ht−1, xt] + bz)

rt = σ (Wr · [ht−1, xt] + br)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

3) Temporal models for recognizing dementia speech: The
process of determining a particular neural network architecture
is usually a trial-and-error process based on cross-validation
and guided by intuition. To overcome this, we investigate the
efficacy of five temporal models to identify the best performing
one for the task at hand. A summary of the structure of these
models is provided in Table II.

TABLE II. A SUMMARY OF FIVE SEQUENCE MODELS USED FOR
LEARNING TEMPORAL CHARACTERISTICS OF SPEECH

Model ID Model Summary

Model 1 LSTM(N) + LSTM(2*N) + LSTM(N) + Dense(N) + Dense(2)
Model 2 GRU(N) + GRU(2*N) + GRU(N) + Dense(N) + Dense(2)
Model 3 BLSTM(N) + BLSTM(N) + Dense(N) + Dense(2)
Model 4 LSTM(N) + LSTM(2*N) + LSTM(N) + Attention + Dense(N) + Dense(2)
Model 5 BLSTM(N) + BLSTM(N) + Attention + Dense(N) + Dense(2)
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The first model consists of the three-layer stacked LSTM
with two dense layers, including the final layer which serves as
the classifier. The first and last LSTM layer has recurrent units
equal to the dimensionality (N ) of the input acoustic features.
For example, since ComParE LLDs have a dimensionality of
65, therefore the first and last LSTM layers in Model 1 have
65 units. The middle layer is twice the size of the first and the
last LSTM layers. We decided to use these settings assuming
that a larger number of recurrent units may assist in learning
complex temporal patterns from acoustic features. However,
this is not straightforward, since the limited amount of training
data may impact the learning ability of deeper LSTM models.
Moreover, a dense layer was added to investigate whether
the addition of a fully connected layer can aid in learning a
more meaningful representation from the acoustic embedding
learned by networks. Model 2 is identical to Model 1
except that it consists of GRU blocks rather than LSTM cells.

Model 3 is based on bi-directional LSTMs (BLSTM). It
consists of two LSTM layers, each with the number of units
equal to the dimensionality of the input acoustic LLDs and two
dense layers. Here, we used smaller number of BLSTM layers,
since BLSTMs naturally train two LSTMS, one in forward
direction and the other - in reverse direction of the sequence.

Model 4 and Model 5 are similar to Model 1 and
Model 3 except that an attention layer [30] is added to
the networks. The attention layer takes into consideration the
affect of long-term speech characteristics that may be learned
by the LSTMs and have been found to improve the LSTM
performance [31].

C. Static Modelling of Acoustic Features

Whereas temporal models seek to learn a global representa-
tion for speech recordings by explicitly considering inter-frame
changes, static modelling generates a global representation
of speech through feature aggregation. The simplest method
of static modelling is to compute functionals of descriptive
statistics for acoustic features. While this method may appear
trivial, it has often produced state-of-the-art classification per-
formance for paralinguistics tasks [32], [33]. Further, we found
static modelling of acoustic features to be useful in our previ-
ous research on recognition of perceived trustworthiness [?].
Therefore, we benchmark the classification performance of
temporal models against the static models for the task of
speech-based detection of dementia.

V. EXPERIMENTS AND RESULTS

The classification experiments were conducted using the
stratified 5-fold cross validation method. Stratification ensures
that the distribution of labels in the training partition was
matched by the distribution in test partition. The performance
of temporal models was benchmarked against the static models
using the same LLD feature sets under the same cross-
validation settings. Two types of classifiers, the support vector
machine classifier (SVC) and random forest classifier (RFC),
are used for classification with default settings as given in the
Scikit-learn toolkit [34]. The results are presented in Table III,
where it can be seen the best performing model, ComParE-
SVC, yields an accuracy of 66.92%.

TABLE III. SUMMARY OF CLASSIFICATION RESULTS FOR STATIC
MODELS FOR IS10-PARALINGUISTICS, COMPARE, AND EGEMAPS

FEATURE SETS

Feature set Accuracy (%)

SVC RF

IS10-Paralinguistics 61.92 58.85
ComParE 66.92 61.92
eGeMAPS 57.31 62.31

TABLE IV. SUMMARY OF CLASSIFICATION RESULTS FOR TEMPORAL
MODELS USING IS10-PARALINGUISTICS FEATURE SET

Model Name Accuracy (%)

Model 1 70.02
Model 2 64.35
Model 3 71.79
Model 4 72.50
Model 5 74.55

TABLE V. SUMMARY OF CLASSIFICATION RESULTS FOR TEMPORAL
MODELS USING COMPARE FEATURE SET

Model Name Accuracy (%)

Model 1 64.87
Model 2 60.02
Model 3 67.14
Model 4 65.34
Model 5 69.60

TABLE VI. SUMMARY OF CLASSIFICATION RESULTS FOR TEMPORAL
MODELS USING EGEMAPS FEATURE SET

Model Name Accuracy (%)

Model 1 66.50
Model 2 64.64
Model 3 68.93
Model 4 71.70
Model 5 73.84

In Table IV, we summarize the classification performance
of the static and temporal models for IS10-Paralinguistics
acoustic features. As can be seen, the best performance for
the static modelling of features is 61.92% whereas the best
performing temporal model, Model 5 which uses BLSTM-
Attention, achieves an accuracy of 74.55%, closely followed
by Model 4 which is based on LSTM-Attention achieves an
accuracy of 72.50%. While these results are preliminary, they
indicate that attention mechanism can assist in improving the
classification models.

The classification performance using ComParE feature set
has been summarized in Table V. Here, the static modelling
achieves the best performance with a classification accuracy
of 62.31%. In contrast, best model amongst the temporal
modelling approaches achieves an accuracy of 69.60%. In-
terestingly, the performance of the best sequence modelling
result is significantly lower when compared to the result
of the previous experiment. We suggest this is because the
dimensionality of ComParE is much larger than that of IS10-
Paralinguistic features (130 versus 76), and there are not
enough examples in the dataset to adequately train temporal
models with ComParE features.
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Finally, Table VI shows the summary of classification
performance for the static and temporal modelling using
eGeMAPS features. As can be seen, the best performing
model for the static features is eGeMAPS-RF which achieves
an accuracy of 62.31%, whereas the best performing model
amongst temporal models is Model 5 that provides an accu-
racy of 73.84%. The second placed temporal model, Model
4, achieves an accuracy of 71.70%. Both these results are
more superior than the accuracy achieved through the static-
modelling.

VI. DISCUSSION

The results presented above lead to some interesting ob-
servations. Firstly, we note that the temporal models provide
higher classification performance than the static models. A
caveat to this is the performance of the temporal models with
ComParE features which offer relatively smaller improvements
than IS10-Paralinguistics and eGeMAPS feature set. We sug-
gest this is due to the large dimensionality of ComParE LLDs
– 130 for ComParE versus 76 for IS10-Paralingusitics and 23
for eGeMAPS LLDs, respecively. Another observation is that
attention mechanism contributed to the consistently improved
classification by the temporal models. We believe this is
because attention mechanism assists the temporal models in
focusing on time-dependent charactersitics of acoustic LLDs
that are unique for individuals with dementia.

Table VII summarizes the classification results of top-3 best
performing models, where one can note that all of these models
are based on the temporal modelling with attention mechanism,
and two out of these make use of the IS10-Paralinguistic
feature set. As can be seen, a significant improvement in
classification accuracy is achieved when compared to the best
performing statistic model (which achieved 66.92%).

TABLE VII. SUMMARY OF TOP-3 TEMPORAL MODELS

Model Acoustic Feature Accuracy (%)

Model 5 IS10-Paralinguistics 74.55
Model 5 eGeMAPS 73.84
Model 4 IS10-Paralinguistics 72.50

VII. CONCLUSION

In this paper, we investigated the efficiency of the temporal
modelling vs. static modeling of speech acoustics for detection
of individuals with dementia. We benchmarked the proposed
temporal models with the static models of acoustic features.
Experimental results showed that the temporal modelling is a
more effective approach for the intended classification task,
revealing the best-case accuracy of 74.55% in a 5-fold cross-
validation setup. This accuracy may not be sufficient to support
a medical diagnosis; however it is sufficiently high to conduct
a low-cost rapid screening for dementia that could be followed
up by a professional assessment. The proposed acoustic speech
classification could be used either alone or in combination
with transcript analysis, questionnaires, and other standard
screening techniques.

Our future work will investigate application of other deep
learning models and integration of dynamic and static ap-
proaches into a combined decision-making system.
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