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Abstract—Non-Intrusive Load Monitoring (NILM) has be-
come popular for smart meters in recent years due to its
low cost installation and maintenance. However, it requires
efficient and robust machine learning models to disaggregate
the respective electrical appliance energy from the mains. This
study investigated NILM in the form of direct point-to-point
multiple and single target regression models using convolutional
neural networks. Two model architectures have been utilized
and compared using five different metrics on two benchmarking
datasets (ENERTALK and REDD). The experimental results
showed that multi-target disaggregation setting is more complex
than single-target disaggregation. For multi-target setting of
ENERTALK dataset, the highest individual F1-score is 95.37%
and the overall average F1-score is 75.00%. Better results were
obtained for the multi-target setting of the other dataset with
higher overall average F1-score of 83.32%. Additionally, the
robustness and knowledge transfer capability of the models
through cross-appliance and cross-domain disaggregation was
demonstrated by training for a specific appliance on a specific
data, and testing for a different appliance, house and dataset. The
proposed models can also disaggregate simultaneous operating
appliances with higher F1-scores.
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I. INTRODUCTION

Using energy in an efficient manner has become one of the
highest concerns for both utility and end-users nowadays, as
the world is facing challenging problems including depletion of
natural resources and emissions of environmentally hazardous
gases. To be able to use electrical energy efficiently, first,
both utility and consumers should know the amount of energy
consumption of individual appliances. For this purpose, cost
effective Non-Intrusive Load Monitoring (NILM) is considered
a plausible alternative. NILM is a method that can deduce
energy consumption of individual appliances from aggregated
smart meter power data recorded at a single source. This
process is based on software techniques and requires effective
and efficient techniques for successful disaggregation. It can
help understand consumer behavior and energy consumption of
appliances, and hence provide feedback on how to save energy.
According to [1], monitoring energy consumption can save up
to 12% of electrical energy with positive impacts on natural
resources and reduction of hazardous gas emission. Besides
getting detailed insights of the energy usage, NILM is useful
for better demand forecasting and tracing behavioral patterns
of dwellers [2].

NILM can be realized using three major steps as shown in

Fig. 1: (1) Data acquisition which is the collection of data by
installing hardware such as smart meters, (2) Feature extraction
which is the derivation of features from the collected data,
and (3) Learning and inferencing which is the deployment of
models such as training machine learning to make prediction.
NILM can be exploited for disaggregation using either clas-
sification or regression techniques. In classification methods,
the detection or identification procedure is more sophisticated
when unique signatures or fingerprints are needed to formulate
for classification of appliances [3], [4]. In regression, the ap-
pliance’s on/off state or classification is obtained by leveraging
the disaggregation results based on the on-threshold value of
an appliance [5].

There are a number of disaggregation studies that ap-
plied various machine learning techniques including Deci-
sion Trees (DT), K-Nearest Neighbors (KNN), Neural Net-
works (NN), Convolutional Neural Networks (CNN), Long
Short Term Memory (LSTM), Denoising Auto Encoder
(deAE), Sequence-to-sequence (seq2seq) and Sequence-to-
point (seq2point) learning, Subtask Gated Network (SGU) and
many others [6]–[13]. Sequence-to-sequence and sequence-
to-point are recent NILM disaggregation paradigms that can
predict direct energy consumption with promising results than
the Hidden-Markov Model (HMM) and its variants. But in
these techniques, choosing the receptive field (sliding window)
is somewhat crucial as there are different types of appliances
with the different activation cycles. Besides, there may be
multiple predictions for a single time point in seq2seq which
is redundant and calculation of mean is necessary for the final
prediction. Considering all these points, this work formulates
the disaggregation problem as a direct point to point regression
problem on the motivation that it will retain the granularity
of consumption information that will help the generalization
capability and knowledge transfer in the disaggregation domain
which is demonstrated in the experiment section. On the other
hand, it will also reduce the burden of retaining contextual
information and thereby releasing the computational and mem-
ory burden.

A disaggregation model can be trained either as a single-
target [5], [14] or multi-target [15] regression problem, or as a
single-label [2], [16]–[18], or multi-label [3], [7], [19]–[22]
classification problem. Single- and multi-label classification
and multi-class classification were explored in many works
in the literature. To our best knowledge, multi-target regres-
sion models for disaggregation are still under-studied. As the
principle application of NILM is to separate the individual
consumption from aggregate reading, in real time scenario,
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Fig. 1. Illustration of the Main Steps of Non-Intrusive Load Monitoring

direct disaggregation results are more preferable to the disag-
gregation results obtained after classification. Moreover, multi-
target disaggregation models are more suitable on the reason
that it can significantly reduce the training time by requiring
low resources. Therefore, it is important to formulate NILM
problem as a point-to-point multi-target regression model and
compare its performance with single target regression models,
especially for recent datasets such as ENERTALK. It is also
emphasized that a multiple output classification or regression
model poses challenges for disaggregation of multiple appli-
ances of the same type [23], especially when the devices are
multi-state devices and non-linear devices [24]. The works
in [4], [25], [26] attempted the simultaneous detection of the
load using different algorithms and features. However, their
scopes were limited to classification of the load and there is
still a need to explore this problem using regression models.

Keeping the above mentioned issues as main focus, this
paper has the following contributions. Energy disaggregation
is formulated as the direct point-to-point multi-target disaggre-
gation learning that will help retain granular consumption meta
information to foster generalization and knowledge transfer.
The proposed multi-target disaggregation approach has highest
individual and average F1-score of 95.37% and 75% respec-
tively for ENERTALK dataset. For REDD dataset, the highest
individual F1-score is 95.06% and overall average is 83.32%.
For generalization, robustness and knowledge transferability
of multiple and single target point-to-point disaggregation
models, the highest F1-scores are 96.40% and 93.50% for
single and multiple target, respectively. Furthermore, this study
provides a base for NILM researchers to compare their results,
especially for ENERTALK dataset which is a relatively recent
dataset with large number of houses.

The remainder of this paper is organized as follows.
Section II reviews related work and Section III describes the
problem formulation and methodology. Section IV presents
the details about experiments, results and discussions on
ENERTALK and REDD. Finally, the paper summary and
conclusions are presented in Section V.

II. RELATED WORKS

Shin and his team [13] proposed Subtask Gated Network
(SGN) for non-intrusive load monitoring in 2019. Their model
used a classification subnetwork and a regression subnetwork
and then the output of classification is gated with that of regres-
sion. A concise study of appliance features used for NILM is
presented in [27] using Random Forest (RF) and Recursive
Feature Elimination (RFE). Mengistu et al. [28] described

an online cloud-based NILM system using HMM and Mean-
Shift Clustering (MSC) algorithm in an unsupervised fashion.
Unlike previous works, the study in [29] investigated the data
reduction strategy in aggregated power signals by applying
non-uniform subsampling (NUS).

A Graph-based semi-supervised multi-label classification
model based on active/inactive (on/off) state of appliance
was proposed in [19] using three graph-based algorithms
(i.e. Local and Global Consistency (LGC), Gaussian Fields
and Harmonic Functions(GFHF), and Manifold Regularization
(MR)). Another multi-label classification of appliances using
RAndom k-labELsets (RAkEL) with Decision Tree (DT) was
explored in [7]. However, it was observed that the low-
power consumption appliances were not correctly identified.
Kim and Lee [3] investigated multi-label classification us-
ing audio signal processing techniques: Spectrogram, Mel-
Frequency Cepstral Coefficient (MFCC) and Mel-spectrogram.
The spectrogram based feature is proved to have the promis-
ing results. Inspired by the success of CNN, the authors
in [16] proposed a novel appliance identification method using
CNN for feature extraction, and Adaptive Linear Programming
Boosting (ALPBoost) for classification. An accuracy of 95.4%
for single appliance identification and 91.8% for multiple
appliance identification were achieved. In the literature, the
voltage-current (V-I) trajectories were found powerful for
formulating appliance signature. In [21] and [22], appliances
were classified using V-I trajectory converted to grey-scale and
color coded image, respectively. Though the models in [21]
were able to successfully detect a large number of appliances,
the washing machine, fan, fridge and air conditioner were not
identified with better score. Reference [22] used AlexNet trans-
fer learning methodology. The authors in [17] used wavelet
coefficients for identification of four appliances using Decision
Tree (DT) and Nearest Neighbor (NN) classifiers on the setting
of semi-supervised learning.

Jiang et al. in their work [5] investigated the on/off de-
tection of appliances and energy disaggregation using CNN,
RNN and Wavenet that used fast sequence-to-point learning.
Kaselimi et al. [30] exploited the multi-channel CNN based
architecture to include multiple input features in sequence-to-
sequence (seq2seq) learning. However, the energies of multi-
state devices were not correctly estimated. Schirmer and his
team [14], like in Kaselimi’s work, proposed a two-state
disaggregation model using DNN and temporal contextual
information (TCI). The performance for single- and multi-
state device without power peak and non-linear devices are
relatively low. How different combination of statistical and
electrical features influence the disaggregation of various de-
vice types were studied in [6]. The authors in [9] studied the
energy disaggregation using CNN, LSTM and CNN+LSTM
on REDD dataset. In [31], a causal 1-D convolutional neural
network based power disaggregation system (Wave-nilm) was
proposed and the model was tested on AMPds2 dataset. It is
noticed that the use of reactive power (Q) as input feature
increases performance. In [32], Markov model was used to
relate activity chain to each occupant of a household and then
the energy usage per appliance was calculated and again these
power usages were grouped under certain appliance categories.
Appliance recognition and thereby disaggregation of energy
using high frequency spectrogram feature (Short Time Fourier
Transform (STFT)) was conducted in [33]. The authors in
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[15] used a composite deep LSTM (CD-LSTM) to study the
disaggregation using multi-target setting. This is the only work
that used multi-target disaggregation. However, their work
was based on sequence-to-sequence paradigm which has the
drawbacks mentioned in the introduction section.

III. PROBLEM FORMULATION AND METHODOLOGY

The purpose of NILM is to deduce the individual appli-
ance level power consumption from the total signal recorded
through a smart meter. Inversely, the total aggregated energy
of a residence can be estimated from all individuals’ appliance
consumption. This can be mathematically expressed as [24]:

pt =

n∑
i=1

p
(i)
t + et (1)

where pt is the aggregated power consumption at time t, p(i)t is
the individual appliance power consumption at time t, and et
is line loss or error of measurement at time t. Based on Eq. 1,
the energy disaggregation problem is defined as the direct
point to point estimation p̂

(i)
t of the overall power pt, where

p̂
(i)
t is the estimated ith appliance energy at time t, given the

ground truth consumption p
(i)
t . In exact terms, this estimation

can be achieved either by formulating the disaggregation as a
classification or regression problem.

In this work, as described in the introduction section, the
NILM is formulated as a regression problem which can have
significant advantages over classification problems. Classifi-
cation requires deployment of various algorithms to identify
various working states of the household devices. This can
become more challenging when the devices with the different
level of energy demand are operating simultaneously, requiring
high sampling data to create unique signatures to differen-
tiate one from the other devices. Moreover, keeping track
of on/off timestamp, duration of on/off, and calculation of
average load consumption during specific ‘on’ periods makes
the algorithms more computationally burdened. In sequence-
to-sequence and sequence-to-point learning, training the model
for long sequences of input to cover activation cycle requires
a relatively large memory due to the need to keep track
of contextual information. This sometimes jeopardizes the
system in a low-resource environment. On the other hand,
a regression model does not require all these operations and
per-appliance disaggregation value is obtained directly from
the results of regression output layer. Additionally, regression
model provides detailed information about energy usage at
every time point which cannot be the case with classification
model.

A. Multi-Target Disaggregation Problem

Let X = {X1, X2, .....Xp} and Y = {Y1, Y2, .....Yq} be
the two sets of input and target variables, respectively; each
set with features derived from aggregate consumption and
individual appliance ground truth consumption at specific time
points (steps). The training dataset is defined as,

D = {(x1, y1), ..., (xT , yT )}, (2)

where T is the total number of time steps. Then each instance
of D consists of input vector of p independent variables

(predictors) and output vector of q target variables at time t,
which respectively, are defined as,

xt = (x
(1)
t , x

(2)
t , ..., x

(j)
t , ..., x

(p)
t ), (3)

and

yt = (y
(1)
t , y

(2)
t , ..., y

(i)
t , ..., y

(q)
t ), (4)

where j = 1, 2, ..., p, i = 1, 2, ..., q and t = 1, 2, ..., T .

Now, the task is to learn a multi-target disaggregation
model M from instances of D such that a function f maps the
vector x consisting of p aggregate feature values to a vector y
consisting of q consumption values.

f : x 7→ y, (5)

where x = (x(1), x(2), ..., x(p)) and y = (y(1), y(2), ..., y(q)).
The trained model M can be used to predict the
power consumption of all included appliances denoted by
{ŷ(T+1), ŷ(T+2), ...., ŷ(T ′)} using the new input instances
{x(T+1),x(T+2), ....,x(T ′)}, i.e.,

ŷt′ = M(xt′), t
′ = T + 1, T + 2, ..., T ′ (6)

For training loss, the Mean-Squared-Error (MSE) of single
appliance disaggregation can be adopted for multiple devices
as follows:

MSE =
1

q

1

T

∑
i

∑
t

(y
(i)
t − ŷ

(i)
t )2 (7)

Setting i = 1 in Eq. (4) will transform a multi-target disag-
gregation problem to a single-target disaggregation problem.

B. CNN Multi-Target Regression Model

CNN was originally applied for image processing and
computer vision where the input and each layer is multi-
dimensional [34]. However, in this paper, NILM is formulated
using 1-D CNN because the nature of data in load disaggrega-
tion is a uni-dimensional time series that keeps track of energy
consumption of each appliance at a specific point. In line with
this, every aggregate consumption feature at the specific time
stamp is convolved with a kernel finding the relation between
the features so that the part of aggregate consumption can be
best mapped to the target appliance consumption value thereby
finally producing optimum weights. Inspired by [35], two
architectures of CNN are designed as follows. The first one will
be referred to as CNN model-I (CNN1M), is built using two
blocks of convolutional layers; the first block is followed with
a max-pooling layer and the second block is followed with a
global max-pooling layer. The fist convolutional block consists
of three convolutional layers, each with 64 filters of size 2 and
the second block also has three convolutional layers but each
with 128 filters of size 2. The global max-pooling layer acts as
a bottleneck layer to branch each appliance as a separate output
with a dense layer of 512 neurons and a final output layer with
one neuron. Another deeper model called CNN model-II was
designed that has one more convolutional block of three layers
each with 32 filters of size 2 and all the other parameters are
the same as CNN Model-I. For CNN model-II, two variants
were used: one for single target (CNN2S) and the other for
multi-target (CNN2M), where S stands for Single and M for
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Multiple. For both architectures, the ‘stride’ and ‘learning rate’
are set to 1 and 0.001, respectively. Also, ‘ReLU’ is used as
activation for all hidden layers and ‘linear’ is used as activation
for all output layers. The architectures are shown in Fig. 2 and
Fig. 3.

IV. EXPERIMENTAL WORK

For all experimental works, a machine with NVIDIA
GEFORCE GPU model GTX 950 which has 4GB dedicated
graphics and 16GB RAM was used. The implementation
scripts were written using Python 3.7.3 and for CNN model,
Keras which run on Tensorflow back-end was deployed. For
all experiments, data normalization used was L2-norm imple-
mented in scikit-learn preprocessing.normalize(). The sketch
of overall workflow is given in Fig. 4.

A. Energy Disaggregation based Metrics

Five performance measures have been reported to evaluate
the proposed models. In the following formulae, y(i)t represents
the true energy consumed by appliance i at time point t and
ŷt

(i) represents the disaggregated power of appliance i at time
point t.

1) Mean-Squared Error (MSE): MSE is defined as the
average of the square of the difference between actual and
predicted energy values as expressed by

MSE(i) =
1

T

∑
t

(y
(i)
t − ŷt

(i))2 (8)

2) Normalized Disaggregation Error (NDE): It is the ratio
between the sum of squared difference of estimated (disag-
gregated) energy and true energy, and sum of square of actual
energy, and then taking square root of it. It is a slight variation
of the metric used in [36]. Its mathematical formula is

NDE(i) =

√√√√∑t(y
(i)
t − ŷt

(i))2∑
t(y

(i)
t )2

(9)

3) Normalized Error in Assigned Power (NEAP): The
sum of the absolute differences between the disaggregated
power and the true energy consumption of appliance i in
each time point t, divided by the total power consumption of
appliance. In [37], the authors have shown that the error values
greater than 1 is less representative towards the disaggregation
performance and less explainable.

NEAP (i) =

∑
t

∣∣∣y(i)t − ŷt
(i)
∣∣∣∑

t y
(i)
t

(10)

4) Energy-based Precision (P (E)): It can be mathemati-
cally expressed as [38]:

P
(E)
i =

∑
t min(y

(i)
t , ŷt

(i))∑
t ŷ

(i)
t

(11)

5) Energy-based Recall (R(E)): It can be mathematically
expressed as [38]:

R
(E)
i =

∑
t min(y

(i)
t , ŷt

(i))∑
t y

(i)
t

(12)

6) Energy-based F1-measure (F (E)
1 ): It is a geometric

mean between the precision and recall and can be mathemat-
ically expressed as:

F
(E)
1 = 2

P (E)R(E)

P (E) + R(E)
(13)

where,

P (E) =
1

m

∑
i=1

m
P

(E)
i , R(E) =

1

m

∑
i=1

m
R

(E)
i (14)

where m is the number of appliances. Equation (13) can be
used to calculate the F1 score of individual appliance using
Equation (11) and (12).

B. Datasets and Data Preparation

Two public datasets were deployed for experimenting the
proposed models in this work. The first one is ENERTALK
dataset [39] that has consumption data collected from 22 resi-
dences in Korea using 15Hz sampling rate for both individual
and total (aggregate) consumption. One of the challenging
and crucial aspects of energy disaggregation of this dataset
is the alignment of target appliance and aggregate meter
reading. Keeping this in mind, the daily consumption of all
appliances including aggregate reading and daily consumption
were concatenated in horizontal and vertical fashion where
the data were resampled to one second. To handle missing
data, one-step backward filling was used and the remaining
missing values were subsequently removed. The other dataset
is REDD [40] that has data collected from six residential
buildings in USA. For this work, the low frequency data of six
houses were used; where the mains consumption are sampled
at 1Hz and all appliances are sampled at 1

3Hz. These different
sampling rates were aligned by using horizontal concatenation
and downsampling to 3 seconds. Afterwards, the preprocessing
with L2-norm was applied to the resultant dataframe of both
datasets to normalize feature values.

The active power (P) and reactive power (Q) are the two
original features available in ENERTALK dataset. Based on
these two features, some other features were extracted based on
power triangle shown in Fig. 5. For REDD dataset, only active
power for two mains are available and are used as features.

Active Power (P),

P = V ∗ I ∗ cos(Φ) (15)

where V is voltage, I is current and Φ is the phase angle.

Reactive Power (Q),

Q = V ∗ I ∗ sin(Φ) (16)

Apparent Power (S),

S = V ∗ I, S2 = P 2 + Q2 (17)
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Fig. 2. Multi-Target CNN Model-I Architecture; x1 to xp represent Energy Consumption (Features) at each time step t1 to tT , where p is the Total Number
of Features, T is the Total Number of Time Steps and m is the Total Number of Appliances

Fig. 3. Multi-Target CNN Model-II Architecture; x1 to xn represent Energy Consumption (Features) at each Time Step t1 to tT , where p is the Total Number
of Features, T is the Total Number of Time Steps and m is the Total Number of Appliances

Fig. 4. Workflow Chart

Fig. 5. Power Triangle

where P , Q, S, V and I are as described earlier.

Power Factor (PF),

PF = cos(Φ) =
P

S
(18)

where P and S are as described earlier.

Besides the above features, six additional features are
extracted: (1) difference power between S and P (DPsp), (2)
difference power between P and Q (DPpq), (3) difference
power between S and Q (DPsq), (4) average of P , Q and S
(Pavg), (5) sine of phase angle (Sin Ph), and (6) tangent of
phase angle (Tan Ph), for ENERTALK dataset.

C. Results for ENERTALK Dataset

For all the experiments with this dataset, 20% of the total
data is kept for testing whereas the rest 80% is divided again
in 80:20 ratio for training and validation. The batch size of
512 and number of epochs of 20 are used for training of the
models with the loss function of total Mean Squared Error
(MSE) for all appliances.

1) Experiments on House00 Data: These experiments used
24-days data of House00 that consists of the recording of seven
appliances: TV, Washing Machine (WM), Rice Cooker (RC),
Refrigerator (R), Water Purifier (WP), Microwave (MW) and
Kimchi Fridge (KR). A total of 2073580 instances were gen-
erated after applying the horizontal and vertical concatenation.
After all the data preparation steps were applied as explained
earlier, 1983102 instances were available. This experiment
used S and PF as features besides P and Q. From the scores
shown in Table I, it is observed that the highest F1-score of
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TABLE I. PERFORMANCE SCORES OF ENERGY DISAGGREGATION OF CNN
MODEL-II FOR ENERTALK-HOUSE00 (S= SINGLE, M= MULTIPLE)

Appliance NDE NEAP P R F1
TV (S) 0.22661 0.38922 0.83034 0.98916 0.90282
TV (M) 0.74338 1.05110 0.50121 0.41428 0.45362
WM (S) 5.76306 6.33135 0.71930 0.75145 0.73503
WM (M) 19.4733 15.8424 0.39069 0.50867 0.44194
RC (S) 1.88011 1.96937 0.73848 0.91109 0.81576
RC (M) 10.1996 4.40733 0.42545 0.45535 0.43989
R(S) 0.15737 0.17893 0.93962 0.88391 0.91091
R(M) 0.46575 0.49511 0.79155 0.70009 0.74302
WP (S) 0.11281 0.13519 0.88762 0.99926 0.94014
WP (M) 0.39986 0.35087 0.86114 0.78504 0.82133
MW (S) 0.82996 1.02232 0.68390 0.78355 0.73034
MW (M) 1.44944 1.21941 0.62349 0.70693 0.66259
KR (S) 0.52759 0.64577 0.85249 0.89760 0.87446
KR (M) 2.82818 2.00645 0.39634 0.31392 0.35035
Average (S) 1.35671 1.52459 0.80739 0.88800 0.84577
Average (M) 5.07993 3.62467 0.56998 0.55489 0.56234

82.13% and 94.01% are achieved by Water Purifier (WP) in
multi- and single target, respectively. The lowest achiever for
this set of experiment is Kimchi Fridge (KR) in multi-target
setting with F1-score of 35%. In the multi-target disaggrega-
tion, WP has also the highest performance in terms of NDE
and NEAP.

2) Experiments on House12 Data: With this data of
House12, the CNN model-II was validated using multi-state,
continuously varying (nonlinear) consumption and always-on
devices. It consists of 4 months aggregate and appliance level
consumption data for two WMs, TV, RC, KR and R. A total
of ten features mentioned in Section IV-B from 8639267 data
samples were used for multi- and single target regression. All
the experiments results are shown in Table II. As seen from the
table, the refrigerator has the highest F1-score of 95.37% and
99.34% in multi- and single target setting, respectively. Both
actual and predicted energy consumption of the refrigerator
for multi-target setting are shown in Fig. 6. These results
confirm that the CNN model-II is robust enough to successfully
disaggregate energy with higher F1-score. It is noteworthy that
the model successfully disaggregates energy of two of the three
multi-state devices with the acceptable F1-scores along with
other devices except WM2. For the multi-target setting, WM2
has the lowest F1-score of 43.47%, and for the single-target
setting, WM1 has the lowest disaggregation score of 32.47%.
Furthermore, if we analyze the results in terms of precision and
recall for the multi-target setting, it is seen that the refrigerator
has the highest scores of 97.59% and 93.24%, respectively.
WM2 has the worst NDE and NEAP scores in the multi-target
disaggregation setting.

D. Results for REDD Dataset

This experiment was executed on the total of 1099738 data
samples resulted from combination of House1, House2 and
House3 data of the REDD dataset for four common kitchen
appliances (three multi-state devices and one continuous con-
sumption device) such as Microwave (MW), Refrigerator (R),
Dishwasher (DW) and Washer Dryer (WD). The CNN model-I
was trained with 20 epochs and batch size of 512. The CNN
model-II was modified according to the features and data used,
i.e. a filter size of 1 and 16 epochs were used. Moreover,
the MaxPooling layer after the first convolutional block was

Fig. 6. Predicted Consumption of Refrigerator for Multi-Target CNN
Model-II ((ENERTALK-House12)

.

TABLE II. PERFORMANCE SCORES OF ENERGY DISAGGREGATION FOR
CNN MODEL-II ON ENERTALK-HOUSE12. (S= SINGLE, M= MULTIPLE)

Appliance NDE NEAP P R F1
WM1 (S) 1.81104 2.12090 0.31159 0.33915 0.32479
WM1 (M) 2.32865 1.84337 0.52510 0.74387 0.61563
TV (S) 0.17689 0.31679 0.99975 0.71681 0.83496
TV (M) 0.40574 0.38446 0.85595 0.77106 0.81129
RC (S) 3.98337 4.85974 0.39227 0.97747 0.55987
RC (M) 1.34695 0.83939 0.78732 0.74534 0.76576
KR (S) 0.04056 0.06156 0.99173 0.96386 0.97760
KR (M) 0.26382 0.24054 0.95253 0.84008 0.89278
WM2 (S) 0.63658 0.66677 0.90117 0.77531 0.83351
WM2 (M) 3.58233 2.33685 0.41711 0.45389 0.43472
R (S) 0.01768 0.01294 0.99705 0.98971 0.99337
R (M) 0.13047 0.09156 0.97591 0.93240 0.95366
Average (S) 1.11102 1.33978 0.76559 0.79372 0.77862
Average (M) 1.34299 0.95603 0.75232 0.74777 0.75004

removed to train the model for the combined data of REDD
dataset. For the testing set, 30% of the original data is reserved
and the remaining 70% is used for training and validation
with 70:30 split ratio. The scores of disaggregation using CNN
model-I (CNN1M) and CNN model-II (CNN2M) models are
shown in Table III and the predicted disaggregation of MW
and R are shown in Fig. 7. As seen from the table, the highest
F1-score is achieved by R using CNN-I model. It should be
emphasized that all the multi-state devices are disaggregated
with acceptable F1-scores above 75% and highest F1-score of
88.15%. Another point to be noted is that for all devices, CNN
model-I outperformed CNN model-II, though CNN model-
II has a deeper architecture. This supports that a relatively
shallower architecture can effectively disaggregate the low-
sampling consumption data (REDD dataset was sampled at
3s whereas ENERTALK was sampled at 1s).

E. Discussion and Analysis

1) ENERTALK House00: For the analysis of energy dis-
aggregation performance of the appliances of this house, if
multi-target setting is considered, it has the average F1-score
of 56.23% and the individual highest F1-score 82.13% for WP
which is also the highest in the single output setting. As for
the scores of single output setting, it is seen that WP has the
highest F1-score of 94% and MW has the lowest F1-score
of 73.03%. The performance of other appliances according
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(a) Actual Vs. Estimated Consumption of MW for Multi-Target CNN Model-I on
Combined Data)

(b) Actual Vs. Estimated Consumption of R for Multi-Target CNN Model-I on Combined
Data

Fig. 7. Actual Vs. Estimated Consumption for CNN Model-I Multi-Target on Combined Data (REDD:House1+House2+House3)

Fig. 8. Disaggregation Analysis of House00 (ENERTALK) Using the
Models Trained on Different Appliance of Difference House of the Same

Dataset and Same Appliance of Different Dataset. SC1, SC2 and SC3 stand
for scenario 1, 2 and 3, respectively

.

TABLE III. PERFORMANCE SCORES OF CNN1M AND CNN2M ON
REDD COMBINED DATA (REDD:HOUSE1+HOUSE2+HOUSE3)

Appliance Model P R F1

MW CNN1M 0.87503 0.88806 0.88150
CNN2M 0.83395 0.82906 0.83150

R CNN1M 0.96422 0.93732 0.95058
CNN2M 0.93352 0.94413 0.93880

DW CNN1M 0.79036 0.72423 0.75585
CNN2M 0.62219 0.45417 0.52506

WD CNN1M 0.69692 0.78931 0.76309
CNN2M 0.73521 0.64430 0.68676

Average (CNN1M) CNN1M 0.83163 0.83473 0.83318
Average (CNN2M) CNN2M 0.78122 0.71792 0.74824

to their F1-scores is 91.09%, 90.28%, 87.44%, 81.58% and
73.50% for R, TV, KR, RC and WM, respectively. In terms
of all metrics scores, WP, R, TV, KR and MW have the
highly acceptable disaggregation performance. WM and RC
are not listed in this category because their respective NDE
and NEAP have higher value even though they have better F1-
score. Overall average performance F1-score is 84.58% which
again confirms the robustness of point-to-point CNN model-
II in single target setting for power disaggregation. For the

disaggregation performance of both setting, it is seen that the
scores of multi-target model in this house are far lag behind
those of the single target model (Table I).

2) ENERTALK House12: The main purpose of this ex-
periment is to investigate how efficiently the CNN Model-II
can disaggregate energy when there are simultaneously oper-
ating multiple mixed type of appliances. The experiment was
conducted taking into consideration three multi-state devices
(two WMs and one RC), one nonlinear device (TV) and two
continuous consumption devices (R and KR). For this, the
multi-target setting was considered and the results are shown
in Table II. As seen from the table, the highest F1-score
of 95.37% is for refrigerator and 75% is the average of all
participating appliances. For the multi-state device (RC), F1-
score is as high as 76.58%. This experiment also confirms
that CNN mode-II can be used for future prototype for energy
disaggregation of simultaneous operating of multiple multi-
state devices. It should be also noted that our point-to-point
multi-target CNN model can disaggregate the nonlinear device
with F1-score of 81.13% in the presence of multiple multi-state
devices which are also hard to disaggregate.

3) Disaggregation Performance Across ENERTALK
Houses: For comparisons, please refer to Table I and
Table II. It is seen that House00 has superior overall average
performance than House12, for single target model. But in
terms of multi-target setting, House12 has superior overall
performance than House00. When compared the performance
of appliances that are common (TV, KR, R, WM and RC)
in all the two houses on the basis of appliance by appliance
performance in single target setting, TV and RC have higher
performance in House00 than House12, and WM1, KR and
R have higher performance in House12 than House00. For
multi-target setting, all appliances clearly outperform in
House12 than House00. That is the reason that the overall
performance of House12 is better than House00. Please note
that the above analyses are based on F1-scores. To explore the
differences, the data patterns of all appliances for all houses
were analyzed. In that vein, we look into the data statistics
in the houses and from the observation, it can generally be
concluded that the usage patterns of individual appliance and
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the duration of usage have an impact on the performance. This
is based on the fact that the usage pattern and duration have
the direct impact on the data distribution and range of data
which in turn has remarkable influence on the performance.
Neural network generally maps inputs to outputs based on
certain mathematical operations, and penalizing the model for
wrong mapping by adjusting the weights. This adjusting of
weights become difficult for the model when data are sparsely
distributed with most of the feature values with zero and some
with very large values. This task becomes more difficult when
the model has to extract small portion out from large values
(blind-source separation) which is the case with the energy
disaggregation. This point is particularly more applicable for
the appliances that are less frequently used and disaggregation
is done on event-less fashion. In addition, form the analyse
of the average performance of multi-target regression models,
it is observed that the highest F1-score of 75% is achieved
by House12 and the lowest F1-score of 56.23% is achieved
by House00. It is noteworthy that the reason of higher overall
F1-score of House12. This may be due to the fact that
when targets are correlated with one another, the multi-target
produce better results. Again the correlation between the
targets depend on data distribution which again is as mention
above, depend on the usage pattern and duration. The study
of correlation among the targets is beyond the scope this
work. It is emphasized that in terms of NDE and NEAP also,
the multi-target model in House12 performs better than both
single and multi-target models in House00. Moreover, if we
analyze the disaggregation performance of non-linear device
(TV) in all two houses for multiple output regression model,
the highest F1-score achieved is 81.13% for House12.

4) REDD Dataset: In combined data of House1, 2 and 3,
the CNN1M has the highest individual F1-score of 95.06%
with R and the overall average F1-score is 83.32%. In terms
of individual scores CNN Model-I (CNN1M) has the best per-
formance. This combined data experiment is further elaborated
in IV-F.

F. Disaggregation Performance and Model Generalization

In general, according to our detail observation and anal-
ysis, the disaggregation performance of multi-target model is
lower than single target model because in the single target
setting, the weight is to adjust to multiple targets of different
statistical differences using common features and parameter
sharing. However, the multi-target models require less training
resources and time than the single target model. On the other
hand, the single target model can be customized for specific
appliance but at the expense of extra training resources and
time.

Generalization and robustness of single and multi-target
disaggregation models are tested using CNN Model-II and
CNN Model-I for ENERTALK and REDD dataset, respec-
tively. To check the robustness of multi-target regression
model, the model trained for four appliances (MW, R, DW,
WD) on the combined data of House1+2+3 in REDD dataset
was used to predict the energy of selected appliances of House
4, 5 and 6 of the same dataset. This is more challenging than
the single output setting because there are ghost (unknown)
appliance and miscellaneous outlet in House4 and House6.
The scores and estimations are shown in Table IV, and Fig. 9.

.

TABLE IV. PERFORMANCE SCORES OF SELECTED APPLIANCES OF
HOUSE4, 5 AND 6 DISAGGREGATED USING MODEL TRAINED ON

HOUSE1+2+3 IN MULTIPLE OUTPUT SETTING (REDD)

House Appliance P R F1

House4

DW 0.39813 0.10865 0.17072
WD 0.43354 0.05639 0.09980
Unknown 0.17495 0.22044 0.19508
Miscellaneous 0.30309 0.63820 0.41099

House5

MW 0.76739 0.55764 0.64591
R 0.83057 0.66189 0.73670
DW 0.89611 0.48298 0.62767
WD -0.01229 -0.55193 -0.02406

House6

R 0.94380 0.92640 0.93503
DW 0.10150 0.98172 0.18398
WD 0.897518 0.64567 0.75104
Electronics 0.16903 0.82885 0.28080
Unknown 0.52029 0.52725 0.52734

.

TABLE V. PERFORMANCE SCORES OF FOUR APPLIANCES OF HOUSE00
OF ENERTALK DISAGGREGATED USING CNN MODEL-I TRAINED ON

COMBINED DATA OF REDD

Appliance P R F1
KR 0.22462 0.73948 0.34457
R 0.88679 0.67245 0.76489
WM 0.79329 0.34548 0.48134
MW 0.11073 0.45475 0.17810
Average 0.50386 0.55304 0.52731

It is seen that the model can disaggregate the unknown and
miscellaneous outlets with F1-score of 52.73% and 41.1%,
respectively. Moreover, it can disaggregate the multi-state de-
vice (WD) and permanent consumer device (R) with F1-score
of 75.1% and 93.50%, respectively. Next, the CNN Model-I
trained using combined data of REDD was tested on House00
data of ENERTALK to verify cross-domain disaggregation of
the model. The model was trained on dataset and tested on
another dataset of of a different geographical location. The
tested appliances are KR, R, WM and MW. From the scores
given in Table V, it is clear that the energy of R can be
disaggregated with the highest precision of 88.68% and the
highest F1-score of 76.49%. But in terms of recall score, KR
has the highest disaggregation performance score of 73.95%.
It should be emphasized that KR and WM were disaggregated
using R and WD of combined data as there was no KR and
WM in REDD combined data. As overall average of the four
appliances, the scores of all three metrics are above 50%.

For single target regression, KR in House21 of EN-
ERTALK dataset with total of 4215727 input instances is
trained and the energy of all seven appliances (KR, R, TV, RC,
WM, WP, MW) of House00 are disaggregated. In this scenario

.

TABLE VI. PERFORMANCE SCORES OF SEVEN APPLIANCES OF HOUSE00
DISAGGREGATED USING CNN MODEL-II TRAINED ON KR OF HOUSE21

IN SINGLE OUTPUT SETTING (ENERTALK)

Appliance P R F1
KR 0.53789 0.98694 0.69629
R 0.97351 0.95468 0.96400
TV 0.84321 0.93860 0.88835
RC 0.29038 0.96231 0.44614
WM 0.32239 0.92912 0.47869
WP 0.94289 0.97335 0.95788
MW 0.33107 0.90524 0.48483
Average 0.60591 0.95003 0.73990
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(a) Energy of R of House6 Estimated by Multi-Target CNN Model-I Trained on
House1+2+3

(b) Energy of MW of House5 Estimated by Multi-Target CNN Model-I Trained on
House1+2+3

Fig. 9. Estimated Energy of Devices by the Model Trained on House1+2+3 (REDD)

of cross-appliance disaggregation, it is seen that the overall
average F1-score is 73.99%. Cross-appliance disaggregation
is using the model trained on one specific appliance for
disaggregation of other different appliances. From Table VI, it
is noticed that the model trained on KR of House21 data has
successfully disaggregated energy of most of the appliances
in House00, especially, nonlinear device TV with F1-score of
88.83% (see Table VI) and permanent consumer devices that
have different operating states such as KR, R with F1-score of
69.63% and 96.40, respectively (see Table VI). But in terms of
recall score, all seven devices have above 92% performance.
This emphasizes that the direct point-to-point disaggregation
models are powerful in learning granular information about
consumption. Fig. 8 shows the disaggregation analysis of
four selected appliances from House00 of ENERTALK. The
scores are reported for three different scenarios: (1) The model
trained and tested on House00 (CNN2M), (2) The model
trained on REDD combined data (CNN1M) and tested on
House00 (ENERTALK) and (3) The model trained on KR
(CNN2S) of House21 (ENERTALK) and tested on House00
(ENERTALK). According to the scores in this figure, except
MW, the other three appliances have higher disaggregation
F1-scores in both scenario 2 and 3 than scenario 1. From
previous analysis of generalization and robustness capability
of single and multi-target point-to-point disaggregation, it can
be emphasized that cross-appliance disaggregation and cross-
domain disaggregation have very good performance.

V. CONCLUSION

This work investigated the NILM problem in terms of
training disaggregation algorithms in multiple and single target
regression setting, i.e. energy disaggregation of simultaneously
operating multiple devices of same types. We used EN-
ERTALK dataset, which is the latest publicly available energy
dataset containing records of 22 Korean Houses. We also
used REDD dataset, which is the first released energy dataset.
We deployed state-of-the-art deep learning algorithms based
on CNN and evaluated the disaggregation performance using
five energy-based performance metrics. In NILM, aligning
the consumption of the target appliances with the aggregate

consumption is more challenging. To achieve this, for EN-
ERTALK, we used vertical and horizontal concatenation of
appliance and dates, with mean resambling of data in one sec-
ond, and for REDD, we used horizontal concatenation. For the
experiments, dataframe was divided into training, validation
and testing sets. To reflect better generalization capability of
the models, the actual prediction is made on the data that was
not seen during the training. In ENERTALK, CNN model-
II has the highest superior disaggregation performance with
F1-score of 95.37% for individual appliance and 75.00% for
overall average performance across the dataset for multi-target
disaggregation model. Moreover, in ENERTALK, the proposed
models can disaggregate the energy of non-linear devices with
higher F1-score of 81.13% in multi-target model. The gener-
alization and robustness of the models were also validated by
training the model for one appliance and testing it for different
appliances in different houses, which shows the knowledge
transferability in NILM using the proposed direct point-to-
point disaggregation models. As an overall conclusion, the
proposed point-to-point regression models have demonstrated
computational efficiency and disaggregation effectiveness with
superior scores. As future work, other techniques such as
energy disaggregation using wavelets can be explored.
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