
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Using Interdependencies for the Prioritization and
Reprioritization of Requirements in Incremental

Development
Aryaf Al-Adwan1

Department of Computer and Networks Engineering
Faculty of Engineering Technology

Al-Balqa Applied University
Amman, Jordan

An’aam Aladwan2
Department of Management Information Systems

Al-Ahliyya Amman University
Amman, Jordan

Abstract—There is a growing trend to develop and deliver the
software in an incremental manner; to achieve greater
consistency in the developed software and better customer
satisfaction during the requirement engineering process. Some of
the developed increments in the incremental model will be
delivered to consumers and run in their environments, so a set of
these requirements are evaluated, introduced, and delivered as
the first increment. Other requirements are delivered as the next
step and so on for the next increment. The priority of
requirements plays an important role in each increment, but it is
precluded by the interdependences between the requirements
and resources constraints. Therefore, this paper introduces a
model for requirements prioritization and a reprioritization
based on these important factors. The first one is the
requirement interdependencies which are described as a hybrid
approach of tractability list and directed acyclic graph, and the
second factor is the constraints of the requirements resources
that are used based on the queuing theory for requirements
reprioritization. In order to achieve this, two algorithms namely;
Priority Dependency Graph (PDG) and Resources Constraints
Reprioritization (RCR), were proposed with a linear time
complexity and implemented via a case study.

Keywords—Requirement engineering; incremental model;
requirement prioritization; requirement interdependencies;
dependency graph; queuing theory

I. INTRODUCTION
In the incremental software model, small releases of the

software are implemented in a series mode instead of providing
the whole system after a long period of development. This
model efficiently impacts the prioritization of requirements in
such a way that the most relevant requirements can be
introduced in the system's first releases. On the other hand,
later phases are left with less important requirements. When
requirements are elicited, a large number of them are often
created, which is very difficult to implement them at the same
time [1]. This is due to the market impact, the user persisting to
have the software finished, and the limitations on cost and
staff. Therefore, the requirements need to be prioritized in such
a way that the earliest product releases meet the most critical
ones, particularly when an incremental model is used, where
the product is designed, implemented, and tested incrementally
until the product is completed.

The requirements affect each other and are related to each
other during software development in a way that prevents
treating them separately. This is referred to as the
interdependence between requirements. Consequently,
requirement interdependency concerns about the relationships
between requirements which during software development will
influence decisions and activities. This play an important role
in the prioritization of requirements, especially with
incremental development which requires a careful selection of
requirements that meet the growth of the various increments.
Choosing one requirement may therefore activate the selection
of several other requirements that rely on it.

On the other hand, the literature that discusses the
interdependence requirements, limited work has been carried
out. Interdependence of requirements is a special form of
traceability of requirements that defines the relationships
between different requirements. The traceability list, which is a
table of relationships describing the dependencies between
requirements [1], is one of the techniques for representing
requirement interdependencies.

Carlshamre [2] used the directed graph (digraph) to
represent the interdependencies between requirements, as well
as classifying the interdependencies into five relationships;
and, REQUIRES, TEMPORAL, CVALUE, ICOST, and OR,
which visualized later by the directed graph. The concern in
this approach wasn’t to visualize types of interdependencies
rather than representing them as dependency graph and apply
an algorithm to prioritize the requirements. Another way to
represent the interdependencies is to use ontology-based
representation and a formal graphical representation to
visualize the requirements interdependencies in a proper way
[3].

It is possible to prioritize requirements, taking into account
several different aspects, such as importance, cost, penalty,
time, risk and dependencies [4]. The literature is full of several
prioritization strategies for requirements. These include the
process of analytical hierarchy (AHP) which is the most
common priority-based technique that is designed to permit
decision-makers to set priorities and decide the correct
decision. Initially, AHP specifies the parameters and
substitutes for each requirement and uses them to construct a

224 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

hierarchy to activate pair-wise comparisons; then the users can
determine their favorites for each pair of attributes by assigning
a decision scale. However, this technique requires a quadratic
time to prioritize the requirements and suffers from scalability
issues particularly when the number of requirements increases
[5]. The creation of binary search tree, in which each
requirement is shown in a node. The tree needs to be
prioritized; the low priority requirements are set on the left side
of the tree and high priority needs are positioned on the right.
Although this method is fast but it the comparison of BST is
typical, only showing which requirement is more desirable [6].
Another technique is the bubble sort in which the principle is
similar to AHP, where they both make use of the comparison
operation pair-wise and they require a time complexity of n2.
The distinction between them is that it is only possible for the
decision-maker to consider which requirement is more
significant between the compared requirements in bubble sort.
[7]. Cumulative voting or the 100-dollar test is a straight-
forward process that gives the system's stakeholders 100 units
to be divided between requirements. The higher unit
requirement has a higher priority and the lower unit
requirement has a lower priority. The stakeholder controls
distribution process of these units based on the priority of the
requirements. However, if there are quite several requirements,
this approach has a downside, because this method will not
work well and will calculate the prioritization in wrong way.
Also, it can be difficult to be aware the quantity of units that
must be allocated and those that must be left [8-9]. Spanning
trees technique is similar to AHP, where they both make use of
the comparison operation pair-wise, but uses the minimum
spanning technique. This can be done by the use of spanning
tree architecture in order to eliminate the redundant
comparisons, consequently, reducing the total number of
comparison. On the other hand, it is not efficient when the
number of requirements is large [10]. Numerical assignment
(grouping) which provides a scale to all requirements based on
separating them into different groups. Each requirement will
then be assigned to a 5-point scale to assess its significance,
however this technique provides low rate of reliability as well
as fault tolerance [11-12]. Wieger Method determines the
priority of the requirement by dividing the value of the
requirement by the amount of costs and the technological risks
associated with its implementation, and by assessing its
customer significance, by applying 1-9 scale, as well as its
implications, if this requirement were not enforced. It has
drawback in which the stakeholders can easily influence it to
achieve their objective goals [13]. MoSCoW technique is
focused on cooperation between analysts and stakeholders to
group the requirements into four categories. The efficiency
here is good, but human attempts are required with
disagreements between analysts and the views of stakeholders,
so this approach would therefore be rated as low scalability and
other hybrid techniques [14]. Most of the algorithms mentioned
previously require quadratic complexity, so for a large number
of requirements, the efficacy of the method becomes poor.
Several papers were proposed in the literature in order to
compare these method [15-17, 22, 23]. The purpose of this
paper is not to compare the different approaches, but to suggest
a new algorithm for the prioritization of requirements.
However, the proposed approach for prioritizing requirements

in this paper differs from the previous methods in achieving
linear time complexity as well as the ability to reprioritize the
requirement based on the resources availability.

The need for reprioritization has emerged from the fact that
despite the effort expended in order to prioritize the
requirements, this would be influenced by the constraints of
precedent and resources constraints [18]. Therefore, this paper
aims to introduce a hybrid approach of Traceability list and
Directed Acyclic Graph to represent the requirements
interdependencies for the prioritization process. As well as
introducing a new algorithm for reprioritizing the requirements
based on the queuing theory.

As discussed earlier, there are many types of requirement
interdependencies mentioned in the literature. So it is worth to
mention that this paper, proposed the prioritization and
reprioritization requirement algorithms irrespective of the types
of interdependencies and the methods used to identify them
between the requirements, which are beyond the scope of this
paper. Instead of focusing on the types of interdependencies
and how they are described in any software project, this paper
focuses on prioritizing the requirements based on the proposed
algorithms using the proposed dependency parameters.

The paper is structured as follows: section 1 is the
introduction and related work, section 2 gives a description of
requirements interdependencies, section 3 presents the
proposed approach in requirement prioritization, section 4
illustrates the approach as a case study and section 5 is the
paper conclusion.

II. REQUIREMENTS INTERDEPENDENCIES
The requirements influence each other and are linked to

each other in a way that prevents handling them separately.
This can be referred to as the dependencies between
requirements. Basically, these requirements can also affect the
decisions and activities during the development of the
software. Requirements can, for example, affect each other
through implementation constraints, the cost of implementing
other requirements, or the customer satisfaction [19]. This
means that in order to make accurate decisions during the
development process, it is important to study the
interdependencies. Simply stated, requirement
interdependencies mean that a dependent relationship exists
between the requirements. For instance, it is safer to start
developing Ri before Rj if the Rj requirement requires Ri to
work.

III. METHODOLOGY
A model for the prioritization and reprioritization of

requirements based on a hybrid approach of representations of
requirements is introduced. Fig. 1. demonstrates this model,
which consists of two phases: the phase of prioritization and
the phase of reprioritization. The first step can be achieved by
prioritizing the requirements using dependency graph, while
the next step is used to reprioritize the requirements using the
queuing theory. The requirements are presented as a
traceability list and then as a dependency graph, as shown in
Fig. 1. The dependency graph is subsequently regarded as an
input to the Priority Dependency Graph (PDG) algorithm in

225 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

order to create a priority list of requirements. This list is then
processed on the basis of the resources constraints in the
system by the Resources Constraints Reprioritization (RCR)
algorithm.

A. Dependency Constraints
Any software can be defined as a set of R requirements

where R={R1, R2, ,Rn}. When an incremental model is
followed, then the first increment is analyzed, implemented
and delivered as a set of these requirements. Other
requirements are delivered as the next step and so on for the
next level. In each increment the priority of requirements is
playing an important role, but it is often precluded by
requirements interdependencies. The approach to prioritizing
the requirements in this paper is therefore focused on the
representation of dependencies between requirements using the
dependency graph. First of all, a simple description of the
dependency factors used is discussed below:

1) Dependency scope: The Dependency Scope determines
the scope of the requirements according to their dependencies,
two types are available:

A Requirement R2 is an External Dependent on
requirement R1 if and only if:

a) Execution of R1 precedes execution of R2.
b) Execution of R1 implies execution of R2 in the future

increment.
A Requirement R2 is an Internal Dependent on requirement

R1 if and only if:

a) Execution of R1 precedes execution of R2.
b) Execution of R1 implies execution of R2 in the same

increment.
2) Dependency volume: The dependency volume

determines the number of requirements that are internal
dependent on the current requirement.

3) Dependency intensity: The dependency intensity
determines the degree of dependency for each requirement,
two types are available:

a) “Loose Dependencies is defined as: it would be ok to
continue task without awareness of dependencies but would be
better with awareness” [20].

b) “Tight Dependencies is defined as: the successor task
has to wait until all its precursor tasks finish, the failure of the
precursor will block the successor” [20].

The first parameter indicates the two main types of
interdependencies in our method. External dependency
determines whether the requirement in the future increment is
dependent on another requirement, and internal dependency
determines whether the requirement in the same increment is
dependent on another requirement, as shown in Fig. 2.

The precedence constraint defined in the first parameter
illustrates the relationship between the requirements in terms of
precedence where in any software; the requirements must be
implemented before other requirements. Therefore, for all
iterations of increments there must be an order in which the

requirements are executed. Loose dependencies can be used
when there is no strict use of dependency between
requirements, such as some requirements in mobile
applications that doesn’t require awareness of the context of
the mobile user, but if provided the software will behave in an
efficient manner. On the other hand, tight dependency is for
those requirements that must be executed before other
requirements as is the case in most software applications.

As depicted in Fig. 2. , the requirements are represented as
a dependency graph where a directed acyclic graph (DAG) is
used to define the R requirements as vertices V and the
precedence constraints as edges E. In order to calculate the
priority for each requirement in each increment based on the
dependency types mentioned earlier, a topological sorting [21]
with slight modifications is then performed.

An example of a dependency graph is represented in Fig. 3.
R1 and R9 do not have dependencies in this DAG, while
vertices R2 to R10 are dependent on other vertices; R4, for
instance, depends on R1. Note that R4 has a volume of
dependency greater than R3 that influences its prioritization
process.

Fig. 1. The proposed Model.

Fig. 2. External and Internal Dependencies.

226 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 3. Dependency Graph for Requirements.

Algorithm: Priority Dependency Graph (PDG) algorithm

Input: Digraph G = (V,E) ,Set of Requirements R as V, Set of
Precedence Constraints as E, In_Degree array In_D, Out_Degree
array Out_D, Dependency Scope array DS, Dependency Intensity
array DI, Queue Q.

Output: list of Requirements R each associated with its priority

1: In_D ← { }
2: Store each vertex’s InDegree in In_D array
3: Initialize Q with all in-degree zero vertices
4: While Q is not empty do
5 If DS for vertex v =1
6: Dequeue and output a vertex v
7: Set higher priority for v
8: Reduce In-Degree of all vertices adjacent to v by 1
9: Enqueue v which the In-Degree for it became zero
10: else
11: Dequeue and output a vertex v
12: Set lower priority for v
13: Reduce In-Degree of all vertices adjacent to v by 1
14: Enqueue v which the In-Degree for it became zero
15: repeat
16: end

Four arrays are used to calculate the priority in the
proposed algorithm:

• InDegree array that contains the number of InDegree
edges for each vertex.

• OutDegree array that contains the number of OutDegree
edges for each vertex and represent the dependency
volume.

• Dependency Scope array that determine the dependency
scope for each vertex in the graph whether it is external
or internal based on equation 1.

• Dependency Intensity that determine the intensity of the
dependency for each vertex in the graph whether it is
tight or loose based on equation 2.

The algorithm starts by initializing queue with all vertices
that has zero InDegree, then while this queue has vertices in it.

Dependencyscope = �1 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦
0 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 (1)

DependencyIntensity= �1 𝑇𝑖𝑔ℎ𝑡 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦
0 𝐿𝑜𝑜𝑠𝑒 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 (2)

Higher priority will be granted to the vertices with internal
dependency than those with external one; if two requirements
are equal in the scope of dependency, then the decision can be
made based on the volume of dependency. Such that, the
requirements with tight dependency intensity will have higher
priority for internal dependency than the requirements with
loose dependency intensity; the algorithm will calculate the
priority for those vertices until it is empty.

B. Complexity Analysis
Consider the complexity analysis of the proposed

algorithm. Hence, a queue is used to store the vertices of zero
InDegree. So, each time a node’s InDegree is modified, we
check if the value of it is 0 we add it to the queue, this will take
O (|V|). Now to find a node of zero InDegree it takes O (1).
The Dequeue operation will take O (|V|) while reducing the
InDegree of all adjacent vertices to a vertex will take O (|E|).
Therefore, the algorithm can be implemented to run in O (|V| +
|E|) which is a linear running time. Note that most of the
prioritization methods in the literatures have a quadratic
complexity where our algorithm requires a linear one.

C. Resources Constraints Reprioritization Algorithm
As illustrated earlier, requirement prioritization is

precluded by the available resources that are needed to develop
the requirement or task, therefore the concept of the queuing
theory is used to reprioritize and schedule the requirements to
the available teams in the system. The method here is based on
the outcome from the previous stage where the requirements
are prioritized and added along with their priorities to a list or
queue. The service facility may have of one or more teams. So,
a requirement at the head of the queue can go to any team that
is free. If there is more than one team, then a concurrent
development will take place.

Each requirement in the queue must have the following
characteristics:

1) Arrival Time λ to the queue for each requirement.
2) Waiting Time wt for each requirement, which indicates

the waiting time for each requirement.
3) Status S: either FREEZE or INPROCESS. This

parameter used to freeze the requirement and their dependent
requirements.

4) Old Priority Pold, this parameter is used to indicate the
old priority for the requirenment.

5) New Priority Pnew , this parameter is used to indicate
the new priority for the requirenment.

6) Available Resources Flag (ARF), this parameter will be
used to indicate whether the resources are available to perform
the requirement.

The RCR Algorithm involves the following steps:

1) Select the requirement with the minimum λ.
2) Check ARF whether it is set or not.
3) If ARF is equal to zero, then change the state S of this

requirement to FREEZE and increment wt by 1.

227 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

4) If ARF is equal to 1 then change the state to
IN_PROCESS and change Pold to Pnew and schedule it to the
available team.

5) Each time check the ARF for the freeze requirement
before reprioritize the new requirement since it has higher
priority than it due to the dependency factor.

Fig. 4. demonstrates the prioritizer and scheduler that
carries out the previous steps for reprioritizing the requirements
based on the resources available and schedules them to the
available team.

Fig. 4. RCP Algorithm.

IV. CASE STUDY
To demonstrate our approach in a practical way, a sample

software project for a library management system is
considered, with three increments and twenty requirements, R
= {R1,…, R20}. The first increment contains 9 requirements
with the following dependencies:

InternalDependency = (R1), (R2, R1), (R3, R1), (R4, R1)

,(R5,R2,R3),(R6,R3),(R7,R3,R4),(R8,R5,R6),(R9)},the tuple
(R3, R1) means that R1 depends on R2.

The second increment contains six requirements with the
following dependencies:

InternalDependency={(R10),(R11,R10),(R12,R10),(R13,R11,
R12),(R14,R11), (R15, R12)}.

The third increment contains five requirements with the
following dependencies:

InternalDependency={(R16),(R17,R16),(R18),(R19,R17),(R2
0,R17)}.

Table I represents the traceability list for the twenty
requirements. This list is converted into a directed acyclic
graph which represents the requirements and interdependencies
between them; Table II describes the number of InDegree and
OutDegree edges for each vertex in the graph, Table III is the
findings of the proposed algorithm which represents all the
requirements and its associated priorities, notice that the
requirement R1 has the highest priority with 2.0. While the
requirement R19 has the lowest priority with 0.1, the scale is
based on the total number of requirements in the software.
Table IV showed the reprioritization process based on the

resources constraints. Owing to the unavailability of the tools
needed to develop these requirements, those requirements and
their dependent requirements are frozen.

TABLE I. TRACEABILITY LIST

Increments Requirement Depends-On

In
cr

em
en

t1

(9
 R

eq
)

R1 -

R2 R1

R3 R1

R4 R1

R5 R2,R3

R6 R3
R7 R3,R4

R8 R5,R6

R9 -

In
cr

em
en

t2

(6
 R

eq
)

R10 -

R11 R10

R12 R10
R13 R11,R12

R14 R11

R15 R12

In
cr

em
en

t3

(5
 R

eq
)

R16 -

R17 R16

R18 -
R19 R17

R20 R17

TABLE II. INDEGREE AND OUTDEGREE FOR REQUIREMENTS
INDEPENDENCY GRAPH

Increment Requirement In
Degree

Out
Degree

In
cr

em
en

t1

(9
 R

eq
)

R1 0 3

R2 1 1

R3 1 3

R4 1 1

R5 2 1

R6 1 1
R7 1 0

R8 2 0

R9 0 0

In
cr

em
en

t2

(6
 R

eq
)

R10 0 2

R11 1 2

R12 1 2
R13 2 0

R14 1 0

R15 1 0

In
cr

em
en

t3

(5
 R

eq
)

R16 0 1

R17 1 2

R18 0 0
R19 1 0

R20 1 0

228 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

TABLE III. REQUIREMENT PRIORITIZATION

Requirement Dependency
Volume

Dependency
Scope

Dependency
Intensity Priority

R1 3 1 1 2.0

R2 1 0 0 1.6

R3 3 1 1 1.8

R4 1 1 1 1.7
R5 1 1 1 1.5

R6 1 1 0 1.4

R7 0 0 1 1.3

R8 0 0 1 1.2

R9 0 0 1 1.9

R10 2 1 1 1.1
R11 2 1 1 1.0

R12 2 1 0 0.9

R13 0 0 1 0.7

R14 0 1 1 0.8

R15 0 0 1 0.6

R16 1 1 1 0.5
R17 2 1 1 0.3

R18 0 1 1 0.4

R19 0 1 0 0.1

R20 0 1 1 0.2

TABLE IV. REQUIREMENT REPRIORITIZATION

Requirement Arrival
Time λ

Waiting Time
wt ARF Pold Pnew

R1 1 0 1 2.0 2.0

R9 2 0 1 1.6 1.9
R3 3 0 1 1.8 1.8

R4 4 3 0 1.7 1.4

R2 5 0 1 1.5 1.7

R5 6 0 1 1.4 1.6

R6 7 1 1 1.3 1.5

R7 8 1 0 1.2 1.2
R8 9 0 1 1.9 1.3

R10 10 0 1 1.1 1.1

R11 11 0 1 1.0 1.0

R12 12 1 0 0.9 0.8

R14 13 0 1 0.7 0.9

R13 14 0 0 0.8 0.7
R15 15 0 0 0.6 0.6

R16 16 0 1 0.5 0.5

R18 17 3 0 0.3 0.1

R17 18 0 1 0.4 0.4

R20 19 0 1 0.1 0.3

R19 20 0 1 0.2 0.2

V. CONCLUSION
In incremental software model small releases of the

software are implemented in a sequence fashion instead of
delivering the whole system after a long time of development.
Therefore, this model can influence the prioritization of
requirements in efficient manner so that the most important
requirements can be implemented in the first releases of the
system. A model were proposed to achieve requirement
prioritization and reprioritization based on requirement
interdependencies which represented as a hybrid approach of
tractability list and directed acyclic graph, and on the resources
constraints of the requirements. The proposed algorithms were
introduced, analyzed and implemented using a case study.
PDG and RCR algorithms require time complexity of O (|V| +
|E|) which is a linear running time compared to the quadratic
time complexity provided by the available algorithms that
handle requirement prioritization. Also, the proposed approach
has the ability to reprioritize the requirement based on the
resources availability. Future work may add an improvement to
the proposed algorithms or may combine them with other
priority algorithms, in order to provide a hybrid solution that
enhances the overall process.

REFERENCES
[1] K. Pohl, K.: Process-centered Requirements Engineering. Wiley, New

York (1996).
[2] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell and J.N och Dag, “

An industrial survey of requirements interdependencies in software
product release planning” . In Proceedings Fifth IEEE International
Symposium on Requirements Engineering ,pp. 84-91, 2001.

[3] S. Soomro , A. Hafeez , A. Shaikh , SH. Musavi, “Ontology based
requirement interdependency representation and visualization”,
InInternational Multi Topic Conference, pp. 259-270, Springer, 2014

[4] I. Sommerville, Software Engineering, Ninth edition, Pearson, 2011.
[5] vestola, “ A comparison of nine basic techniques for requirements

prioritization”. Helsinki University of Technology, 2010.
[6] L. Karlsson, H. Martin, and R. Björn. "Evaluating the practical use of

different measurement scales in requirements prioritisation." In
Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering, pp. 326-335, 2006.

[7] M. Pergher and B. Rossi. “Requirements prioritization in software
engineering: a systematic mapping study”. In Empirical Requirements
Engineering (EmpiRE), 2013 IEEE Third International Workshop on ,
pp. 40-44, 2013.

[8] A. Asghar, A. Tabassum, Sh. Bhatti and A. Shah. "The impact of
analytical assessment of requirements prioritization models: an
empirical study." International Journal of Advanced Computer Science
and Applications (IJACSA) , vol. 2, pp. 303-313, 2017.

[9] V. Ahl, V. “An experimental comparison of five prioritization methods -
investigating ease of use, accuracy and scalability”. Master’s thesis,
Blekinge Institute of Technology, Ronneby, Sweden, 2005.

[10] M. Yaseen, A. Mustapha, N. Ibrahim ,“Prioritization of Software
Functional Requirements: Spanning Tree based Approach”,
International Journal of Advanced Computer Science and Applications
(IJACSA) vol, 10, pp.489-497, 2019.

[11] JA. Khan, IU. Rehman , YH .Khan, IJ .Khan, S. Rashid, “Comparison of
Requirement Prioritization Techniques to Find Best Prioritization
Technique”. International Journal of Modern Education & Computer
Science. Vol. 11, pp. 53-59, 2015.

[12] C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski. “Towards
automated requirements prioritization and triage” . Requirements
Engineering, vol. 2, pp. 73-89, 2009.

229 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

[13] F. Moisiadis, “The fundamentals of prioritising requirements”,
InProceedings of the systems engineering, test and evaluation
conference (SETE’2002) ,2002,

[14] S. Hatton, “Early prioritisation of goals. In Advances in conceptual
modeling – Foundations and applications”, ER 2007 Workshops
CMLSA, FP-UML, ONISW, QoIS, RIGiM, SeCoGIS, Auckland, New
Zealand, (pp. 235-244), 2007.

[15] M. Khari, N. Kumar, “Comparison of six prioritization techniques for
software requirements”, Journal of Global Research in Computer
Science. vol. 4, pp. 38-43. 2013.

[16] M. Yousuf, MU. Bokhari, M. Zeyauddin,” An analysis of software
requirements prioritization techniques: A detailed survey”, In2016 3rd
International Conference on Computing for Sustainable Global
Development (INDIACom), pp. 3966-3970, 2016.

[17] M. Yaseen, N. Ibrahim , A. Mustapha,” Requirements Prioritization and
using Iteration Model for Successful Implementation of Requirements”,
International Journal of Advanced Computer Science and Applications
(IJACSA) vol, 10, pp.121-127, 2019.

[18] Z. Racheva, and M. Daneva, “Reprioritizing the Requirements in Agile
Software Development: Towards a Conceptual Model from Clients'
Perspective”. In SEKE ,pp. 73-80, 2009.

[19] I. Bassey,”Towards Release Planning Generic Model: Market-driven
software development perspective, IJERT, vol. 2 , 2013.

[20] L. Qi, “value based dependency aware inspection and test
prioritization”, PHD Dissertation , University of Southern California
,2012.

[21] TH. Cormen, C. Leiserson, E. Rivest, R. L., and C. Stein,” Introduction
to algorithms”. MIT press, 2009.

[22] N. Saher, F. Baharom, and R. Romli, “Guideline for the Selection of
Requirement Prioritization Techniques in Agile Software Development:
An Empirical Research”, International Journal of Recent Technology
and Engineering (IJRTE), vol, 8, pp.3381-3388, 2020.

[23] N. Borhan, H. Zulzalil, S. Hassan, N. Mohd Ali, “Requirements
Prioritization Techniques Focusing on Agile Software Development: A
Systematic Literature Review”, INTERNATIONAL Journal of
Scientific and Technology Research, vol. 8, pp. 2118- 2125, 2019.

230 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Requirements Interdependencies
	III. Methodology
	A. Dependency Constraints
	1) Dependency scope: The Dependency Scope determines the scope of the requirements according to their dependencies, two types are available:
	a) Execution of R1 precedes execution of R2.
	b) Execution of R1 implies execution of R2 in the future increment.
	a) Execution of R1 precedes execution of R2.
	b) Execution of R1 implies execution of R2 in the same increment.

	2) Dependency volume: The dependency volume determines the number of requirements that are internal dependent on the current requirement.
	3) Dependency intensity: The dependency intensity determines the degree of dependency for each requirement, two types are available:
	a) “Loose Dependencies is defined as: it would be ok to continue task without awareness of dependencies but would be better with awareness” [20].
	b) “Tight Dependencies is defined as: the successor task has to wait until all its precursor tasks finish, the failure of the precursor will block the successor” [20].

	B. Complexity Analysis
	C. Resources Constraints Reprioritization Algorithm
	1) Arrival Time λ to the queue for each requirement.
	2) Waiting Time wt for each requirement, which indicates the waiting time for each requirement.
	3) Status S: either FREEZE or INPROCESS. This parameter used to freeze the requirement and their dependent requirements.
	4) Old Priority Pold, this parameter is used to indicate the old priority for the requirenment.
	5) New Priority Pnew , this parameter is used to indicate the new priority for the requirenment.
	6) Available Resources Flag (ARF), this parameter will be used to indicate whether the resources are available to perform the requirement.
	1) Select the requirement with the minimum λ.
	2) Check ARF whether it is set or not.
	3) If ARF is equal to zero, then change the state S of this requirement to FREEZE and increment wt by 1.
	4) If ARF is equal to 1 then change the state to IN_PROCESS and change Pold to Pnew and schedule it to the available team.
	5) Each time check the ARF for the freeze requirement before reprioritize the new requirement since it has higher priority than it due to the dependency factor.

	IV. Case Study
	V. Conclusion

