
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Validation Analysis of Scalable Vector Graphics
(SVG) File Upload using Magic Number and

Document Object Model (DOM)
Fahmi Anwar1

Department of Informatics
Universitas Ahmad Dahlan

Yogyakarta, Indonesia

Abdul Fadlil2
Department of Electrical Engineering

Universitas Ahmad Dahlan
Yogyakarta, Indonesia

Imam Riadi3
Department of Information Systems

Universitas Ahmad Dahlan
Yogyakarta, Indonesia

Abstract—The use of technology is increasing rapidly, such as
applications or services connected to the Internet. Security is
considered necessary because of the growing and increasing use
of digital systems. With the number of threats to attacks on
digital form or server systems is required to handle the risk of
attacks on the server, the file upload feature. The system usually
processes the file upload feature on a website or server with
server-side (back-end) validation or filtering of digital object file
types or a client-side (front-end) web browser in HTML or
Javascript. Filtering techniques for Scalable Vector Graphics
(SVG) usually files only see the file extension or Multipurpose
Internet Mail Extension (MIME) type of an uploaded file.
However, this filtering can still manipulate, for example, in
ASCII prefix checking, which has two writes, namely "<?xml”
and “<svg ”. SVG files do not contain metadata such as image
encoded in JPEG or PNG files. This problem can overcome by
adding filtering techniques to check the validation of a file with
validation of eXtensible Markup Language (XML) using magic
numbers and the Document Object Model (DOM). This research
developed using the waterfall method and black-box security
testing refers to a software security testing method in which
security controls, defense, and application design are tested.
Handling of security validation for uploading SVG files using file
extensions and MIME types has a success rate of 75 percent from
the eight tested scenarios while handling using file extensions,
magic numbers, and Document Object Model (DOM) produces a
success rate of 100 percent from 8 test scenarios. Testing uses a
black-box so that handling using the file extension, magic
number, and Document Object Model (DOM) is better than
using only file extensions and mime types.

Keywords—Magic number; Scalable Vector Graphics (SVG);
security; upload; validation

I. INTRODUCTION
The website is an Internet service that can be used by

various users in the world, which usually has an upload feature.
The file upload feature or file upload is a feature that is
generally functionally needed in applications for users [1].
However, without proper filtering, file selection, and validation
processes during upload can present a significant security risk
for website security [2] with three critical characteristics:
integrity, input validation, and correct logic required for
security applications DDoS attacks.

Distributed Denial of Service (DDoS) is a network security
problem that continues to develop dynamically and increases
significantly until now. DDoS is a type of attack performed by
draining the network resources by flooding packets with
significant intensity until they become overloaded and servers
stop functioning. DDoS assault characterization depends on
network traffic movement utilizing the Neural Networks and
Naïve Bayes Methods. Because of the trials led, it discovered
that the aftereffects of exactness in counterfeit Neural
Networks were 95.23%, and Naïve Bayes Methods was 99.9%.
The trial results show that the Naïve Bayes Methods are
superior to Neural Networks. The examination and
investigation consequences as proof in the primary cycle [3].
Another research is Artificial Neural Network (ANN) can be
used as a viable device for network parcel arrangement with
the proper blend of learning, move, concealed layer, and
preparing capacities. ANN with two concealed layers gives
generally predictable MSE, combination speed, higher right
grouping rate at 99.04%, and a Quasi-Newton preparing
capacity strategy (Matlab-trainlm) suited for the arrangement
task, given the estimation of relapse both in the preparation and
approval stage [4]. Another technique in detecting these attacks
is monitoring but found several problems [5], including
difficulty distinguishing the attack and regular data traffic
using Density K-Means Method.

Cyber attacks by sending large data packets that deplete
computer network service resources using multiple computers
when attacking are called DDoS attacks. Total data packet and
essential information in the form of log files sent by the
attacker can be observing and captured through the port
mirroring of the computer network service. The classification
system must distinguish network traffic into two conditions,
the first normal condition, and the second attack condition. The
Gaussian Naive Bayes classification is a method that can use to
process numeric attributes as input and determine two
decisions of access that occur on the computer network service
[6]: “normal” access or access under “attack” by DDoS as
output using Numeric Attribute-based Gaussian Naive Bayes.

Another research about forensic analysis and prevent
Cross-Site Scripting (XSS) using the Open Web Application
Project (OWASP) Framework covers three essential stages:
Attacking stages, Analysis, and Patching. Stages Attacking is
doing exercises with Single-Victim-strategy utilizing the

255 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

OWASP Xenotix XSS Attack Exploit Framework v6.2 to
incorporate assaults Information Gathering, Keylogger,
Download spoofer, and Live webcams screen capture to the
casualty through the internet browser [7]. Stages Analysis led
utilizing Live Forensic by Wireshark, live HTTP Header, and
Tcpdump.

Other studies provide reviews of techniques, stages,
approaches, and tools to detect web servers is vulnerabilities
[8]. Challenges and problems during application security
testing prove to provide testers and managers input about
application projects [9]. This study also highlighted various
authors based on the Open Web Application Security Project
(OWASP) Top 10 [10]. As per a report by the Web
Application Security Consortium, about 49% of the web
applications investigated contain weaknesses of high-hazard
levels, and beyond what 13% of the sites can be undermined
altogether consequently.

According to the 2018 White Hat report, analysis results
using data from more than 20,000 applications indicate a
decline in security [11]. More than 75% of malicious attacks
are mostly cross-site scripting (XSS) attacks [12]. XSS attacks
pose serious threats, especially servers in the financial and
economic fields. Such attacks pay considerable attention to
developing methods of protection against XSS attacks and
proactively detecting vulnerabilities. These aspects determine
the emergence of scientific research, especially in studying
XSS vulnerabilities in graphic content files.

Several vulnerabilities in the exploitable file upload feature
[13] include:

• No validation is performed on the client-side or server-
side.

• Client-side validation skippable using developer options
in the web browser and not using validation checking
file contents.

• No validation is performed to check file size, as
validation is based only on content type.

• Attacks can be carried out by manipulating file content
types.

• It is allowed to use more than one type of file extension.

• Some conditions may use forbidden file extensions
along with file extensions not permitted by the
application.

Scalable Vector Graphics (SVG) is a language based on the
eXtensible Markup Language (XML) for describing two-
dimensional vectors and mixed vector/raster graphics. Stylized
SVG content can also be scaled to different display resolutions
and can be viewed alone or mixed with HTML content or
embedded using XML namespaces in other XML languages.
SVG also supports dynamic changes with form scripts. The
script can create interactive documents and animation using the
declarative animation feature or a script [14].

The Document Object Model (DOM) is a programming
Application Programming Interface (API) for accessing and
modifying XML documents. The DOM defines the document

as a logical structure and the various ways of accessing or
manipulating the document. XML is also used to represent
different formats of information stored in a heterogeneous
system and is mostly interpreted as data rather than documents
[15].

Previous research that analyzed the main problems related
to web applications and Internet services in several web
applications from various organizations, such as banking,
health care, financial services, retail, developed a systematic
grouping of XSS protection techniques [16] such as rules for
protecting website graphic content. Web and prevent XSS
vulnerabilities [17] and An Analysis of Vulnerability Web
Against Attack Unrestricted Image File Upload [18].

Numerous elements make it trying to make sure about
applications that have been mulled over to improve application
security. Unreliable applications work because of the
weaknesses of multiple components. For example, security
testing is done past the point of no return in the SDLC,
avoiding security testing in light of the delivery surge,
spending limitations. All the more usually, the absence of
security mindfulness by designers. The lack of designer
consciousness of secure coding norms and the absence of
spending plans spent on application security are two of the
most alarming issues. This present examination's essential
objective is for designers and analyzers to comprehend the
fundamental weaknesses of record transfer usefulness,
prompting assaults, and their particular alleviations for future
secure turns of events. This study conducted a series of tests
and performed a graphical content vulnerability analysis
against XSS attacks. In contrast to image encoded such as
JPEG and PNG, which have metadata and can be processed
using image processing [19], it can also be classified based on
color and pattern values [20]. This study utilizes different
magic numbers and DOM to validate SVG files in the file
upload feature in the appropriate XML format scriptwriting
structure.

II. RESEARCH METHODOLOGY
File upload is transferring the files (photos, audio files, etc.)

to a server on the website. To upload data to the server, the
client first initiates communication with the server by initiating
a TCP/IP connection from the client to the server called a
handshake. In this communication, the client initiates any
communication and not the server. When a connection is
established between a client and a server, data transfer can
occur between them. It does not require port forwarding to
send/receive data to/from the server. Now the client needs a
file to upload and a form on a Web page where the file is sent
to the server. This allows the user to enter one or more files
into the form submission like the code shown in Fig. 1.

After the HTML tag from Fig. 1 sends through the server
data, it is often processed to save the file to the webserver disk.
The server-side script executing the file is received on the
server. The server knows how to handle such requests and store
data. It saves files to server disks with multiple names and
process data by simply extracting some information from them
[13]. This study uses the Waterfall model development
method. Waterfall model development methods usually
suggest a systematic and sequential approach to software

256 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

development that starts with customer specifications and
progresses through planning, modeling, construction, and
completed software deployment [21].

Fig. 2 is the stage of the Waterfall Model which reflects the
main points of development activities such as:

• The communication contains system services, system
limitations, and objectives set after consultation with
system users, defined in detail, and used as system
specifications.

• Planning contains creating a system to identify and
explain the system abstraction and its relationship,
estimated processing time, and scheduling.

• Modeling contains a system design that will be made in
the form of a flowchart.

• The construction contains designing the system into a
program or unit program and then unit testing, which
involves verification to ensure whether each unit meets
system specifications. Each program unit and existing
programs are integrated and tested as system integrity to
confirm whether the system requirements have been
met. After testing, the new system is deployed to users.

• The deployment contains stages of installation of the
system and is used in practice.

Black-box security testing refers to a software security
testing method in which security controls, defense, and
application design are tested from the outside, with little or no
prior knowledge of how the application is internals work.
Essentially, black-box testing takes a similar approach to a real
attacker. Since black-box security testing does not assume or
know the target being tested, it is a technology-independent
testing method [22]. This makes it ideal for various situations,
mainly when testing for vulnerabilities arising from
deployment issues and server configuration errors.

Fig. 1. Sample of File upload HTML Tags.

Fig. 2. Waterfall Method.

III. RESULT AND DISCUSSION
This study uses Waterfall as a method of developing the

implementation of handling the SVG file upload validation
using magic numbers and DOM and black-box security testing
refers to a software security testing method with the following
stages.

A. Communication
The communication stage contains the preparatory stages

for making system services, system boundaries, and
implementation objectives in detail, according to the system is
specifications. SVG files contain tags in the form of XML with
file extensions ".svg" and MIME "image/svg+xml" but in
checking the ASCII prefix, there are two standards, namely
"<?xml" and "<svg ". Bug #79045 in PHP about Incorrect SVG
MIME types detected, PHP when rendered SVG may be
without an XML header, will return the mime type
“image/svg” instead of “image/svg+xml”. However, IANA
doesn't list “image/svg” as an existing MIME type, nor does
the browser display it [23].

According to SVG standards, the MIME-type returned
must always be “image/svg+xml”, PHP must also behave

consistently for a single file type. If this is used to distinguish a
properly header-fed SVG from non-strict ones, it should be
done as part of a file validity check, not a mime type check. A
previously reported bug #76543 is indicated as "Not a bug"
because it is considered an upstream error with libmagic.
However, libmagic returns an svg that doesn't have an xml
header as “text/plain”. This indicates that the error is in the
adaptation PHP took to eliminate the error [24]. Expected
result for MIME type of SVG is “image/svg+xml” but actual
result is “image/svg”. SVG files do not contain metadata such
as image encoded in JPEG or PNG files.

B. Planning
The planning stage contains steps that are carried out using

a sample made as presented in Fig. 3, which includes the SVG
code as in Fig. 4 with the prefix "<svg " while Fig. 5 contains
the SVG code with the prefix "<?xml".

Fig. 3 displays the SVG code presented in Fig. 4 and Fig. 5,
showing the same visual appearance with different magic
number values.

<!DOCTYPE html>
<html>
<body>

<form action="upload.php" method="post" enctype="multipart/form-data">
 Select image to upload:
 <input type="file" name="fileToUpload" id="fileToUpload">
 <input type="submit" value="Upload Image" name="submit">
</form>

</body>
</html>

257 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 3. Sample SVG File.

1) SVG Code with SVG tag first: Fig. 4 contains the SVG
code that uses the standard prefix "<?xml" in the form of
ASCII hexadecimal value 3C 73 76 67 20, which is the SVG
1.1 standard (Second Edition), which became the W3C
recommendation on 16 August 2011 [13]. However, many
SVG code writings use the prefix "<svg" in ASCII form, which
is hexadecimal 3C 3F 78 6D 6C in Fig. 5.

2) SVG Code with XML tag first: The two standards of the
prefix "<?xml" and "<svg " are the standards that are often
used and then sampled according to the file extension
parameters, magic number, and XML format as in Table I.

Fig. 4. Sample SVG Script with SVG Tag First.

Fig. 5. Sample SVG Script with XML Tag First.

TABLE I. SAMPLES OF FILES UPLOAD

No. File Extension Magic Number XML/DOM

1 ✕ ✕ ✕

2 ✓ ✕ ✕

3 ✕ ✓ ✕

4 ✕ ✕ ✓

5 ✓ ✓ ✕

6 ✓ ✕ ✓

7 ✕ ✓ ✓

8 ✓ ✓ ✓

Table I contains eight SVG samples prepared for SVG
validation in the system by removing some of the three
parameters (validation file extension, the magic number, and
XML) from the file, as in Table II.

TABLE II. SVG TYPES FILES

File
Extension

ASCII Magic Number
Start of
File

End Of
File Start of File End Of File

svg <?xml </svg> 3C 3F 78 6D
6C

3C 2F 73 76 67
3E

svg <svg </svg> 3C 73 76 67 20 3C 2F 73 76 67
3E

<svg height="512" viewBox="0 0 128 128"
width="512"
xmlns="http://www.w3.org/2000/svg">
 <g>
 <path d="m7.157 61.039s-8.924-
30.295 31.234-27.477 36.453-15.94 66.258-
11.57c38.141 5.591 6.432 57.391-37.553
63.545-43.805 6.128-56.88-14.101-59.939-
24.498z" fill="#f2e7cb" />
 <path d="m64.006 50.121c-11.747-
6.451 2.471-8.9 2.471-8.9 18.195-2.442
20.9-11.164 32.278-10.175 20.09 1.747 9.23
22.95.881 26.146 0 0-7.734 2.76-19.6-
.637a87.6 87.6 0 0 1 -16.03-6.434z"
fill="#ef3829" />
 <path d="m33.546 43.2s-19.075-.978-
15.81 13.551 25.466 24.3 55.5 17.283-7.336-
11.407-16.483-15.978-4.44-13.196-23.207-
14.856z" fill="#ef3829" />
 <path d="m121.7 38.052c0 17.53-
24.409 43.261-54.6 47.485-43.805 6.128-
56.88-14.1-59.939-24.5a26.44 26.44 0 0 1 -
.844-6.82v19.859a26.436 26.436 0 0 0 .844
6.961c3.059 10.4 16.134 30.626 59.939 24.5
30.14-4.217 54.516-29.867 54.6-47.4v-
20.086z" fill="#ef983b" />
 <g fill="#422002">

<?xml version="1.0" standalone="no"?>
<svg height="512" viewBox="0 0 128 128"
width="512"
xmlns="http://www.w3.org/2000/svg">
 <g>
 <path d="m7.157 61.039s-8.924-
30.295 31.234-27.477 36.453-15.94 66.258-
11.57c38.141 5.591 6.432 57.391-37.553
63.545-43.805 6.128-56.88-14.101-59.939-
24.498z" fill="#f2e7cb" />
 <path d="m64.006 50.121c-11.747-
6.451 2.471-8.9 2.471-8.9 18.195-2.442
20.9-11.164 32.278-10.175 20.09 1.747 9.23
22.95.881 26.146 0 0-7.734 2.76-19.6-
.637a87.6 87.6 0 0 1 -16.03-6.434z"
fill="#ef3829" />
 <path d="m33.546 43.2s-19.075-.978-
15.81 13.551 25.466 24.3 55.5 17.283-7.336-
11.407-16.483-15.978-4.44-13.196-23.207-
14.856z" fill="#ef3829" />
 <path d="m121.7 38.052c0 17.53-
24.409 43.261-54.6 47.485-43.805 6.128-
56.88-14.1-59.939-24.5a26.44 26.44 0 0 1 -
.844-6.82v19.859a26.436 26.436 0 0 0 .844
6.961c3.059 10.4 16.134 30.626 59.939 24.5
30.14-4.217 54.516-29.867 54.6-47.4v-
20.086z" fill="#ef983b" />
 <g fill="#422002">

258 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Table II contains the types of information contained in the
SVG file used based on the prefix tag "<?xml" with the magic
number value "3C 3F 78 6D 6C" and MIME "text/xml" while
"<svg " has a magic number value "3C 73 76 67 20" and
MIME is" image/svg". The scenarios in Table III described as
follows :

3) PHP Code in TXT file: Fig. 6 illustrates a PHP file
renamed file extension from ".php" to ".txt" with file contents
like Fig. 7. In this scenario, do not use the file extension, magic
number, and XML format.

Fig. 7 contains PHP code by displaying PHP settings or
server information by changing the file extension from ".php"
to ".txt".

4) PHP Code in SVG file: Fig. 8 illustrates a PHP file
renamed file extension from ".php" to ".svg" with file contents
like Fig. 9. In this scenario, use the SVG file extension but do
not use the magic number at the start of the file (“3C 3F 78 6D
6C” or “3C 73 76 67 20”) and the end of the file (3C 2F 73 76
67 3E) and XML format.

Fig. 9 contains PHP code by displaying PHP settings or
server information by changing the file extension from ".php"
to ".svg".

5) PHP Code in SVG tag TXT file: PHP Code file renamed
file extension from ".php" to ".txt" with file contents like Fig.
10. In this scenario, use the magic number at the start of the file
(“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the
file (3C 2F 73 76 67 3E) but do not use XML format and the
SVG file extension.

Fig. 6. Illustration of Changing the File Extension from PHP to TXT.

Fig. 7. PHP Code in TXT File.

Fig. 8. Illustration of Changing the File Extension from PHP to SVG.

Fig. 9. PHP Code in SVG File.

Fig. 10. PHP Code in SVG Tag TXT File.

Fig. 10 contains PHP code by displaying PHP settings or
server information with SVG tag by changing the file extension
from ".php" to ".txt".

6) XML tag in TXT file: SVG tags with XML tag first or
magic number value “3C 3F 78 6D 6C” with file contents like
Fig. 11. In this scenario, use XML format but do not use the
SVG file extension and magic number at the start of the file
(“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the
file (3C 2F 73 76 67 3E).

7) PHP Code in SVG tag first: Fig. 12 contains PHP code
by displaying PHP settings or server information in SVG code.
In this scenario, use the file extension and magic number (“3C
3F 78 6D 6C” or “3C 73 76 67 20”) but do not use or invalid
XML format.

8) XML Code in SVG file: Fig. 13 contains XML tags in
SVG file. In this scenario, use the file extension and XML
format but do not use the magic number at the start of the file
(“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the
file (3C 2F 73 76 67 3E).

9) SVG Code in TXT file: Fig. 14 contains SVG tags in the
TXT file. In this scenario, do not use the SVG file extension
but use the magic number at the start of the file (“3C 3F 78 6D
6C” or “3C 73 76 67 20”) and the end of the file (3C 2F 73 76
67 3E) but XML format.

10) SVG Code with SVG/XML first tag in SVG file: Fig. 15
contains SVG tags in SVG file extension. In this scenario, use
the file extension and magic number at the start of the file (“3C
3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the file (3C
2F 73 76 67 3E) and valid XML format.

Fig. 11. XML Tag in TXT File.

Fig. 12. PHP Code in SVG Tag First.

<?php
phpinfo();
?>

<?php
phpinfo();
?>

<svg height="512" viewBox="0 0 128 128" width="512"
xmlns="http://www.w3.org/2000/svg">
<?php
phpinfo();
?>

<?xml version="1.0" standalone="no"?>
<svg height="512" viewBox="0 0 128 128" width="512"
xmlns="http://www.w3.org/2000/svg">
 <g>
 <path d="m7.157 61.039s-8.924-30.295 31.234-
27.477 36.453-15.94 66.258-11.57c38.141 5.591 6.432
57.391-37.553 63.545-43.805 6.128-56.88-14.101-
59.939-24.498z" fill="#f2e7cb" />
...
 </g>
 </g>
</svg>

<?xml version="1.0" standalone="no"?>
<svg height="512" viewBox="0 0 128 128" width="512"
xmlns="http://www.w3.org/2000/svg">
 <g>
……
 </g>
</svg>
<?php
phpinfo();
?>

Abc.php Abc.txt

Abc.php Abc.svg

259 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 13. XML Code in SVG File.

Fig. 14. SVG Code in TXT File.

Fig. 15. SVG Code with SVG/XML First Tag in SVG File.

C. Modeling
The modeling stage contains the process carried out by the

system in the form of a flowchart, as shown in Fig. 16 for
general validation and Fig. 17 for new validation.

1) General Validation SVG File: Fig. 16 is an SVG image
validation flowchart utilizing file extensions and MIME type
using the function mime_content_type($file) in PHP
programming language.

Fig. 16. Flowchart of General Validation SVG File.

2) New Validation SVG File: Fig. 17 is an SVG image
validation flowchart utilizing file extensions, magic numbers,
and DOM using the PHP programming language.

Fig. 17. Flowchart of New Validation SVG File.

D. Construction
The construction stage contains the system's steps in the

form of a flowchart converted into Algorithm 1.

1) General Validation SVG File: Algorithm 1 contains the
PHP programming algorithm, which functions to filter or
validate SVG images by utilizing file extensions and mime
using the PHP programming language. The algorithm created
is tested using black-box testing with the test scenarios
presented in Table III.

Algorithm 1 General Validation SVG File Upload
<?php
$filePath = "Abc.svg";
$errors = array();
$fileExtensionWhitelist = array("SVG");
$imageFileExtension = pathinfo($filePath, PATHINFO_EXTENSION);

if (!in_array(strtoupper($imageFileExtension), $fileExtensionWhitelist)){
 array_push($errors,"File Extension is not allowed");
}

if(mime_content_type($filePath)!="image/svg+xml"){
 array_push($errors,"MIME is not allowed");

}

if(empty($errors)){
 echo "SVG is valid";
}else{
 foreach ($errors as $data) {
 echo $data."
";
 }
}
?>

The algorithm tested using black-box testing by validation
types with the results in Table III. All test scenarios have been
tested by comparing the expected results with the actual results,
then the conclusion of the desired results has been successful or
appropriate. The test results in Table III contain one scenario

<?xml version="1.0" encoding="UTF-8"?>
<svg height="512" viewBox="0 0 128 128" width="512"
xmlns="http://www.w3.org/2000/svg">
<note>
 <to>Fahmi</to>
 <from>Anwar</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

<svg height="512" viewBox="0 0 128 128" width="512"
xmlns="http://www.w3.org/2000/svg">
 <g>
 <path d="m7.157 61.039s-8.924-30.295 31.234-
27.477 36.453-15.94 66.258-11.57c38.141 5.591 6.432
57.391-37.553 63.545-43.805 6.128-56.88-14.101-
59.939-24.498z" fill="#f2e7cb" />
...
 </g>
 </g>
</svg>

<svg height="512" viewBox="0 0 128 128" width="512"
xmlns="http://www.w3.org/2000/svg">
 <g>
 <path d="m7.157 61.039s-8.924-30.295 31.234-
27.477 36.453-15.94 66.258-11.57c38.141 5.591 6.432
57.391-37.553 63.545-43.805 6.128-56.88-14.101-
59.939-24.498z" fill="#f2e7cb" />
...
 </g>
 </g>
</svg>

260 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

that matches expectations and 6 scenarios that do not match
expectations from 8 scenarios so that the success rate is 75%.

2) New Validation SVG File: Algorithm 2 contains the
PHP programming algorithm, which functions to filter or
validate SVG images by utilizing file extensions, magic
numbers, and DOM using the PHP programming language.

Algorithm 2 New Validation SVG File Upload
<?php
$filePath = "Abc.svg";
$errors = array();
$fileExtensionWhitelist = array("SVG");
$imageFileExtension = pathinfo($filePath, PATHINFO_EXTENSION);

if (!in_array(strtoupper($imageFileExtension), $fileExtensionWhitelist)){
 array_push($errors,"File Extension is not allowed");
}

function magicNumberStartOfFile($filename) {
 if(file_exists($filename)){
 $handle = fopen($filename, 'r');
 $bytes = strtoupper(bin2hex(fread($handle, 5)));
 fclose($handle);
 return $bytes;
 }else{
 return false;
 }
}

function magicNumberEndOfFile($filename) {
 if(file_exists($filename)){
 $handle = fopen($filename, 'r');
 fseek($handle, -6, SEEK_END);
 $bytes = strtoupper(bin2hex(fread($handle, 6)));
 fclose($handle);
 return $bytes;
 }else{
 return false;
 }
}

$magicNumberStartOfFileWhitelist = array("3C3F786D6C", "3C73766720");
if (!in_array(magicNumberStartOfFile($filePath),
$magicNumberStartOfFileWhitelist)){
 array_push($errors,"Magic Number (Start of File) is not allowed");
 }

$magicNumberEndOfFileWhitelist = array("3C2F7376673E");
if (!in_array(magicNumberEndOfFile($filePath),
$magicNumberEndOfFileWhitelist)){
 array_push($errors,"Magic Number (End of File) is not allowed");
 }

libxml_use_internal_errors(TRUE);
$dom = new DOMDocument;
$dom->Load($filePath);
if ($dom->validate()) {
array_push($errors,"XML format is not valid");
var_dump(libxml_get_errors());
}

if(empty($errors)){
 echo "SVG is valid";
}else{
 foreach ($errors as $data) {
 echo $data."
";
 }
}
?>

TABLE III. BLACK-BOX TESTING OF GENERAL VALIDATION

No.

Scenarios of Validation

Expected Result Actual Result

F
ile

 E
xt

en
si

on

M
ag

ic
 N

um
be

r

D
oc

um
en

t
O

bj
ec

t M
od

el

1 ✕ ✕ ✕ Uploaded failed
[✓] Succeed
[] Failed

2 ✓ ✕ ✕ Uploaded failed
[✓] Succeed
[] Failed

3 ✕ ✓ ✕ Uploaded failed
[✓] Succeed
[] Failed

4 ✕ ✕ ✓ Uploaded failed
[✓] Succeed
[] Failed

5 ✓ ✓ ✕ Uploaded failed
[] Succeed
[✓] Failed

6 ✓ ✕ ✓ Uploaded failed
[] Succeed
[✓] Failed

7 ✕ ✓ ✓ Uploaded failed
[✓] Succeed
[] Failed

8 ✓ ✓ ✓ Uploaded succeed
[✓] Succeed
[] Failed

All test scenarios have been tested by comparing the
expected results with the actual results, then the conclusion of
the desired results has been successful or appropriate. The
algorithm tested using a black-box of general validation with
the results in Table IV.

The test results in Table IV contain six scenarios that match
expectations and all scenarios that match expectations from 8
scenarios so that the success rate is 100%.

TABLE IV. BLACK-BOX TESTING OF NEW VALIDATION

No.

Scenarios of Validation

Expected Result Actual Result

F
ile

 E
xt

en
si

on

M
ag

ic
 N

um
be

r

D
oc

um
en

t
O

bj
ec

t M
od

el

1 ✕ ✕ ✕ Uploaded failed
[✓] Succeed
[] Failed

2 ✓ ✕ ✕ Uploaded failed
[✓] Succeed
[] Failed

3 ✕ ✓ ✕ Uploaded failed
[✓] Succeed
[] Failed

4 ✕ ✕ ✓ Uploaded failed
[✓] Succeed
[] Failed

5 ✓ ✓ ✕ Uploaded failed
[✓] Succeed
[] Failed

6 ✓ ✕ ✓ Uploaded failed
[✓] Succeed
[] Failed

7 ✕ ✓ ✓ Uploaded failed
[✓] Succeed
[] Failed

8 ✓ ✓ ✓ Uploaded succeed
[✓] Succeed
[] Failed

261 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

E. Deployment
This research can be applied to the SVG file upload

algorithm using magic numbers and DOM after other
validations, such as validating file extensions to check SVG
validation in the file upload process by performing superior
filtering with validation of writing XML structures so that they
can filter. SVG text that conforms to a standard XML format is
incompatible.

IV. CONCLUSION
This research produces an application that can provide

security in uploading files to web-based applications,
especially SVG files. The Waterfall method is used to develop
or build software because of the many preparatory stages
before the software development stage. Handling of security
validation for uploading SVG files using file extensions and
MIME types has a success rate of 75% from the eight tested
scenarios while handling using file extensions, magic numbers,
and Document Object Model (DOM) a success rate of 100%
from 8 test scenarios. Testing uses a black-box so that handling
using the file extension, magic number, and Document Object
Model (DOM) is better than using only file extensions and
mime types. Subsequent research work is that the proposed
method must be validated by various unique classifications of
SVG files or other file formats.

ACKNOWLEDGMENT
This research is supported by Direktorat Riset dan

Pengabdian Masyarakat, Direktorat Jenderal Penguatan Riset
dan Pengembangan Kementerian Riset, Teknologi, dan
Pendidikan Tinggi Republik Indonesia. Surat Kontrak
Pelaksanaan Penelitian Kementerian Riset dan Teknologi/
Badan Riset dan Inovasi Nasional (KEMENRISTEK/BRIN)
Tahun Tunggal Tahun Anggaran 2020 Nomor: PTM-
019/SKPP.TT/LPPM UAD/VI/2020.

REFERENCES
[1] H. Chen, L. J. Zhang, B. Hu, S. Z. Long, and L. H. Luo, “On Developing

and Deploying Large-File Upload Services of Personal Cloud Storage,”
Proc. - 2015 IEEE Int. Conf. Serv. Comput. SCC 2015, pp. 371–378,
2015, doi: 10.1109/SCC.2015.58.

[2] X. Li and Y. Xue, “A survey on web application security,” Nashville, TN
USA, 2011, [Online]. Available: http://isis.vanderbilt.edu/sites/
default/files/main_0.pdf.

[3] A. Yudhana, I. Riadi, and F. Ridho, “DDoS classification using neural
network and naïve bayes methods for network forensics,” Int. J. Adv.
Comput. Sci. Appl., vol. 9, no. 11, pp. 177–183, 2018, doi:
10.14569/ijacsa.2018.091125.

[4] I. Riadi, A. W. Muhammad, and Sunardi, “Neural network-based ddos
detection regarding hidden layer variation,” J. Theor. Appl. Inf. Technol.,
vol. 95, no. 15, pp. 3684–3691, 2017.

[5] A. Iswardani and I. Riadi, “Denial of service log analysis using density
K-means method,” J. Theor. Appl. Inf. Technol., vol. 83, no. 2, pp. 299–
302, 2016.

[6] A. Fadlil, I. Riadi, and S. Aji, “DDoS Attacks Classification using
Numeric Attribute-based Gaussian Naive Bayes,” Int. J. Adv. Comput.
Sci. Appl., vol. 8, no. 8, pp. 42–50, 2017, doi: 10.14569/ijacsa.
2017.080806.

[7] A. Kurniawan, I. Riadi, and A. Luthfi, “Forensic analysis and prevent of
cross site scripting in single victim attack using open web application
security project (OWASP) framework,” J. Theor. Appl. Inf. Technol.,
vol. 95, no. 6, pp. 1363–1371, 2017.

[8] S. B. Almi, “Web Server Security and Survey on Web Application
Security,” Int. J. Recent Innov. Trends Comput. Commun., vol. 2, no. 1,
pp. 114–119, 2014, [Online]. Available: http://ijritcc.org/IJRITCC Vol_2
Issue_1/Web Server Security and Survey on Web Application
Security.pdf.

[9] A. Jaiswal, G. Raj, and D. Singh, “Security Testing of Web Applications:
Issues and Challenges,” Int. J. Comput. Appl., vol. 88, no. 3, pp. 26–32,
2014, doi: 10.5120/15334-3667.

[10] OWASP, “OWASP Top 10 2017 - The Ten Most Critical Web
Application Security Risks Release Candidate 2,” pp. 1–25, 2017,
[Online]. Available: https://www.owasp.org/images/b/b0/OWASP_Top_
10_2017_RC2_Final.pdf.

[11] WhiteHatSec, “2018 Application Security Statistics Report - The
Evolution of the Secure Software Lifecycle,” 2018. https://info.
whitehatsec.com/Content-2018StatsReport_LP.html.

[12] V. Subramaniyaswamy, G. Venkata Kalyani, and N. Likhitha, “Securing
web applications from malware attacks using hybrid feature extraction,”
Int. J. Pure Appl. Math., vol. 119, no. 12, pp. 13367–13385, 2018.

[13] K. Pooj and S. Patil, “Understanding File Upload Security for Web
Applications,” Int. J. Eng. Trends Technol., vol. 42, no. 7, pp. 342–347,
2016, doi: 10.14445/22315381/ijett-v42p261.

[14] W3C, “Scalable Vector Graphics (SVG) 1.1 (Second Edition),” W3C,
2011. https://www.w3.org/TR/SVG11/ (accessed Oct. 20, 2020).

[15] S. D. Ankush, “XSS Attack Prevention Using DOM based filtering API
XSS Attack Prevention Using DOM based fitering API,” 2014.

[16] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: Server-side detection
of Cross-site Scripting attacks,” Proc. - Annu. Comput. Secur. Appl.
Conf. ACSAC, pp. 335–344, 2008, doi: 10.1109/ACSAC.2008.36.

[17] D. Zubarev and I. Skarga-Bandurova, “Cross-Site Scripting for Graphic
Data: Vulnerabilities and Prevention,” Conf. Proc. 2019 10th Int. Conf.
Dependable Syst. Serv. Technol. DESSERT 2019, pp. 154–160, 2019,
doi: 10.1109/DESSERT.2019.8770043.

[18] I. Riadi and E. I. Aristianto, “An Analysis of Vulnerability Web Against
Attack Unrestricted Image File Upload,” Comput. Eng. Appl. J., vol. 5,
no. 1, pp. 19–28, 2016, doi: 10.18495/comengapp.v5i1.161.

[19] I. Riadi, A. Fadlil, and T. Sari, “Image Forensic for detecting Splicing
Image with Distance Function,” Int. J. Comput. Appl., vol. 169, no. 5, pp.
6–10, 2017, doi: 10.5120/ijca2017914729.

[20] R. A. Surya, A. Fadlil, and A. Yudhana, “Identification of Pekalongan
Batik Images Using Backpropagation Method,” J. Phys. Conf. Ser., vol.
1373, no. 1, 2019, doi: 10.1088/1742-6596/1373/1/012049.

[21] R. S. Pressman and B. R. Maxim, Software Engineering : a practitioner’s
approach, 8th ed. New York: McGraw-Hill Education, 2014.

[22] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing,” Proc. - IEEE
Symp. Secur. Priv., pp. 332–345, 2010, doi: 10.1109/SP.2010.27.

[23] IANA, “Media Types,” 2020. https://www.iana.org/assignments/media-
types/media-types.xhtml.

[24] Sloth at 0k dot vc, “PHP :: Bug #79045 :: Incorrect svg mimetypes
detected,” 2019. https://bugs.php.net/bug.php?id=79045 (accessed Nov.
21, 2020).

262 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Research Methodology
	III. Result and Discussion
	A. Communication
	B. Planning
	1) SVG Code with SVG tag first: Fig. 4 contains the SVG code that uses the standard prefix "<?xml" in the form of ASCII hexadecimal value 3C 73 76 67 20, which is the SVG 1.1 standard (Second Edition), which became the W3C recommendation on 16 August 2011 �
	2) SVG Code with XML tag first: The two standards of the prefix "<?xml" and "<svg " are the standards that are often used and then sampled according to the file extension parameters, magic number, and XML format as in Table I.
	3) PHP Code in TXT file: Fig. 6 illustrates a PHP file renamed file extension from ".php" to ".txt" with file contents like Fig. 7. In this scenario, do not use the file extension, magic number, and XML format.
	4) PHP Code in SVG file: Fig. 8 illustrates a PHP file renamed file extension from ".php" to ".svg" with file contents like Fig. 9. In this scenario, use the SVG file extension but do not use the magic number at the start of the file (“3C 3F 78 6D 6C” or “�
	5) PHP Code in SVG tag TXT file: PHP Code file renamed file extension from ".php" to ".txt" with file contents like Fig. 10. In this scenario, use the magic number at the start of the file (“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the file (3C �
	6) XML tag in TXT file: SVG tags with XML tag first or magic number value “3C 3F 78 6D 6C” with file contents like Fig. 11. In this scenario, use XML format but do not use the SVG file extension and magic number at the start of the file (“3C 3F 78 6D 6C” o�
	7) PHP Code in SVG tag first: Fig. 12 contains PHP code by displaying PHP settings or server information in SVG code. In this scenario, use the file extension and magic number (“3C 3F 78 6D 6C” or “3C 73 76 67 20”) but do not use or invalid XML format.
	8) XML Code in SVG file: Fig. 13 contains XML tags in SVG file. In this scenario, use the file extension and XML format but do not use the magic number at the start of the file (“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the file (3C 2F 73 76 67 �
	9) SVG Code in TXT file: Fig. 14 contains SVG tags in the TXT file. In this scenario, do not use the SVG file extension but use the magic number at the start of the file (“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the file (3C 2F 73 76 67 3E) but�
	10) SVG Code with SVG/XML first tag in SVG file: Fig. 15 contains SVG tags in SVG file extension. In this scenario, use the file extension and magic number at the start of the file (“3C 3F 78 6D 6C” or “3C 73 76 67 20”) and the end of the file (3C 2F 73 76�

	C. Modeling
	1) General Validation SVG File: Fig. 16 is an SVG image validation flowchart utilizing file extensions and MIME type using the function mime_content_type($file) in PHP programming language.
	2) New Validation SVG File: Fig. 17 is an SVG image validation flowchart utilizing file extensions, magic numbers, and DOM using the PHP programming language.

	D. Construction
	1) General Validation SVG File: Algorithm 1 contains the PHP programming algorithm, which functions to filter or validate SVG images by utilizing file extensions and mime using the PHP programming language. The algorithm created is tested using black-box t�
	2) New Validation SVG File: Algorithm 2 contains the PHP programming algorithm, which functions to filter or validate SVG images by utilizing file extensions, magic numbers, and DOM using the PHP programming language.

	E. Deployment

	IV. Conclusion
	Acknowledgment

