
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

An Effective Heuristic Method to Minimize
Makespan and Flow Time in a Flow Shop Problem

Miguel Fernández1, Avid Roman-Gonzalez2
Department of Engineering, Pontifical Catholic University of Peru, Lima 32, Peru1

Image Processing Research Laboratory (INTI-Lab), Universidad de Ciencias y Humanidades, Lima, Perú1,2

Abstract—In this paper, it is presented a heuristic method for
solving the multi-objective flow shop problem. The work carried
out considers the simultaneous optimization of the makespan and
the flow time; both objectives are essential in measuring the
production system's performance since they aim to reduce the
completion time of jobs, increase the efficiency of resources, and
reduce waiting time in queue. The proposed method is an
adaptation of multi-objective Newton's method, which is applied
to problems with functions of continuous variables. In this
adaptation, the method seeks to improve a sequence of jobs
through local searches recursively. The computational
experiments show the potential of the proposed method to solve
medium-sized and large instances compared with other existing
literature methods.

Keywords—Flow shop problem; multi-objective optimization;
non-dominated solution

I. INTRODUCTION
In a flow shop environment, 𝐽 jobs must be processed on a

set of 𝑁 machines following the same order. The flow shop
problem (FSP) consists of determining the sequence of jobs
that optimizes one or more performance measures within the 𝐽!
possible sequences. The FSP is classified as NP-hard for most
of the classic problems, for example [1]: 𝐹2||∑𝑐𝑗, an FSP with
two machines and with the aim of minimizing the sum of the
completion time of all the jobs (flow time); 𝐹2||𝐿𝑀 , an FSP
with two machines and with the objective of minimizing the
maximum delay; 𝐹3||𝑐𝑀, an FSP with three machines and with
the aim of minimizing the completion time of the jobs
(makespan). Given the computational complexity that the FSP
presents, various heuristics and metaheuristics methods have
been proposed in the literature to solve medium-sized and large
instances.

Widmer and Hertz (1989) [2] proposed a heuristic method
to solve the problem to minimize the makespan. This method
consists of two phases: the first phase considers an initial
sequence based on a solution to the traveling salesman
problem, and the second phase consists of improving this
solution using tabu search techniques. Ho (1995) [3] proposed
a heuristic to minimize flow time. In this paper, a simulation
study was carried out to test the proposed heuristic
effectiveness, comparing it with other methods. Murata et al.
(1996) [4] proposed a multi-objective genetic algorithm. In this
paper, it is considered a weighted sum of multiple objective
functions with variable weights. Ponnambalam et al. (2004) [5]
proposed a multi-objective evolutionary search algorithm; the

authors solve a traveling salesman problem and employ a
genetic algorithm to minimize the makespan, flow time, and
downtime. Pasupathy et al. (2006) [6] proposed a multi-
objective genetic algorithm, using local search techniques and
minimizing makespan and flow time. This algorithm makes
use of the principle of non-dominance in conjunction with an
agglomeration metric. One can mention other works that adopt
the generic algorithm for the FSP [7, 8, 9, 10, 11].

II. PROBLEM FORMULATION
The FSP is a working system of 𝐽 jobs and 𝑁 machines in

series, where each job must be processed in each of the N
machines. All jobs must follow the same processing sequence:
first on machine 1, then on machine 2, so on consecutively.
The assumptions are as follows:

• Each machine works continuously and without
interruptions.

• Each machine can process just one job at a time.

• Each job can be processed by one machine at a time.

• The processing times of the jobs in the machines are
deterministic data.

• The setup times of the machines are included within the
processing time.

The performance measures or objective functions
considered are the makespan (𝑐𝑀) and the flow time (𝑐𝐹). The
makespan optimization seeks to reduce the completion time of
the jobs and aims to efficiently use resources, while the
optimization of flow time reduces the average number of jobs
in the queue [6]. The following notation is used to formulate
the FSP:

Sets

𝑖: Job index, 𝑖 = {1, … , 𝐽}

𝑘: Order index, 𝑘 = {1, … ,𝐾}

𝑚: Machine index, 𝑚 = {1, … ,𝑁}

Parameters

𝐽,𝐾: Numbers of Jobs

𝑁: Numbers of machines

𝑑𝑖𝑚: Processing time of job 𝑖 on the machine 𝑚

297 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Variables

𝑅𝑖𝑘: 1, if the job 𝑖 is executed in the order 𝑘; 0, in other cases.

𝑝𝑘𝑚: Processing time of the job to be executed in the order 𝑘
and on the machine 𝑚

𝑐𝑘𝑚: Completion time of the job to be executed in the order 𝑘
and on the machine 𝑚

The FSP is formulated as follows:

𝑀𝑖𝑛 𝑐𝑀 = 𝑐𝐾,𝑁 (1)

𝑀𝑖𝑛 𝑐𝐹 = ∑ 𝑐𝑘,𝑁
𝐾
𝑘=1 (2)

Subject to:

∑ 𝑅𝑖𝑘𝐾
𝑘=1 = 1 ∀𝑖 (3)

∑ 𝑅𝑖𝑘
𝐽
𝑖=1 = 1 ∀𝑘 (4)

𝑝𝑘𝑚 = ∑ 𝑑𝑖𝑚𝑅𝑖𝑘
𝐽
𝑖=1 ∀𝑘,𝑚 (5)

𝑐1,1 = 𝑝1,1 (6)

𝑐𝑘,1 = 𝑐𝑘−1,1 + 𝑝𝑘,1 ∀𝑘|𝑘 ≥ 2 (7)

𝑐1,𝑚 = 𝑐1,𝑚−1 + 𝑝1,𝑚 ∀𝑚|𝑚 ≥ 2 (8)

𝑐𝑘,𝑚 ≥ 𝑐𝑘−1,𝑚 + 𝑝𝑘,𝑚 ∀𝑘,𝑚|𝑘 ≥ 2 and 𝑚 ≥ 2 (9)

𝑐𝑘,𝑚 ≥ 𝑐𝑘,𝑚−1 + 𝑝𝑘,𝑚 ∀𝑘,𝑚|𝑘 ≥ 2 and 𝑚 ≥ 2 (10)

𝑅𝑖𝑘 ∈ {0,1} ∀𝑖, 𝑘 (11)

𝑐𝑘𝑚,𝑝𝑘𝑚 ≥ 0 ∀𝑘,𝑚 (12)

Objectives (1) and (2) represent the minimization of
makespan and flow time, respectively. Constraints (3) and (4)
determine the order of execution of the jobs. According to the
order of execution, each job's processing time on the machines
is defined in restriction (5). Constraints (6) - (10) determine the
completion time of the jobs on the machines. Constraints (11)
and (12) define the domain of the decision variables.

III. MULTI-OBJECTIVE OPTIMIZATION
A multi-objective optimization problem is defined as

follows [12]:

𝑀𝑖𝑛 𝐹(𝑥) = {𝐹1(𝑥), … ,𝐹𝑟(𝑥)}

𝑠. 𝑡 𝑥 ∈ 𝑋

Where, 𝑥 is a decision variable of dimension 𝑛 , 𝑥 =
 {𝑥1, … , 𝑥𝑛} , and 𝑋 is the search space contained in ℝ𝑛 .
Generally, the search space 𝑋 is generated by a set of
restrictions and ranges of the decision variables. The multi-
objective optimization problem consists of finding a solution
𝑥∗ ∈ 𝑋, so that ∄ 𝑦 ∈ 𝑋 such that:

𝐹𝑖(𝑦) ≤ 𝐹𝑖(𝑥∗) for all 𝑖 = 1, … , 𝑟

𝐹𝑗(𝑦) < 𝐹𝑗(𝑥∗) for some 𝑗 = 1, . . . , 𝑟

Here, 𝑥∗ is the call of a non-dominated solution. A non-
dominated solution cannot be improved relative to any
objective function without worsening at least one other
objective function. The set of non-dominated solutions is called
the Pareto optimal set, and the image of a given Pareto optimal
set is called the Pareto frontier.

IV. NEWTON’S METHOD FOR MULTI-OBJECTIVE
OPTIMIZATION

Newton's method for solving multi-objective optimization
problems was developed by [13]. The method is based on a
multi-start descent algorithm, which consists of generating
initial solutions, which will be improved recursively, following
a search direction (Newton's direction), with the objective
functions.

A. Newton’s Direction
Given a function 𝐹:𝑈 ⊂ 𝑅𝑛 → 𝑅𝑚 twice continuously

differentiable and a non-stationary point 𝑥 ∈ 𝑋 , Newton's
direction in 𝑥 , denoted by 𝑠(𝑥) , is obtained by solving the
following problem:

min max
𝑗=1,…,𝑟

∇𝐹𝑗(𝑥)𝑇𝑠 +
1
2
𝑠𝑇∇2𝐹𝑗 (𝑥)𝑠

 𝑠. 𝑡. 𝑠 ∈ ℝ𝑛.

The optimal value of the problem, denoted by 𝜃(𝑥), and
Newton's direction are determined as:

𝜃(𝑥) = inf
𝑠∈ℝ𝑛

max
𝑗=1,…,𝑟

∇𝐹𝑗(𝑥)𝑇𝑠 +
1
2
𝑠𝑇∇2𝐹𝑗 (𝑥)𝑠

𝑠(𝑥) = argmin
𝑠∈ℝ𝑛

max
𝑗=1,…,𝑟

∇𝐹𝑗(𝑥)𝑇𝑠 +
1
2
𝑠𝑇∇2𝐹𝑗 (𝑥)𝑠

This problem is solved recursively, determining in each
step 𝑡 , the values of 𝑠(𝑥𝑡)and 𝜃(𝑥𝑡), and then doing 𝑥𝑡+1 =
𝑥𝑡 + 𝑠(𝑥𝑡), until 𝜃(𝑥𝑡) ≈ 0 (with a certain level of tolerance),
that is, until it is not possible to continue improving the
objective functions simultaneously.

V. HEURISTIC METHOD FOR THE FLOW SHOP PROBLEM
In this article, a heuristic method based on Newton's

method is proposed for the FSP. The proposed method adapts
Newton's method, considered a discrete search space.

A. Principal Structure
The procedure starts from a randomly generated sequence

of 𝑠∗ jobs (initial solution). This solution is improved
recursively by applying local searches in neighborhoods by the
insertion method [14] and by the two-job exchange method [2].
If 𝐽 is the number of jobs, the insertion method consists of
removing a job placed in the 𝑖-th position and inserting it in the
𝑘 -th position (see Fig. 1a), the size of the generated
neighborhood is (𝐽 − 1)2 . The two-job exchange method
consists of exchanging the job placed in the 𝑖-th position with
the job placed in the 𝑘-th position (see Fig. 1b), the size of the
generated neighborhood is 𝐽(𝐽 − 1)/2.

298 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

(a)

(b)

Fig. 1. Neighborhood of Solutions for FSP: (a) Insertion Method; (b) Two-
Job Exchange Method.

The pseudo-code of the main structure is presented below:

Main structure (𝑁𝑆)
 𝑆 ← ∅, 𝑁𝐷 ← ∅;
 for 𝑖 = 1, … , 𝑁𝑆 do
 Generate a initial solution 𝑠∗;
 improvement ← TRUE;
 while (improvement = TRUE) do
 Improve the jobs sequence 𝑠∗ by insertion method;
 𝑠′ ← 𝑠∗;
 Improve the jobs sequence 𝑠∗ by interchange method;
 if (𝑠′ = 𝑠∗) then
 improvement ← FALSE;
 end
 end
 𝑆 ← 𝑆 ∪ {𝑠∗};
 end
 𝑁𝐷 ← non-dominated solutions in 𝑆;
Return (𝑁𝐷)

Here, 𝑁𝑆 represents the number of solutions generated
initially, 𝑆 the set of all sequences that have been enhanced,
and 𝑁𝐷 the non-dominated set of 𝑆.

B. Improve the Jobs Sequence
The procedure starts from an initial sequence of jobs

𝑠0 = 𝑠∗ , at 𝑡 = 0 ; its objective is to improve at least one
objective function in each iteration. In each iteration t, from 𝑠𝑡a
neighborhood 𝑁(𝑠𝑡) is generated, and evaluating the parameter
θ, the best neighbor (formed solution) of 𝑁(𝑠𝑡)is chosen. The
best neighbor of 𝑁(𝑠𝑡) will be 𝑠𝑡+1 , and the value of 𝑡 is
increased by one. The procedure stops when it is no longer
possible to improve a sequence (descent = FALSE). Finally, 𝑠∗
is assigned the best sequence found.

Improve the jobs sequence
 𝑠0 ← 𝑠∗, 𝑡 ← 0, descent ← TRUE;
 while (descent = TRUE) do
 𝑑𝑓1 ← ∅, 𝑑𝑓2 ← ∅;
 𝜃 ← 𝑚𝑖𝑛

𝑠∈𝑁(𝑠𝑡)
𝑚𝑎𝑥
𝑗=1,2

(𝑓𝑗(𝑠) − 𝑓𝑗(𝑠𝑡));

 if (𝜃 < 0) then 𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑚𝑎𝑥
𝑗=1,2

(𝑓𝑗(𝑠) − 𝑓𝑗(𝑠𝑡));

 else if (𝜃 = 0) then
 foreach 𝑠 ∈ 𝑁(𝑠𝑡) do
 if (𝑚𝑎𝑥

𝑗=1,2
(𝑓𝑗(𝑠) − 𝑓𝑗(𝑠𝑡)) = 0) then

 𝑑𝑓1 ← 𝑑𝑓1 ∪ {𝑓1(𝑠) − 𝑓1(𝑠𝑡)},
 𝑑𝑓2 ← 𝑑𝑓2 ∪ {𝑓2(𝑠) − 𝑓2(𝑠𝑡)};
 else
 𝑑𝑓1 ← 𝑑𝑓1 ∪ {0},𝑑𝑓2 ← 𝑑𝑓2 ∪ {0};
 end
 end
 if (𝑚𝑖𝑛

𝑠∈𝑁(𝑠𝑡)
𝑚𝑖𝑛
𝑗=1,2

(𝑑𝑓𝑗(𝑠)) = 0) then descent ← FALSE;

 else if (𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓1(𝑠) = 0) then

 𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓2(𝑠);

 else if (𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓2(𝑠) = 0) then

 𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

 𝑑𝑓1(𝑠);

 else 𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓1(𝑠);

 end
 else descent ← FALSE;
 end
 if (descent=TRUE) then 𝑡 ← 𝑡 + 1;
 end
 end
 𝑠∗ ← 𝑠𝑡;
Return (𝑠∗)

VI. COMPUTATIONAL EXPERIMENTS
The computational experiments were carried out in

MATLAB and executed on a computer with a 2.4 GHz
processor and 2 GB of RAM.

The instances used in the experiments were taken from
[15]. Each instance is represented by 𝐽 × 𝑁 , where 𝐽 is the
number of jobs and 𝑁 is the number of machines. In this study,
the instances TA31, TA41, TA61, and TA71 are used. The
results obtained by the proposed method are compared with the
results of the MOGLS [4], ENGA [8], GPWGA [10], and PG-
ALS [6]. The proposed method was applied considering 100
initial solutions with ten replicas for each instance. Tables I to
IV show the non-dominated solutions of the cited existing
methods and the proposed method's non-dominated solutions.
Fig. 2 to 5 illustrate the Pareto frontiers that are obtained by
different methods.

299 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

TABLE I. COMPUTATIONAL RESULTS OF THE TA31 INSTANCE: 50×5

Existing Algorithms Proposed Method

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹

2724 71531 2724 68516

2729 68036 2729 68139

2731 67028 2733 67883

2752 66061 2734 67826

2757 66052 2735 66222

2758 66047 2743 66158

2763 66032 2746 66024

2765 66024 2748 65977

2770 65979 2752 65717

2799 65963 2757 65531

TABLE II. COMPUTATIONAL RESULTS OF THE TA41 INSTANCE: 50×10

Existing Algorithms Proposed Method

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹 𝑐𝑀 𝑐𝐹

3047 93511 3133 90663 3072 92115

3052 93013 3134 90641 3080 91797

3059 92666 3135 90448 3084 91241

3063 92602 3137 90408 3098 91023

3070 92508 3148 90364 3099 90981

3074 92493 3152 90305 3106 90955

3075 92124 3156 90254 3120 90656

3076 91757 3197 90207 3141 90628

3087 91688 3209 90165 3142 90557

3097 91256 3237 90158 3146 90520

3099 91236 3249 90099 3147 90428

3111 91149 3298 90075 3154 89538

3132 90882

TABLE III. COMPUTATIONAL RESULTS OF THE TA61 INSTANCE: 100×5

Existing Algorithms Proposed Method

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹

5493 287684 5493 261717

5495 262647 5495 259338

5498 262335 5498 259088

5527 261411 5538 258507

5563 261071 5539 258501

5564 260706

TABLE IV. COMPUTATIONAL RESULTS OF THE TA71 INSTANCE: 100×10

Existing Algorithms Proposed Method

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹 𝑐𝑀 𝑐𝐹

5801 325462 5858 314749 5836 318588

5803 324725 5877 312785 5842 313791

5804 318924 5881 312632 5843 313790

5806 318299 5892 312534 5848 313769

5816 318055 5897 312349 5849 313208

5827 316972 5904 312207 5856 312643

5832 316642 5915 310887 5866 311872

5836 316542 5920 310515 5874 309183

5837 316292 5928 310359 5903 308818

5838 316161 5934 310297 5905 308291

5840 315753 5995 310227 5912 307660

5851 315184 6001 310040 5960 307349

5856 314879 6009 310005

Fig. 2. Approximation of the Pareto Frontier for Instance TA31: 50 × 5.

Fig. 3. Approximation of the Pareto Frontier for Instance TA41: 50 × 10.

300 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 4. Approximation of the Pareto Frontier for Instance TA61: 100 × 5

Fig. 5. Approximation of the Pareto Frontier for Instance TA71: 100 × 10.

The results found show that the proposed method has
obtained a good approximation of the Pareto frontier and even
surpassing the solutions found by the existing methods. Note
that problems with 50 or 100 jobs can be considered complex
problems. Experiments indicate that generating 100 initial
solutions is sufficient to obtain good results in cases with ten or
fewer machines.

VII. CONCLUSIONS
In this paper, a heuristic method is proposed to solve the

flow shop problem, considering the simultaneous optimization
of the makespan and the flow time. This method is inspired by
multi-objective Newton's method.

In Section 6, the proposed method demonstrated its ability
to obtain a set of satisfactory solutions in medium-sized and
large instances, generating 100 initial solutions. However, for

more extensive cases (concerning the number of jobs or
machines), the initial solutions should be increased.

Lastly, unlike other methods, the proposed method has an
advantage because it is not necessary to calibrate several
parameters by carrying out previous experiments, as happens,
for example, with the genetic algorithm.

REFERENCES
[1] PINEDO, M. Scheduling theory algorithms and system. 3ª Edição. New

York: Prentice Hall, 2008.
[2] WIDMER, M.; HERTZ, A. A new heuristic method for the flow shop

sequencing problem. European Journal of Operational Research, v. 41,
p. 186-193, 1989.

[3] HO, J. Flowshop sequencing with mean flowtime objective. European
Journal of Operational Research, v. 81, p. 571-578, 1995.

[4] MURATA, T.; ISHIBUCHI, H; TANAKA, H. Multi-objective genetic
algorithm and its applications to flowshop scheduling. Computers Ind.
Eng., v. 30, n. 4, p. 957-968, 1996.

[5] PONNAMBALAM, S. G.; JAGANNATHAN, H.; KATARIA, M.;
GADICHERLA, A. A TSP-GA multi-objective algorithm for flow-shop
scheduling. The International Journal of Advanced Manufacturing
Technology, v. 23, p. 909-915, 2004.

[6] PASUPATHY, T.; RAJENDRAN, C.; SURESH, R. K. A multi-
objective genetic algorithm for scheduling in flow shops to minimize the
makespan and total flow time of jobs. The International Journal of
Advanced Manufacturing Technology, v. 27, p. 804-815, 2006.

[7] REEVES, C. R. A genetic algorithm for flowshop sequencing.
Computers & Operations Research, v. 22, p. 5-13, 1995.

[8] BAGCHI, T, P. Multiobjective scheduling by genetic algorithms.
Boston: Kluwer, 1999.

[9] BUZZO, R. W.; MOCCELLIN, J. V. Programação da produção em
sistemas flow shop utilizando um método heurístico híbrido algoritmo
genético-simulated annealing. Gestão & Produção, v. 7, p. 364-377,
2000.

[10] CHANG, P. C.; HSIEH, J. C.; LIN, S. G. The development of gradual
priority weighting approach for the multi-objective flowshop scheduling
problem. International Journal of Production Economics, v. 79, p. 171-
183, 2002.

[11] KAMIRI, N.; ZANDIEH, M.; KARAMOOZ, H.R. Bi-objective group
scheduling in hybrid flexible flowshop: A multi-phase approach. Expert
Systems with Applications, v. 37, p. 4024-4032, 2010.

[12] KONAK, A.; COIT, D.; SMITH, A. Multi-objective optimization using
genetic algorithms: a tutorial. Reliability Engineering & System Safety,
v. 91, p. 992-1007, 2006.

[13] FLIEGE, J.; DRUMMOND, L. M. G.; SVAITER, B. Newton’s method
for multiobjective optimization. Optimization Online, 2008.

[14] NAWAZ, M.; ENSCORE, JR., E.; HAM, I. A heuristic algorithm for
the m-machine, n-job flow-shop sequencing problem. The International
Journal of Management Science, v. 11, n. 1, p. 91-95, 1983.

[15] TAILLARD, E. Benchmarks for basic scheduling problems. European
Journal of Operational Research, v. 64, p. 278-285, 1993.

301 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Problem Formulation
	III. Multi-Objective Optimization
	IV. Newton’s Method for Multi-Objective Optimization
	A. Newton’s Direction

	V. Heuristic Method for the Flow Shop Problem
	A. Principal Structure
	B. Improve the Jobs Sequence

	VI. Computational Experiments
	VII. Conclusions

