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Abstract—In this paper, it is presented a heuristic method for 
solving the multi-objective flow shop problem. The work carried 
out considers the simultaneous optimization of the makespan and 
the flow time; both objectives are essential in measuring the 
production system's performance since they aim to reduce the 
completion time of jobs, increase the efficiency of resources, and 
reduce waiting time in queue. The proposed method is an 
adaptation of multi-objective Newton's method, which is applied 
to problems with functions of continuous variables. In this 
adaptation, the method seeks to improve a sequence of jobs 
through local searches recursively. The computational 
experiments show the potential of the proposed method to solve 
medium-sized and large instances compared with other existing 
literature methods. 

Keywords—Flow shop problem; multi-objective optimization; 
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I. INTRODUCTION 
In a flow shop environment, 𝐽 jobs must be processed on a 

set of 𝑁 machines following the same order. The flow shop 
problem (FSP) consists of determining the sequence of jobs 
that optimizes one or more performance measures within the 𝐽! 
possible sequences. The FSP is classified as NP-hard for most 
of the classic problems, for example [1]: 𝐹2||∑𝑐𝑗, an FSP with 
two machines and with the aim of minimizing the sum of the 
completion time of all the jobs (flow time); 𝐹2||𝐿𝑀 , an FSP 
with two machines and with the objective of minimizing the 
maximum delay; 𝐹3||𝑐𝑀, an FSP with three machines and with 
the aim of minimizing the completion time of the jobs 
(makespan). Given the computational complexity that the FSP 
presents, various heuristics and metaheuristics methods have 
been proposed in the literature to solve medium-sized and large 
instances. 

Widmer and Hertz (1989) [2] proposed a heuristic method 
to solve the problem to minimize the makespan. This method 
consists of two phases: the first phase considers an initial 
sequence based on a solution to the traveling salesman 
problem, and the second phase consists of improving this 
solution using tabu search techniques. Ho (1995) [3] proposed 
a heuristic to minimize flow time. In this paper, a simulation 
study was carried out to test the proposed heuristic 
effectiveness, comparing it with other methods. Murata et al. 
(1996) [4] proposed a multi-objective genetic algorithm. In this 
paper, it is considered a weighted sum of multiple objective 
functions with variable weights. Ponnambalam et al. (2004) [5] 
proposed a multi-objective evolutionary search algorithm; the 

authors solve a traveling salesman problem and employ a 
genetic algorithm to minimize the makespan, flow time, and 
downtime. Pasupathy et al. (2006) [6] proposed a multi-
objective genetic algorithm, using local search techniques and 
minimizing makespan and flow time. This algorithm makes 
use of the principle of non-dominance in conjunction with an 
agglomeration metric. One can mention other works that adopt 
the generic algorithm for the FSP [7, 8, 9, 10, 11]. 

II. PROBLEM FORMULATION 
The FSP is a working system of 𝐽 jobs and 𝑁 machines in 

series, where each job must be processed in each of the N 
machines. All jobs must follow the same processing sequence: 
first on machine 1, then on machine 2, so on consecutively. 
The assumptions are as follows: 

• Each machine works continuously and without 
interruptions. 

• Each machine can process just one job at a time. 

• Each job can be processed by one machine at a time. 

• The processing times of the jobs in the machines are 
deterministic data. 

• The setup times of the machines are included within the 
processing time. 

The performance measures or objective functions 
considered are the makespan (𝑐𝑀) and the flow time (𝑐𝐹). The 
makespan optimization seeks to reduce the completion time of 
the jobs and aims to efficiently use resources, while the 
optimization of flow time reduces the average number of jobs 
in the queue [6]. The following notation is used to formulate 
the FSP: 

Sets 

𝑖: Job index, 𝑖 = {1, … , 𝐽} 

𝑘: Order index, 𝑘 = {1, … ,𝐾} 

𝑚: Machine index, 𝑚 = {1, … ,𝑁} 

Parameters 

𝐽,𝐾: Numbers of Jobs 

𝑁: Numbers of machines 

𝑑𝑖𝑚: Processing time of job 𝑖 on the machine 𝑚  
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Variables 

𝑅𝑖𝑘: 1, if the job 𝑖 is executed in the order 𝑘; 0, in other cases.  

𝑝𝑘𝑚: Processing time of the job to be executed in the order 𝑘 
and on the machine 𝑚 

𝑐𝑘𝑚: Completion time of the job to be executed in the order 𝑘 
and on the machine 𝑚 

The FSP is formulated as follows: 

𝑀𝑖𝑛 𝑐𝑀 = 𝑐𝐾,𝑁              (1) 

𝑀𝑖𝑛 𝑐𝐹 = ∑ 𝑐𝑘,𝑁
𝐾
𝑘=1              (2) 

Subject to: 

∑ 𝑅𝑖𝑘𝐾
𝑘=1 = 1  ∀𝑖               (3) 

∑ 𝑅𝑖𝑘
𝐽
𝑖=1 = 1  ∀𝑘              (4) 

𝑝𝑘𝑚 = ∑ 𝑑𝑖𝑚𝑅𝑖𝑘
𝐽
𝑖=1   ∀𝑘,𝑚            (5) 

𝑐1,1 = 𝑝1,1               (6) 

𝑐𝑘,1 = 𝑐𝑘−1,1 + 𝑝𝑘,1  ∀𝑘|𝑘 ≥ 2            (7) 

𝑐1,𝑚 = 𝑐1,𝑚−1 + 𝑝1,𝑚  ∀𝑚|𝑚 ≥ 2            (8) 

𝑐𝑘,𝑚 ≥ 𝑐𝑘−1,𝑚 + 𝑝𝑘,𝑚  ∀𝑘,𝑚|𝑘 ≥ 2 and 𝑚 ≥ 2          (9) 

𝑐𝑘,𝑚 ≥ 𝑐𝑘,𝑚−1 + 𝑝𝑘,𝑚  ∀𝑘,𝑚|𝑘 ≥ 2 and 𝑚 ≥ 2        (10) 

𝑅𝑖𝑘 ∈ {0,1}       ∀𝑖, 𝑘            (11) 

𝑐𝑘𝑚,𝑝𝑘𝑚 ≥ 0    ∀𝑘,𝑚           (12) 

Objectives (1) and (2) represent the minimization of 
makespan and flow time, respectively. Constraints (3) and (4) 
determine the order of execution of the jobs. According to the 
order of execution, each job's processing time on the machines 
is defined in restriction (5). Constraints (6) - (10) determine the 
completion time of the jobs on the machines. Constraints (11) 
and (12) define the domain of the decision variables. 

III. MULTI-OBJECTIVE OPTIMIZATION 
A multi-objective optimization problem is defined as 

follows [12]: 

𝑀𝑖𝑛 𝐹(𝑥) = {𝐹1(𝑥), … ,𝐹𝑟(𝑥)} 

𝑠. 𝑡   𝑥 ∈ 𝑋 

Where, 𝑥  is a decision variable of dimension 𝑛 , 𝑥 =
 {𝑥1, … , 𝑥𝑛} , and 𝑋  is the search space contained in ℝ𝑛 . 
Generally, the search space 𝑋  is generated by a set of 
restrictions and ranges of the decision variables. The multi-
objective optimization problem consists of finding a solution 
𝑥∗ ∈ 𝑋, so that ∄ 𝑦 ∈ 𝑋 such that: 

𝐹𝑖(𝑦) ≤ 𝐹𝑖(𝑥∗) for all 𝑖 = 1, … , 𝑟 

𝐹𝑗(𝑦) <  𝐹𝑗(𝑥∗) for some 𝑗 = 1, . . . , 𝑟 

Here, 𝑥∗ is the call of a non-dominated solution. A non-
dominated solution cannot be improved relative to any 
objective function without worsening at least one other 
objective function. The set of non-dominated solutions is called 
the Pareto optimal set, and the image of a given Pareto optimal 
set is called the Pareto frontier. 

IV. NEWTON’S METHOD FOR MULTI-OBJECTIVE 
OPTIMIZATION 

Newton's method for solving multi-objective optimization 
problems was developed by [13]. The method is based on a 
multi-start descent algorithm, which consists of generating 
initial solutions, which will be improved recursively, following 
a search direction (Newton's direction), with the objective 
functions. 

A. Newton’s Direction 
Given a function 𝐹:𝑈 ⊂ 𝑅𝑛 →  𝑅𝑚  twice continuously 

differentiable and a non-stationary point 𝑥 ∈ 𝑋 , Newton's 
direction in 𝑥 , denoted by 𝑠(𝑥) , is obtained by solving the 
following problem: 

min max
𝑗=1,…,𝑟

∇𝐹𝑗(𝑥)𝑇𝑠 +
1
2
𝑠𝑇∇2𝐹𝑗 (𝑥)𝑠

 𝑠. 𝑡.   𝑠 ∈ ℝ𝑛.                                             
 

The optimal value of the problem, denoted by 𝜃(𝑥), and 
Newton's direction are determined as: 

𝜃(𝑥) = inf
𝑠∈ℝ𝑛

max
𝑗=1,…,𝑟

∇𝐹𝑗(𝑥)𝑇𝑠 +
1
2
𝑠𝑇∇2𝐹𝑗 (𝑥)𝑠 

𝑠(𝑥) = argmin
𝑠∈ℝ𝑛

max
𝑗=1,…,𝑟

∇𝐹𝑗(𝑥)𝑇𝑠 +
1
2
𝑠𝑇∇2𝐹𝑗 (𝑥)𝑠 

This problem is solved recursively, determining in each 
step 𝑡 , the values of 𝑠(𝑥𝑡)and 𝜃(𝑥𝑡), and then doing 𝑥𝑡+1 =
𝑥𝑡 + 𝑠(𝑥𝑡), until 𝜃(𝑥𝑡) ≈ 0 (with a certain level of tolerance), 
that is, until it is not possible to continue improving the 
objective functions simultaneously. 

V. HEURISTIC METHOD FOR THE FLOW SHOP PROBLEM 
In this article, a heuristic method based on Newton's 

method is proposed for the FSP. The proposed method adapts 
Newton's method, considered a discrete search space. 

A. Principal Structure 
The procedure starts from a randomly generated sequence 

of 𝑠∗  jobs (initial solution). This solution is improved 
recursively by applying local searches in neighborhoods by the 
insertion method [14] and by the two-job exchange method [2]. 
If 𝐽  is the number of jobs, the insertion method consists of 
removing a job placed in the 𝑖-th position and inserting it in the 
𝑘 -th position (see Fig. 1a), the size of the generated 
neighborhood is (𝐽 − 1)2 . The two-job exchange method 
consists of exchanging the job placed in the 𝑖-th position with 
the job placed in the 𝑘-th position (see Fig. 1b), the size of the 
generated neighborhood is 𝐽(𝐽 − 1)/2. 
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(a) 

 
(b) 

Fig. 1. Neighborhood of Solutions for FSP: (a) Insertion Method; (b) Two-
Job Exchange Method. 

The pseudo-code of the main structure is presented below: 

Main structure (𝑁𝑆)  
   𝑆 ← ∅, 𝑁𝐷 ← ∅;                                      
   for 𝑖 = 1, … , 𝑁𝑆  do                                    
        Generate a initial solution 𝑠∗;                 
        improvement ← TRUE;                
        while (improvement = TRUE) do                
             Improve the jobs sequence                𝑠∗ by insertion method;         
              𝑠′ ← 𝑠∗;                
             Improve the jobs sequence                 𝑠∗ by interchange method;                 
             if (𝑠′ = 𝑠∗) then     
                 improvement ← FALSE;                
             end               
        end               
         𝑆 ← 𝑆 ∪ {𝑠∗};                
   end                                    
   𝑁𝐷 ← non-dominated solutions in 𝑆;                                  
Return (𝑁𝐷) 

Here, 𝑁𝑆  represents the number of solutions generated 
initially, 𝑆 the set of all sequences that have been enhanced, 
and 𝑁𝐷 the non-dominated set of 𝑆. 

B. Improve the Jobs Sequence 
The procedure starts from an initial sequence of jobs 

𝑠0 = 𝑠∗ , at 𝑡 = 0 ; its objective is to improve at least one 
objective function in each iteration. In each iteration t, from 𝑠𝑡a 
neighborhood 𝑁(𝑠𝑡) is generated, and evaluating the parameter 
θ, the best neighbor (formed solution) of 𝑁(𝑠𝑡)is chosen. The 
best neighbor of 𝑁(𝑠𝑡)  will be 𝑠𝑡+1 , and the value of 𝑡  is 
increased by one. The procedure stops when it is no longer 
possible to improve a sequence (descent = FALSE). Finally, 𝑠∗ 
is assigned the best sequence found. 

Improve the jobs sequence 
   𝑠0 ← 𝑠∗, 𝑡 ← 0, descent ← TRUE;                                     
   while (descent = TRUE) do                      
        𝑑𝑓1 ← ∅, 𝑑𝑓2 ← ∅;                        
        𝜃 ← 𝑚𝑖𝑛

𝑠∈𝑁(𝑠𝑡)
𝑚𝑎𝑥
𝑗=1,2

(𝑓𝑗(𝑠) − 𝑓𝑗(𝑠𝑡));  

        if (𝜃 < 0) then 𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑚𝑎𝑥
𝑗=1,2

(𝑓𝑗(𝑠) − 𝑓𝑗(𝑠𝑡));  

        else if (𝜃 = 0) then       
             foreach 𝑠 ∈ 𝑁(𝑠𝑡) do                                                       
                   if (𝑚𝑎𝑥

𝑗=1,2
(𝑓𝑗(𝑠) − 𝑓𝑗(𝑠𝑡)) = 0 ) then  

                       𝑑𝑓1 ← 𝑑𝑓1 ∪ {𝑓1(𝑠) − 𝑓1(𝑠𝑡)}, 
                       𝑑𝑓2 ← 𝑑𝑓2 ∪ {𝑓2(𝑠) − 𝑓2(𝑠𝑡)}; 
                   else              
                       𝑑𝑓1 ← 𝑑𝑓1 ∪ {0},𝑑𝑓2 ← 𝑑𝑓2 ∪ {0}; 
                 end 
            end 
              if ( 𝑚𝑖𝑛

𝑠∈𝑁(𝑠𝑡)
𝑚𝑖𝑛
𝑗=1,2

(𝑑𝑓𝑗(𝑠)) = 0 ) then descent ← FALSE; 

              else if ( 𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓1(𝑠) = 0 ) then  

                    𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓2(𝑠); 

              else if ( 𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓2(𝑠) = 0 ) then  

                    𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

 𝑑𝑓1(𝑠); 

               else 𝑠𝑡+1 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠∈𝑁(𝑠𝑡)

𝑑𝑓1(𝑠);   

               end    
        else descent ← FALSE;  
        end         
        if (descent=TRUE) then 𝑡 ← 𝑡 + 1;                                  
        end                                    
   end                 
    𝑠∗ ← 𝑠𝑡;                    
Return (𝑠∗)  

VI. COMPUTATIONAL EXPERIMENTS 
The computational experiments were carried out in 

MATLAB and executed on a computer with a 2.4 GHz 
processor and 2 GB of RAM. 

The instances used in the experiments were taken from 
[15]. Each instance is represented by 𝐽 ×  𝑁 , where 𝐽  is the 
number of jobs and 𝑁 is the number of machines. In this study, 
the instances TA31, TA41, TA61, and TA71 are used. The 
results obtained by the proposed method are compared with the 
results of the MOGLS [4], ENGA [8], GPWGA [10], and PG-
ALS [6]. The proposed method was applied considering 100 
initial solutions with ten replicas for each instance. Tables I to 
IV show the non-dominated solutions of the cited existing 
methods and the proposed method's non-dominated solutions. 
Fig. 2 to 5 illustrate the Pareto frontiers that are obtained by 
different methods. 

299 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

TABLE I. COMPUTATIONAL RESULTS OF THE TA31 INSTANCE: 50×5 

Existing Algorithms Proposed Method 

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹 

2724 71531 2724 68516 

2729 68036 2729 68139 

2731 67028 2733 67883 

2752 66061 2734 67826 

2757 66052 2735 66222 

2758 66047 2743 66158 

2763 66032 2746 66024 

2765 66024 2748 65977 

2770 65979 2752 65717 

2799 65963 2757 65531 

TABLE II. COMPUTATIONAL RESULTS OF THE TA41 INSTANCE: 50×10 

Existing Algorithms Proposed Method 

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹 𝑐𝑀 𝑐𝐹 

3047 93511 3133 90663 3072 92115 

3052 93013 3134 90641 3080 91797 

3059 92666 3135 90448 3084 91241 

3063 92602 3137 90408 3098 91023 

3070 92508 3148 90364 3099 90981 

3074 92493 3152 90305 3106 90955 

3075 92124 3156 90254 3120 90656 

3076 91757 3197 90207 3141 90628 

3087 91688 3209 90165 3142 90557 

3097 91256 3237 90158 3146 90520 

3099 91236 3249 90099 3147 90428 

3111 91149 3298 90075 3154 89538 

3132 90882     

TABLE III. COMPUTATIONAL RESULTS OF THE TA61 INSTANCE: 100×5 

Existing Algorithms Proposed Method 

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹 

5493 287684 5493 261717 

5495 262647 5495 259338 

5498 262335 5498 259088 

5527 261411 5538 258507 

5563 261071 5539 258501 

5564 260706   

TABLE IV. COMPUTATIONAL RESULTS OF THE TA71 INSTANCE: 100×10 

Existing Algorithms Proposed Method 

𝒄𝑴 𝑐𝐹 𝑐𝑀 𝑐𝐹 𝑐𝑀 𝑐𝐹 

5801 325462 5858 314749 5836 318588 

5803 324725 5877 312785 5842 313791 

5804 318924 5881 312632 5843 313790 

5806 318299 5892 312534 5848 313769 

5816 318055 5897 312349 5849 313208 

5827 316972 5904 312207 5856 312643 

5832 316642 5915 310887 5866 311872 

5836 316542 5920 310515 5874 309183 

5837 316292 5928 310359 5903 308818 

5838 316161 5934 310297 5905 308291 

5840 315753 5995 310227 5912 307660 

5851 315184 6001 310040 5960 307349 

5856 314879 6009 310005   

 
Fig. 2. Approximation of the Pareto Frontier for Instance TA31: 50 × 5. 

 
Fig. 3. Approximation of the Pareto Frontier for Instance TA41: 50 × 10. 
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Fig. 4. Approximation of the Pareto Frontier for Instance TA61: 100 × 5  

 
Fig. 5. Approximation of the Pareto Frontier for Instance TA71: 100 × 10. 

The results found show that the proposed method has 
obtained a good approximation of the Pareto frontier and even 
surpassing the solutions found by the existing methods. Note 
that problems with 50 or 100 jobs can be considered complex 
problems. Experiments indicate that generating 100 initial 
solutions is sufficient to obtain good results in cases with ten or 
fewer machines. 

VII. CONCLUSIONS 
In this paper, a heuristic method is proposed to solve the 

flow shop problem, considering the simultaneous optimization 
of the makespan and the flow time. This method is inspired by 
multi-objective Newton's method. 

In Section 6, the proposed method demonstrated its ability 
to obtain a set of satisfactory solutions in medium-sized and 
large instances, generating 100 initial solutions. However, for 

more extensive cases (concerning the number of jobs or 
machines), the initial solutions should be increased. 

Lastly, unlike other methods, the proposed method has an 
advantage because it is not necessary to calibrate several 
parameters by carrying out previous experiments, as happens, 
for example, with the genetic algorithm. 
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