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Abstract—This paper proposes a semi-supervised 

autoencoder based approach for the detection of anomalies in 

turbofan engines. Data used in this research is generated through 

simulation of turbofan engines created using a tool known as 

Commercial Modular Aero-Propulsion System Simulation 

(CMAPSS). C-MAPSS allows users to simulate various 

operational settings, environmental conditions, and control 

settings by varying various input parameters. Optimal 

architecture of autoencoder is discovered using Bayesian 

hyperparameter tuning approach. Autoencoder model with 

optimal architecture is trained on data representing normal 

behavior of turbofan engines included in training set. 

Performance of trained model is then tested on data of engines 

included in test set. To study the effect of redundant features 

removal on performance, two approaches are implemented and 

tested: with and without redundant features removal. 

Performance of proposed models is evaluated using various 

performance evaluation metrics like F1-score, Precision and 

Recall. Results have shown that best performance is achieved 

when autoencoder model is used without redundant feature 

removal. 
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I. INTRODUCTION 

Anomaly detection refers to identification of those 
situations, which do not conform to pre-defined normal 
behavior of the system under consideration. Timely detection 
of such anomalies in machinery has many applications, which 
include reduced downtime, reduced maintenance cost and less 
safety hazards. Increasing focus on reliability and maintenance 
of complex systems like turbofan engines demands intelligent 
and autonomous ways to manage the health of these safety 
critical systems [1]. One such way is to deploy autonomous 
anomaly detection to monitor the health of turbofan engines. 
Timely detection of anomalies in turbofan engines can enable 
its operators to take corrective actions timely and prevent 
catastrophic failures. 

In recent years, there is an increasing interest in data 
driven anomaly detection techniques. Based on nature of 
available dataset, data driven anomaly detection techniques 
are classified into three types: supervised, unsupervised, and 
semi supervised [2]. 

Supervised anomaly detection techniques require true 
labels for all training instances: normal as well as anomalous. 

Bayesian networks in supervised setup are used for intrusion 
detection in [3]. 

Researchers have also used multilayer perceptron (MLP) 
for detection of normal and attack connections [4]. In addition 
to detection of attack connections, MLP based approach also 
helps to identify type of attacks. Researchers have also used 
support vector machines (SVM) and decision trees for 
detection of anomalies in various applications [5], [6]. One of 
the biggest challenges in supervised anomaly detection 
approaches is non availability of representative labels, 
especially for anomalous class [7]. Another issue is that 
anomalous class has far fewer instances than normal class 
instances. This issue of imbalance class distribution is 
addressed in [8]. 

Unsupervised anomaly detection algorithms do not require 
true labels of data instances for training. Basic assumption for 
these algorithms is that only small percentage of data belongs 
to anomalous class. Unsupervised anomaly detection 
approaches classify infrequent data instances as anomalous 
[2]. K-means clustering based sliding window approach is 
used to detect anomalies in discrete manufacturing process by 
[9]. 

Another clustering algorithm called Fuzzy C-Means 
(FCM) is also used by researchers for unsupervised anomaly 
detection [10]. In FCM, one data instance can belong to more 
than one clusters. 

Some researchers have also used expectation maximization 
(EM) meta algorithm for unsupervised anomaly detection 
[11]. EM is again a soft clustering technique which maximizes 
the value of certain parameter in a probabilistic model. One of 
the biggest issues with these clustering-based anomaly 
detection techniques is high false positive rate. 

In [12], different clustering algorithms were used for 
intrusion detection and it was observed that false positive rate 
was more than 20%. Such high false positive rate makes 
clustering based anomaly detection techniques unviable for 
some of the real-world problems [12]. 

Another challenge in unsupervised anomaly detection 
techniques is the assumption that only small proportion of data 
represents the anomalous class. In situations where this 
assumption is not true, these unsupervised anomaly detection 
approaches may suffer from bad performance. 
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Semi-supervised anomaly detection approaches require 
that true labels should be available for only those data 
instances which represent the normal behavior of system 
under consideration. As these semi-supervised approaches do 
not require the labels for anomalous data instances, therefore 
these approaches are widely applicable in practice as 
compared to supervised anomaly detection approaches. 

In [13], a kernel principal component analysis (PCA) 
based approach is used to deploy semi-supervised anomaly 
detection on a spacecraft. This approach first projects original 
data on to a lower dimensional space and then reconstructs it 
from that lower dimensional space. This reconstructed data 
from lower dimensional space is supposed to represent the 
true nature of data (independent of noise). The reconstruction 
error between original data and reconstructed data is then used 
to detect anomalies. However, the performance of this 
approach is highly dependent upon type and hyperparameters 
(e.g., degree in case of polynomial kernel) of kernel chosen. In 
some cases, choice of kernel requires domain knowledge, 
which is not easily available in all the cases. 

In [14], researchers have proposed a semi-supervised 
support vector machines (S3VMs) for detection of anomalies 
in complex systems. It has been observed that semi supervised 
SVMs give high false positive rate when tuned and trained in 
a semi-supervised setup [15]. In addition to this, curse of 
dimensionality is also an issue when these SVMs are used 
with high dimensional data. In recent years, there is an 
increasing interest in use of artificial neural networks for 
various applications. Autoencoder is also a type of neural 
network, which is designed to learn reconstruction of input 
data [16]. 

Unlike PCA based approaches, autoencoders perform 
hierarchical dimensionality reduction by stacking up multiple 
hidden layers. By reducing number of neurons in subsequent 
hidden layers, each hidden layer tends to learn the true nature 
of the data. So, by using multiple hidden layers in auto-
encoder framework, more abstract features can be extracted, 
and better reconstruction of data can be achieved without any 
dependency on domain knowledge. 

In this research, an autoencoder based semi-supervised 
anomaly detection approach is used to detect anomalies in 
turbofan engines. As explained earlier, the main advantage of 
using autoencoders for anomaly detection is that they require 
only normal data for training and their performance is also not 
dependent on any user defined parameters (e.g., kernel type). 

The rest of the paper is organized as follows. In section II, 
adopted methodology is explained in detail. Dataset used in 
this research is explained in section III. Section IV contains 
the implementation details and results. Conclusion of this 

research is presented in section V. 

II. METHODOLOGY 

As stated earlier that an autoencoder based anomaly 
detection approach is used in this research. A detailed 
explanation of the adopted methodology is given in this 
section. 

A. Autoencoders 

Autoencoder is an artificial neural network, which is 
trained to learn the reconstruction of input signal. Internally, 
an autoencoder consists of two parts: encoder and decoder. 

First of all, input signal x  is mapped to a hidden 

representation y  through an encoding function f(x). 
This hidden representation y is also known as the code of 
autoencoder. Here d and d

0 
represents the dimensions of x and 

y respectively. Hidden representation y or code is then 

mapped back to reconstruction z  through decoding 
function g(y). The dimension of reconstruction z is same as of 
x. Here z should be considered as prediction of x by an 
autoencoder having code y. This structure of autoencoder is 
presented in Fig. 1. 

Mathematical expressions of encoder and decoder 
functions are presented in in Eq. (1) and Eq. (2), respectively. 

y = f(x) = σ(Wxyx + bxy)             (1) 

y = g(y) = σ(Wyzy + byz)             (2) 

Here W represents the weight, b represents the bias and 
represents the nonlinear activation function of neural network. 
Learning process of an autoencoder involves the minimization 
of loss between x and g(f(x)). Loss function used in this 
research is the mean squared error (MSE). This loss function L 
is presented in Eq. (3). 

 (   ( ( )))  
 

 
∑ (     ( (  )))

  

   
          (3) 

where n represents total number of training examples. 

An autoencoder which learns to perfectly reconstruct x 
everywhere (for all values of x) is not generally useful. 
Therefore, autoencoders are generally designed in such a way 
that they can perfectly reconstruct only those inputs which 
resemble to data in training set. One way to restrict perfect 
reconstruction everywhere is to constraint code y to have 
lower dimension than x. Type of autoencoder in which 
dimension of x is greater than the code y (i.e. d > d

0
) is known 

as undercomplete autoencoder [17]. In this research we have 
used an undercomplete autoencoder to build an anomaly 
detection model. 

In this paper, we have trained our autoencoder model on 
data representing normal behavior of system under 
consideration. A perfect autoencoder which is trained on 
normal data should be able to reconstruct only those inputs 
which are representative of normal behavior of system under 
consideration. Metric which is used to quantify the quality of 
reconstruction is reconstruction error. Reconstruction error 
can be measured in many ways. In this research we have used 
sum of squared error between x and z to measure the 
reconstruction error. This is presented in Eq. (4). 

reconstruction error (r)= ∑ (      )
  

   
           (4) 

where k represents the dimension of input signal. 
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Fig. 1. An Autoencoder Structure. 

An autoencoder which is trained on normal data should 
have a smaller reconstruction error on datapoints which are 
representative of normal behavior of the system and vice 
versa. Hence anomalies can be detected by simply using a 
threshold on reconstruction error. Data points having 
reconstruction error less than a certain threshold can be 
classified as normal, whereas data points having 
reconstruction error greater than a certain threshold can be 
classified as anomalies. This is presented in Eq. (5). 

{
            
           

             (5) 

where Th represents the threshold value. 

The performance of an autoencoder model is highly 
dependent on the choice of hyperparameters, such as the 
number of layers, number of neurons and activation function, 
etc. The approach adopted for hyperparameter tuning in this 
research is Bayesian optimization, which is explained in the 
following section. 

B. Hyperparameter Tuning using Bayesian Optimization 

The aim of the hyperparameter tuning task is to find the set 
of hyperparameters, which gives the best performance (e.g., 
F1-score, R2-score, etc.) on the validation dataset for a 
specific model [18], [19]. 

For complex models like neural networks, manual tuning 
of these hyperparameters becomes intractable. There are some 
approaches like grid search and random search, which perform 
better than manual search in most of the cases. In the grid and 
random search, a search grid is being set up and the train-
predict-evaluate cycle is executed for a different set of 
hyperparameters in a loop. However, these approaches are 
inefficient in the sense that they do not consider the 
performance of previously chosen hyperparameters while 

choosing the next set of hyperparameters. Grid and random 
search will continue to search the whole search space while 
being uninformed about the past evaluations. As a result, an 
ample amount of time is usually spent on the evaluation of bad 
hyperparameters. 

In contrast to the grid and random search, the Bayesian 
approach for hyperparameter tuning considers past 
evaluations‟ results while choosing a new set of 
hyperparameters [20]. 

There are multiple approaches for Bayesian optimization 
in literature, differentiated based on the type of regression 
model and acquisition function they use. A probabilistic 
regression model is used to model the past evaluations by 
mapping hyperparameters to score on objective function. This 
regression model is also known as surrogate model in 
literature and is represented as p(s/h) [20]. Here s represents 
the score on objective function and h represents the set of 
hyperparameters. Whereas next set of hyperparameters (from 
domain) in each iteration is chosen by optimizing an 
acquisition function, which uses p(s/h) as a cheap surrogate of 
actual objective function. 

In this work, we have used Tree-Structured Parzen 
Estimator (TPE) to build the surrogate model of objective 
function. Tree-Structured Parzen Estimator builds the 
surrogate model by using Bayes rule. Instead of directly 
calculating p(s/h), it calculates p(h/s) first and then use Bayes 
rule as in Eq. (6). 

 (
 

 
)  
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)  ( )
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where p(h/s) is probability of hyperparameter given the 
score and is expressed as in Eq. (7). 
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In Eq. (7), hyperparameters are divided into two 
distributions: l(h) and g(h). l(h) contains all those set of 
hyperparameters for which score(s) of objective function is 
less than a certain threshold s , whereas g(h) contains all those 
set of hyperparameters, for which score(s) of objective 
function is greater than a certain threshold s . Acquisition 
function used in this research is Expected improvement (EI). 
The main task of the acquisition function is to find best set of 
hyperparameters based on surrogate model p(s/h). 
Mathematical expression of Expected Improvement (EI) is 
given in Eq. (8). 

    ( )   ∫ (    ) (   )  
  

  
            (8) 

III. CASE STUDY 

In this work, we picked up a case study of anomaly 
detection in a simulated dataset of a turbofan engine [21]. The 
first principle model required to generate the data is built 
using a tool known as Commercial Modular Aero-Propulsion 
System Simulation (C-MAPSS). 

C-MAPSS allows users to simulate various operational 
settings, environmental conditions, and control settings by 
varying various input parameters. In the chosen dataset, there 
is run-to-failure data of 249 engines simulated under six 
different operational settings. Some manufacturing variations 
and different initial degree of wear are being introduced in all 
249 engines in order to make the scenario more real. Initial 
wear in engines is being introduced by varying efficiencies of 
various modules. In all the engines, a fault is introduced due to 
either of two failure modes: High Pressure Compressor (HPC) 
Degradation and Fan Degradation. At the start of each time 
series, the engine is running in a normal state and fault is 
introduced at some point in time, which then leads to engine 
failure in the future. 

The Health state of each engine is measured by a set of 21 
sensors installed on different modules of the engine. A list of 
all sensors is presented in Table I. In addition to these 21 
sensor tags, three additional parameters are recorded to 
represent different operating states of the engine. A list of 
operational parameters is presented in Table II. The values of 
all these sensors and operational parameters are recorded at a 
frequency of one reading per engine cycle. 

For semi-supervised anomaly detection, we are required to 
train our machine learning model on data representing the 
normal behavior of the system under consideration. As 
explained earlier, at the start of each time series, all engines 
are operating in a normal state, therefore in this work, the first 
60 percent data of each time-series is considered as 
representative of the normal behavior of engines. The 
threshold of 60 percent is decided based on visual analysis of 
trends. Out of 249 engines, the first 60 percent data of 220 
randomly chosen engines is used for training. Data of 20 
engines is used as validation data (for hyperparameter tuning), 
and data of the remaining 19 engines is used for testing the 
performance of the trained model. 

TABLE I. SENSORS NAMES AND THEIR UNITS 

Sensor  Description Unit of Measure 

T2 Fan inlet temperature Rankine (°R) 

T24 
Low Pressure Compressor (LPC) 

outlet temperature  
Rankine (°R) 

T30 HPC outlet temperature Rankine (°R) 

T50 
Low Pressure Turbine (LPT) 

outlet temperature 
Rankine (°R) 

P2 Fan inlet pressure 
Pounds Per Square Inch 
Absolute (PSIA) 

P15 Bypass-duct pressure 
Pounds Per Square Inch 

Absolute (PSIA) 

P30 HPC outlet pressure 
Pounds Per Square Inch 

Absolute (PSIA) 

Nf Fan speed 
Revolution Per Minute 

(rpm) 

Nc Core speed 
Revolution Per Minute 

(rpm) 

Epr Engine Pressure Ratio Nil  

Ps30 HPC outlet static pressure 
Pounds Per Square Inch 

Absolute (PSIA) 

Phi Fuel flow ratio to Ps30 pps/psi 

NRF fan corrected speed 
Revolution Per Minute 

(rpm) 

NRc Core corrected speed 
Revolution Per Minute 
(rpm) 

BPR Bypass ratio Nil 

farB Fuel-air ratio of burner Nil 

htBleed Bleed enthalpy Nil 

TABLE II. OPERATIONAL PARAMETERS 

Operational Parameter Description 

Tr Throttle Resolver Angle (TRA) 

Al Altitude 

MN Match Number 

IV. IMPLEMENTATION 

As detailed earlier, in this work, we have used semi-
supervised autoencoders for detecting anomalies in turbofan 
engines. The overall approach can be divided into two phases: 
training and testing. In the training phase, training data 
representing the normal behavior of the engines is used to 
train the optimal autoencoder model. The effect of the removal 
of redundant features on model performance is evaluated 
using Pearson‟s correlation. If multiple features are found 
correlated with each other, only one is used in model 
training/testing. Features selected through this approach are 
listed in Table III. In this research, the results of both 
approaches (with and without redundant features removal) are 
presented. 

The optimal architecture of autoencoder for given training 
data is discovered using the Bayesian optimization-based 
hyperparameter tuning approach. Search ranges of all the 
hyperparameters which are tuned using Bayesian optimization 
are given in Table IV. These search ranges are the same for 
both approaches (with and without redundant features 
removal). The final set of hyperparameters discovered by 
Bayesian hyperparameter tuning for both approaches is 
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presented in Table V. After figuring out the optimal 
architecture of the autoencoder; the following task is to train 
the autoencoder on normal training data. This is achieved 
using the backpropagation algorithm [22, 23]. 

TABLE III. FEATURES SELECTED AS RESULT OF REDUNDANT FEATURE 

REMOVAL 

Feature Name Feature Type 

Throttle Resolver Angle Operational Parameter 

Altitude Operational Parameter 

Fan inlet temperature Sensor 

Engine Pressure Ratio Sensor 

HPC outlet static pressure Sensor 

Bypass ratio Sensor 

TABLE IV. HYPERPARAMETERS SEARCH RANGE FOR AUTOENCODER 

Hyperparameter Range 

Number of Epochs 1-127 

Batch Size 1-256 

Number of Layers  [3, 5, 7, 9, 11] 

Activation Function Sigmoid, Softmax, Tanh, ReLU 

Optimizer Adam, Adadelta, RMS, SGD 

TABLE V. FINAL HYPERPARAMETER SET 

Hyperparameter 
Without Feature 

Removal 

With Feature 

Removal 

Number of Epochs 64 22 

Batch Size 148 10 

Number of Layers  5 3 

Number of Neurons per 
Layer 

[24, 12, 8, 12, 24] [6,3,6] 

Optimizer Adam RMSprop 

Once autoencoder is trained, next task is to compute the 
threshold value which is required for detection of anomalies 
during testing phase. For threshold calculation, all training 
samples (which are representative of normal behavior of the 
system) are scored through trained autoencoder model. For all 
scored samples, reconstruction error is computed and 98

th 

percentile of reconstruction error is selected as the threshold 
value for anomaly detection. Threshold value is a tunable 
parameter and 98

th 
percentile of reconstruction error is 

selected based on trial and error on validation dataset. Trained 
autoencoder model and calculated threshold value is then used 
to detect anomalies in testing phase. 

V. RESULTS 

Performance of trained model is evaluated on test dataset 
consisting of run-to-failure data of 19 turbofan engines. As 
anomaly detection problem can be framed as a classification 
problem, therefore performance evaluation metrics used in this 
research are F1-score, Precision and Recall. For computing 
these metrics, true labels for each testing sample are required. 
This is achieved by assigning label „Normal‟ to first 60% data 
and label „Anomalous‟ to last 5% data of all testing (19) 
datasets. Reconstruction errors on two randomly chosen test 
examples for both the approaches are shown in Fig. 2 and 
Fig. 3. It is evident from both the Fig. 2 and Fig. 3 that 
reconstruction error increases as engine approaches failure 
(for both approaches). Threshold value computed by selecting 
98

th 
percentile of reconstruction error on training set is also 

shown in the form of red horizontal line in following figures. 

Results in Fig. 2 and Fig. 3 have shown that the best 
performance is achieved when no feature removal is applied. 
These results are also verified by F1-score computed on the 
test dataset for both the approaches. F1-score of approach 
without feature removal is 0.892 and for approach with 
redundant feature removal, F1-score is 0.813. These results 
are also presented in Table VI. 

 
(a) Evolution of Reconstruction Error (without Redundant Features Removal). 
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(b) Evolution of Reconstruction Error (with Redundant Features Removal) 

Fig. 2. Evolution of Reconstruction Error for Engine # 235. 

 
(a) Evolution of Reconstruction Error (without Redundant Features Removal) 

 
(b) Evolution of Reconstruction Error (with Redundant Features Removal) 

Fig. 3. Evolution of Reconstruction Error for Engine # 239. 
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TABLE VI. MODEL PERFORMANCE 

 
With Redundant Feature 

Removal 

Without Redundant 

Feature Removal 

F1-Score 0.813 0.892 

Precision 0.704 0.896 

Recall 0.611 0.724 

VI. CONCLUSION 

This paper proposed a semi-supervised autoencoder based 
anomaly detection approach to detect anomalies in turbofan 
engines. In the training phase, the autoencoder model is 
trained on data representing the normal behavior of turbofan 
engines. For tuning the architecture and hyperparameters of 
the autoencoder model, a Bayesian optimizing based approach 
was used. To study the effect of redundant features removal, 
two approaches are implemented and tested: with and without 
redundant features removal. For the removal of redundant 
features, Pearson‟s correlation was used to find a correlated 
set of features and one feature per set was used in training and 
testing. Performance evaluation metrics used in this research 
are F1-score, precision, and recall. Results have shown that 
the best performance is achieved when no redundant feature 
removal is applied. Our proposed approach has achieved 
F1score of 0.892, precision of 0.896 and recall of 0.724. This 
performance shows that autoencoders with optimal 
architecture can be a useful algorithm for the detection of 
anomalies in several real-world systems. 
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