
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

41 | P a g e

www.ijacsa.thesai.org

Autoencoder based Semi-Supervised

Anomaly Detection in Turbofan Engines

Ali Al Bataineh
1
, Aakif Mairaj

2
, Devinder Kaur

3

EECS Department, College of Engineering

University of Toledo, Toledo

OH, 43606

Abstract—This paper proposes a semi-supervised

autoencoder based approach for the detection of anomalies in

turbofan engines. Data used in this research is generated through

simulation of turbofan engines created using a tool known as

Commercial Modular Aero-Propulsion System Simulation

(CMAPSS). C-MAPSS allows users to simulate various

operational settings, environmental conditions, and control

settings by varying various input parameters. Optimal

architecture of autoencoder is discovered using Bayesian

hyperparameter tuning approach. Autoencoder model with

optimal architecture is trained on data representing normal

behavior of turbofan engines included in training set.

Performance of trained model is then tested on data of engines

included in test set. To study the effect of redundant features

removal on performance, two approaches are implemented and

tested: with and without redundant features removal.

Performance of proposed models is evaluated using various

performance evaluation metrics like F1-score, Precision and

Recall. Results have shown that best performance is achieved

when autoencoder model is used without redundant feature

removal.

Keywords—Anomaly detection; autoencoder; bayesian

hyperparameter tuning; turbofan engine

I. INTRODUCTION

Anomaly detection refers to identification of those
situations, which do not conform to pre-defined normal
behavior of the system under consideration. Timely detection
of such anomalies in machinery has many applications, which
include reduced downtime, reduced maintenance cost and less
safety hazards. Increasing focus on reliability and maintenance
of complex systems like turbofan engines demands intelligent
and autonomous ways to manage the health of these safety
critical systems [1]. One such way is to deploy autonomous
anomaly detection to monitor the health of turbofan engines.
Timely detection of anomalies in turbofan engines can enable
its operators to take corrective actions timely and prevent
catastrophic failures.

In recent years, there is an increasing interest in data
driven anomaly detection techniques. Based on nature of
available dataset, data driven anomaly detection techniques
are classified into three types: supervised, unsupervised, and
semi supervised [2].

Supervised anomaly detection techniques require true
labels for all training instances: normal as well as anomalous.

Bayesian networks in supervised setup are used for intrusion
detection in [3].

Researchers have also used multilayer perceptron (MLP)
for detection of normal and attack connections [4]. In addition
to detection of attack connections, MLP based approach also
helps to identify type of attacks. Researchers have also used
support vector machines (SVM) and decision trees for
detection of anomalies in various applications [5], [6]. One of
the biggest challenges in supervised anomaly detection
approaches is non availability of representative labels,
especially for anomalous class [7]. Another issue is that
anomalous class has far fewer instances than normal class
instances. This issue of imbalance class distribution is
addressed in [8].

Unsupervised anomaly detection algorithms do not require
true labels of data instances for training. Basic assumption for
these algorithms is that only small percentage of data belongs
to anomalous class. Unsupervised anomaly detection
approaches classify infrequent data instances as anomalous
[2]. K-means clustering based sliding window approach is
used to detect anomalies in discrete manufacturing process by
[9].

Another clustering algorithm called Fuzzy C-Means
(FCM) is also used by researchers for unsupervised anomaly
detection [10]. In FCM, one data instance can belong to more
than one clusters.

Some researchers have also used expectation maximization
(EM) meta algorithm for unsupervised anomaly detection
[11]. EM is again a soft clustering technique which maximizes
the value of certain parameter in a probabilistic model. One of
the biggest issues with these clustering-based anomaly
detection techniques is high false positive rate.

In [12], different clustering algorithms were used for
intrusion detection and it was observed that false positive rate
was more than 20%. Such high false positive rate makes
clustering based anomaly detection techniques unviable for
some of the real-world problems [12].

Another challenge in unsupervised anomaly detection
techniques is the assumption that only small proportion of data
represents the anomalous class. In situations where this
assumption is not true, these unsupervised anomaly detection
approaches may suffer from bad performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

42 | P a g e

www.ijacsa.thesai.org

Semi-supervised anomaly detection approaches require
that true labels should be available for only those data
instances which represent the normal behavior of system
under consideration. As these semi-supervised approaches do
not require the labels for anomalous data instances, therefore
these approaches are widely applicable in practice as
compared to supervised anomaly detection approaches.

In [13], a kernel principal component analysis (PCA)
based approach is used to deploy semi-supervised anomaly
detection on a spacecraft. This approach first projects original
data on to a lower dimensional space and then reconstructs it
from that lower dimensional space. This reconstructed data
from lower dimensional space is supposed to represent the
true nature of data (independent of noise). The reconstruction
error between original data and reconstructed data is then used
to detect anomalies. However, the performance of this
approach is highly dependent upon type and hyperparameters
(e.g., degree in case of polynomial kernel) of kernel chosen. In
some cases, choice of kernel requires domain knowledge,
which is not easily available in all the cases.

In [14], researchers have proposed a semi-supervised
support vector machines (S3VMs) for detection of anomalies
in complex systems. It has been observed that semi supervised
SVMs give high false positive rate when tuned and trained in
a semi-supervised setup [15]. In addition to this, curse of
dimensionality is also an issue when these SVMs are used
with high dimensional data. In recent years, there is an
increasing interest in use of artificial neural networks for
various applications. Autoencoder is also a type of neural
network, which is designed to learn reconstruction of input
data [16].

Unlike PCA based approaches, autoencoders perform
hierarchical dimensionality reduction by stacking up multiple
hidden layers. By reducing number of neurons in subsequent
hidden layers, each hidden layer tends to learn the true nature
of the data. So, by using multiple hidden layers in auto-
encoder framework, more abstract features can be extracted,
and better reconstruction of data can be achieved without any
dependency on domain knowledge.

In this research, an autoencoder based semi-supervised
anomaly detection approach is used to detect anomalies in
turbofan engines. As explained earlier, the main advantage of
using autoencoders for anomaly detection is that they require
only normal data for training and their performance is also not
dependent on any user defined parameters (e.g., kernel type).

The rest of the paper is organized as follows. In section II,
adopted methodology is explained in detail. Dataset used in
this research is explained in section III. Section IV contains
the implementation details and results. Conclusion of this

research is presented in section V.

II. METHODOLOGY

As stated earlier that an autoencoder based anomaly
detection approach is used in this research. A detailed
explanation of the adopted methodology is given in this
section.

A. Autoencoders

Autoencoder is an artificial neural network, which is
trained to learn the reconstruction of input signal. Internally,
an autoencoder consists of two parts: encoder and decoder.

First of all, input signal x is mapped to a hidden

representation y through an encoding function f(x).
This hidden representation y is also known as the code of
autoencoder. Here d and d

0
represents the dimensions of x and

y respectively. Hidden representation y or code is then

mapped back to reconstruction z through decoding
function g(y). The dimension of reconstruction z is same as of
x. Here z should be considered as prediction of x by an
autoencoder having code y. This structure of autoencoder is
presented in Fig. 1.

Mathematical expressions of encoder and decoder
functions are presented in in Eq. (1) and Eq. (2), respectively.

y = f(x) = σ(Wxyx + bxy) (1)

y = g(y) = σ(Wyzy + byz) (2)

Here W represents the weight, b represents the bias and
represents the nonlinear activation function of neural network.
Learning process of an autoencoder involves the minimization
of loss between x and g(f(x)). Loss function used in this
research is the mean squared error (MSE). This loss function L
is presented in Eq. (3).

 ((()))

∑ ((()))

 (3)

where n represents total number of training examples.

An autoencoder which learns to perfectly reconstruct x
everywhere (for all values of x) is not generally useful.
Therefore, autoencoders are generally designed in such a way
that they can perfectly reconstruct only those inputs which
resemble to data in training set. One way to restrict perfect
reconstruction everywhere is to constraint code y to have
lower dimension than x. Type of autoencoder in which
dimension of x is greater than the code y (i.e. d > d

0
) is known

as undercomplete autoencoder [17]. In this research we have
used an undercomplete autoencoder to build an anomaly
detection model.

In this paper, we have trained our autoencoder model on
data representing normal behavior of system under
consideration. A perfect autoencoder which is trained on
normal data should be able to reconstruct only those inputs
which are representative of normal behavior of system under
consideration. Metric which is used to quantify the quality of
reconstruction is reconstruction error. Reconstruction error
can be measured in many ways. In this research we have used
sum of squared error between x and z to measure the
reconstruction error. This is presented in Eq. (4).

reconstruction error (r)= ∑ ()

 (4)

where k represents the dimension of input signal.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

43 | P a g e

www.ijacsa.thesai.org

Fig. 1. An Autoencoder Structure.

An autoencoder which is trained on normal data should
have a smaller reconstruction error on datapoints which are
representative of normal behavior of the system and vice
versa. Hence anomalies can be detected by simply using a
threshold on reconstruction error. Data points having
reconstruction error less than a certain threshold can be
classified as normal, whereas data points having
reconstruction error greater than a certain threshold can be
classified as anomalies. This is presented in Eq. (5).

{

 (5)

where Th represents the threshold value.

The performance of an autoencoder model is highly
dependent on the choice of hyperparameters, such as the
number of layers, number of neurons and activation function,
etc. The approach adopted for hyperparameter tuning in this
research is Bayesian optimization, which is explained in the
following section.

B. Hyperparameter Tuning using Bayesian Optimization

The aim of the hyperparameter tuning task is to find the set
of hyperparameters, which gives the best performance (e.g.,
F1-score, R2-score, etc.) on the validation dataset for a
specific model [18], [19].

For complex models like neural networks, manual tuning
of these hyperparameters becomes intractable. There are some
approaches like grid search and random search, which perform
better than manual search in most of the cases. In the grid and
random search, a search grid is being set up and the train-
predict-evaluate cycle is executed for a different set of
hyperparameters in a loop. However, these approaches are
inefficient in the sense that they do not consider the
performance of previously chosen hyperparameters while

choosing the next set of hyperparameters. Grid and random
search will continue to search the whole search space while
being uninformed about the past evaluations. As a result, an
ample amount of time is usually spent on the evaluation of bad
hyperparameters.

In contrast to the grid and random search, the Bayesian
approach for hyperparameter tuning considers past
evaluations‟ results while choosing a new set of
hyperparameters [20].

There are multiple approaches for Bayesian optimization
in literature, differentiated based on the type of regression
model and acquisition function they use. A probabilistic
regression model is used to model the past evaluations by
mapping hyperparameters to score on objective function. This
regression model is also known as surrogate model in
literature and is represented as p(s/h) [20]. Here s represents
the score on objective function and h represents the set of
hyperparameters. Whereas next set of hyperparameters (from
domain) in each iteration is chosen by optimizing an
acquisition function, which uses p(s/h) as a cheap surrogate of
actual objective function.

In this work, we have used Tree-Structured Parzen
Estimator (TPE) to build the surrogate model of objective
function. Tree-Structured Parzen Estimator builds the
surrogate model by using Bayes rule. Instead of directly
calculating p(s/h), it calculates p(h/s) first and then use Bayes
rule as in Eq. (6).

 (

)

 (

) ()

 ()
 (6)

where p(h/s) is probability of hyperparameter given the
score and is expressed as in Eq. (7).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

44 | P a g e

www.ijacsa.thesai.org

 (

) {

 ()

 ()
 (7)

In Eq. (7), hyperparameters are divided into two
distributions: l(h) and g(h). l(h) contains all those set of
hyperparameters for which score(s) of objective function is
less than a certain threshold s , whereas g(h) contains all those
set of hyperparameters, for which score(s) of objective
function is greater than a certain threshold s . Acquisition
function used in this research is Expected improvement (EI).
The main task of the acquisition function is to find best set of
hyperparameters based on surrogate model p(s/h).
Mathematical expression of Expected Improvement (EI) is
given in Eq. (8).

 () ∫ () ()

 (8)

III. CASE STUDY

In this work, we picked up a case study of anomaly
detection in a simulated dataset of a turbofan engine [21]. The
first principle model required to generate the data is built
using a tool known as Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS).

C-MAPSS allows users to simulate various operational
settings, environmental conditions, and control settings by
varying various input parameters. In the chosen dataset, there
is run-to-failure data of 249 engines simulated under six
different operational settings. Some manufacturing variations
and different initial degree of wear are being introduced in all
249 engines in order to make the scenario more real. Initial
wear in engines is being introduced by varying efficiencies of
various modules. In all the engines, a fault is introduced due to
either of two failure modes: High Pressure Compressor (HPC)
Degradation and Fan Degradation. At the start of each time
series, the engine is running in a normal state and fault is
introduced at some point in time, which then leads to engine
failure in the future.

The Health state of each engine is measured by a set of 21
sensors installed on different modules of the engine. A list of
all sensors is presented in Table I. In addition to these 21
sensor tags, three additional parameters are recorded to
represent different operating states of the engine. A list of
operational parameters is presented in Table II. The values of
all these sensors and operational parameters are recorded at a
frequency of one reading per engine cycle.

For semi-supervised anomaly detection, we are required to
train our machine learning model on data representing the
normal behavior of the system under consideration. As
explained earlier, at the start of each time series, all engines
are operating in a normal state, therefore in this work, the first
60 percent data of each time-series is considered as
representative of the normal behavior of engines. The
threshold of 60 percent is decided based on visual analysis of
trends. Out of 249 engines, the first 60 percent data of 220
randomly chosen engines is used for training. Data of 20
engines is used as validation data (for hyperparameter tuning),
and data of the remaining 19 engines is used for testing the
performance of the trained model.

TABLE I. SENSORS NAMES AND THEIR UNITS

Sensor Description Unit of Measure

T2 Fan inlet temperature Rankine (°R)

T24
Low Pressure Compressor (LPC)

outlet temperature
Rankine (°R)

T30 HPC outlet temperature Rankine (°R)

T50
Low Pressure Turbine (LPT)

outlet temperature
Rankine (°R)

P2 Fan inlet pressure
Pounds Per Square Inch
Absolute (PSIA)

P15 Bypass-duct pressure
Pounds Per Square Inch

Absolute (PSIA)

P30 HPC outlet pressure
Pounds Per Square Inch

Absolute (PSIA)

Nf Fan speed
Revolution Per Minute

(rpm)

Nc Core speed
Revolution Per Minute

(rpm)

Epr Engine Pressure Ratio Nil

Ps30 HPC outlet static pressure
Pounds Per Square Inch

Absolute (PSIA)

Phi Fuel flow ratio to Ps30 pps/psi

NRF fan corrected speed
Revolution Per Minute

(rpm)

NRc Core corrected speed
Revolution Per Minute
(rpm)

BPR Bypass ratio Nil

farB Fuel-air ratio of burner Nil

htBleed Bleed enthalpy Nil

TABLE II. OPERATIONAL PARAMETERS

Operational Parameter Description

Tr Throttle Resolver Angle (TRA)

Al Altitude

MN Match Number

IV. IMPLEMENTATION

As detailed earlier, in this work, we have used semi-
supervised autoencoders for detecting anomalies in turbofan
engines. The overall approach can be divided into two phases:
training and testing. In the training phase, training data
representing the normal behavior of the engines is used to
train the optimal autoencoder model. The effect of the removal
of redundant features on model performance is evaluated
using Pearson‟s correlation. If multiple features are found
correlated with each other, only one is used in model
training/testing. Features selected through this approach are
listed in Table III. In this research, the results of both
approaches (with and without redundant features removal) are
presented.

The optimal architecture of autoencoder for given training
data is discovered using the Bayesian optimization-based
hyperparameter tuning approach. Search ranges of all the
hyperparameters which are tuned using Bayesian optimization
are given in Table IV. These search ranges are the same for
both approaches (with and without redundant features
removal). The final set of hyperparameters discovered by
Bayesian hyperparameter tuning for both approaches is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

45 | P a g e

www.ijacsa.thesai.org

presented in Table V. After figuring out the optimal
architecture of the autoencoder; the following task is to train
the autoencoder on normal training data. This is achieved
using the backpropagation algorithm [22, 23].

TABLE III. FEATURES SELECTED AS RESULT OF REDUNDANT FEATURE

REMOVAL

Feature Name Feature Type

Throttle Resolver Angle Operational Parameter

Altitude Operational Parameter

Fan inlet temperature Sensor

Engine Pressure Ratio Sensor

HPC outlet static pressure Sensor

Bypass ratio Sensor

TABLE IV. HYPERPARAMETERS SEARCH RANGE FOR AUTOENCODER

Hyperparameter Range

Number of Epochs 1-127

Batch Size 1-256

Number of Layers [3, 5, 7, 9, 11]

Activation Function Sigmoid, Softmax, Tanh, ReLU

Optimizer Adam, Adadelta, RMS, SGD

TABLE V. FINAL HYPERPARAMETER SET

Hyperparameter
Without Feature

Removal

With Feature

Removal

Number of Epochs 64 22

Batch Size 148 10

Number of Layers 5 3

Number of Neurons per
Layer

[24, 12, 8, 12, 24] [6,3,6]

Optimizer Adam RMSprop

Once autoencoder is trained, next task is to compute the
threshold value which is required for detection of anomalies
during testing phase. For threshold calculation, all training
samples (which are representative of normal behavior of the
system) are scored through trained autoencoder model. For all
scored samples, reconstruction error is computed and 98

th

percentile of reconstruction error is selected as the threshold
value for anomaly detection. Threshold value is a tunable
parameter and 98

th
percentile of reconstruction error is

selected based on trial and error on validation dataset. Trained
autoencoder model and calculated threshold value is then used
to detect anomalies in testing phase.

V. RESULTS

Performance of trained model is evaluated on test dataset
consisting of run-to-failure data of 19 turbofan engines. As
anomaly detection problem can be framed as a classification
problem, therefore performance evaluation metrics used in this
research are F1-score, Precision and Recall. For computing
these metrics, true labels for each testing sample are required.
This is achieved by assigning label „Normal‟ to first 60% data
and label „Anomalous‟ to last 5% data of all testing (19)
datasets. Reconstruction errors on two randomly chosen test
examples for both the approaches are shown in Fig. 2 and
Fig. 3. It is evident from both the Fig. 2 and Fig. 3 that
reconstruction error increases as engine approaches failure
(for both approaches). Threshold value computed by selecting
98

th
percentile of reconstruction error on training set is also

shown in the form of red horizontal line in following figures.

Results in Fig. 2 and Fig. 3 have shown that the best
performance is achieved when no feature removal is applied.
These results are also verified by F1-score computed on the
test dataset for both the approaches. F1-score of approach
without feature removal is 0.892 and for approach with
redundant feature removal, F1-score is 0.813. These results
are also presented in Table VI.

(a) Evolution of Reconstruction Error (without Redundant Features Removal).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

46 | P a g e

www.ijacsa.thesai.org

(b) Evolution of Reconstruction Error (with Redundant Features Removal)

Fig. 2. Evolution of Reconstruction Error for Engine # 235.

(a) Evolution of Reconstruction Error (without Redundant Features Removal)

(b) Evolution of Reconstruction Error (with Redundant Features Removal)

Fig. 3. Evolution of Reconstruction Error for Engine # 239.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

47 | P a g e

www.ijacsa.thesai.org

TABLE VI. MODEL PERFORMANCE

With Redundant Feature

Removal

Without Redundant

Feature Removal

F1-Score 0.813 0.892

Precision 0.704 0.896

Recall 0.611 0.724

VI. CONCLUSION

This paper proposed a semi-supervised autoencoder based
anomaly detection approach to detect anomalies in turbofan
engines. In the training phase, the autoencoder model is
trained on data representing the normal behavior of turbofan
engines. For tuning the architecture and hyperparameters of
the autoencoder model, a Bayesian optimizing based approach
was used. To study the effect of redundant features removal,
two approaches are implemented and tested: with and without
redundant features removal. For the removal of redundant
features, Pearson‟s correlation was used to find a correlated
set of features and one feature per set was used in training and
testing. Performance evaluation metrics used in this research
are F1-score, precision, and recall. Results have shown that
the best performance is achieved when no redundant feature
removal is applied. Our proposed approach has achieved
F1score of 0.892, precision of 0.896 and recall of 0.724. This
performance shows that autoencoders with optimal
architecture can be a useful algorithm for the detection of
anomalies in several real-world systems.

 REFERENCES

[1] R. Mohammadi, E. Naderi, K. Khorasani, and S. Hashtrudi-Zad, “Fault
diagnosis of gas turbine engines by using dynamic neural networks,” in
Turbo Expo: Power for Land, Sea, and Air, vol. 43987, 2010, pp. 365–
376.

[2] R. Kandhari, V. Chandola, A. Banerjee, V. Kumar, and R. Kandhari,
“Anomaly detection,” ACM Comput. Surv, vol. 41, no. 3, pp. 1–6, 2009.

[3] P. G. Bringas and I. Santos, “Bayesian networks for network intrusion
detection,” Bayessian Network, editace A. Rebai, InTech, pp. 229–244,
2010.

[4] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal
representation by error propagation, parallel distributed processing,”
MIT Press, Cambridge, 1986.

[5] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas, “Modeling
intrusion detection system using hybrid intelligent systems,” Journal of
network and computer applications, vol. 30, no. 1, pp. 114–132, 2007.

[6] T.-J. Zhou, Y. Li, and J. Li, “Research on intrusion detection of svm
based on pso,” in 2009 International Conference on Machine Learning
and Cybernetics, vol. 2. IEEE, 2009, pp. 1205–1209.

[7] S. Omar and A. Ngadi, “H. jebur, h.(2013),” Machine Learning
Techniques for Anomaly Detection: An Overview. International Journal
of Computer Applications, vol. 79, no. 2, pp. 33–41.

[8] A. Fernandez, S. Garc´ ´ıa, M. Galar, R. C. Prati, B. Krawczyk, and F.
Herrera, “Foundations on imbalanced classification,” in Learning from
Imbalanced Data Sets. Springer, 2018, pp. 19–46.

[9] B. Lindemann, F. Fesenmayr, N. Jazdi, and M. Weyrich, “Anomaly
detection in discrete manufacturing using self-learning approaches,”
Procedia CIRP, vol. 79, pp. 313–318, 2019.

[10] J. Dunn, “A graph theoretic analysis of pattern classification via
tamura‟s fuzzy relation,” IEEE Transactions on Systems, Man, and
Cybernetics, no. 3, pp. 310–313, 1974.

[11] C. Liu, “Maximum likelihood estimation from incomplete data via
emtype algorithms,” in Advanced Medical Statistics. World Scientific,
2003, pp. 1051–1071.

[12] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering
approach for network anomaly detection,” in International conference on
networked digital technologies. Springer, 2012, pp. 135–145.

[13] R. Fujimaki, T. Yairi, and K. Machida, “An approach to spacecraft
anomaly detection problem using kernel feature space,” in Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, 2005, pp. 401–410.

[14] P. Montague and J. Kim, “An efficient semi-supervised svm for
anomaly detection,” in 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2017, pp. 2843–2850.

[15] F. J. Huang and Y. LeCun, “Large-scale learning with svm and
convolutional for generic object categorization,” in 2006 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR‟06), vol. 1. IEEE, 2006, pp. 284–291.

[16] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA
2014 2nd Workshop on Machine Learning for Sensory Data Analysis,
2014, pp. 4–11.

[17] A. R. Triki, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, “Encoder
based lifelong learning,” in ICCV, 2017.

[18] A. Al Bataineh and D. Kaur, “Optimal convolutional neural network
architecture design using clonal selection algorithm,” International
Journal of Machine Learning and Computing, vol. 9, no. 6, 2019.

[19] A. S. A. Bataineh, “A gradient boosting regression based approach for
energy consumption prediction in buildings,” Advances in Energy
Research, vol. 6, no. 2, pp. 91–101, 2019.

[20] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox,
“Hyperopt: a python library for model selection and hyperparameter
optimization,” Computational Science & Discovery, vol. 8, no. 1, p.
014008, 2015.

[21] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in 2008
international conference on prognostics and health management. IEEE,
2008, pp. 1–9.

[22] A. Al Bataineh and D. Kaur, “A comparative study of different curve
fitting algorithms in artificial neural network using housing dataset,” in
NAECON 2018-IEEE National Aerospace and Electronics Conference
.IEEE, 2018, pp. 174–178.

[23] A. Al Bataineh, “A comparative analysis of nonlinear machine learning
algorithms for breast cancer detection,” International Journal of Machine
Learning and Computing, vol. 9, no. 3, pp. 248–254, 2019.

