
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

538 | P a g e  
www.ijacsa.thesai.org 

Genetic Programming-Based Code Generation for 

Arduino 

Wildor Ferrel1 

Departamento Académico de Ingeniería Electrónica 

Universidad Nacional de San Agustín de Arequipa 

Arequipa, Perú 

Luis Alfaro2 

Departamento Académico de Ingeniería de Sistemas 

Universidad Nacional de San Agustín de Arequipa 

Arequipa, Perú 

 

 
Abstract—This article describes a methodology for writing 

the program for the Arduino board using an automatic generator 

of assembly language routines that works based on a cooperative 

coevolutionary multi-objective linear genetic programming 

algorithm. The methodology is described in an illustrative 

example that consists of the development of the program for a 

digital thermometer organized on a circuit formed by the 

Arduino Mega board, a text LCD module, and a temperature 

sensor. The automatic generation of a routine starts with an 

input-output table that can be created in a spreadsheet. The 

following routines have been automatically generated: 

initialization routine for the text LCD screen, routine for 

determining the temperature value, routine for converting 

natural binary code into unpacked two-digit BCD code, routine 

for displaying a symbol on the LCD screen. The application of 

this methodology requires basic knowledge of the assembly 

programming language for writing the main program and some 

initial configuration routines. With the application of this 

methodology in the illustrative example, 27% of the program 

lines were written manually, while the remaining 73% were 

generated automatically. The program, produced with the 

application of this methodology, preserves the advantage of 

assembly language programs of generating machine code much 

smaller than that generated by using the Arduino programming 
language. 

Keywords—Genetic programming; Arduino mega board; multi-

objective linear genetic programming; cooperative coevolutionary 

algorithm; automatic generation of programs; Arduino based 

thermometer 

I. INTRODUCTION 

Arduino is an open-source, free hardware, microcontroller-
based electronic board that has a series of analog and digital 
pins that can be used to connect sensors, peripheral devices, or 
actuators [1]. The program, which the user stores in the 
Arduino memory, allows this board to perform various 
functions such as controller functions, measurement 
instrument functions, communications equipment functions, 
etc. 

Due to their relatively easy-to-use hardware and software, 
Arduino boards, in addition to being applied to everyday 
tasks, are also being applied in scientific instruments such as 
the measurement of transendothelial/epithelial resistance [2], 
in the analysis of the production volume of breast milk [3], in 
the measurement of the methane content of biogas samples 
[4], etc., which means that there is significant interest from 

many users and researchers in the use of this free software 
platform. 

There are various Arduino boards such as Arduino Uno, 
Arduino Mega, Arduino Nano, Arduino Leonardo, Arduino 
Micro, etc. Because it is one of the fastest Arduino boards on 
the market [5] and due to the amount of digital and analog 
pins it has, in this work the Arduino Mega board is used, 
which is built based on the ATmega 2560 microcontroller 
with AVR architecture. The main features of the Arduino 
Mega 2560 are: it has 54 digital input/output pins, 16 analog 
inputs, 4 UARTs (serial ports in hardware), a 16 MHz crystal 
oscillator, a USB connection. 

Arduino board programming is done through free software 
that is now accessible On-Line: Arduino Web Editor [6]. To 
program this board, knowledge of the Arduino programming 
language is required, which is similar to C++ [7]. In our 
research work, a program development methodology is 
proposed for the Arduino Mega board based on program 
synthesis. Program synthesis aims to automatically produce a 
program from a specification called “user intent”. There are 
many ways to represent the specification, it can be a sketch 
[8], a sequence [9], or a table of input-output examples 
[10][11]. In our work, the starting point for the automatic 
generation of a program is an input-output table. 

The rest of this paper is organized as follows: Section II 
discusses the related work. In Section III, the theoretical 
foundations of the proposed methodology are summarized. In 
Section IV, the fitness evaluation algorithms are detailed. 
Section V describes the automatic generation of the illustrative 
example routines. In Section VI, the experimental work 
carried out is described. In Section VII, the conclusions and 
recommendations are presented. 

II. RELATED WORK 

In the classification of program synthesis techniques, 
genetic programming is within the group of stochastic search 
techniques [12]. There are efforts to use genetic programming 
in general-purpose synthesizers [13] and microcontroller 
program synthesizers. Genetic programming that evolves 
programs in an imperative language is called linear genetic 
programming. There are two types of linear genetic 
programming [14]: a machine code genetic programming, 
where each instruction is directly executable by the CPU, and 
an interpreted linear genetic programming. Due to the large 
difference in the clock frequency of the computer and the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

539 | P a g e  
www.ijacsa.thesai.org 

Arduino Mega microcontroller, we use interpreted linear 
genetic programming. 

Dias and Pacheco [15] proposed to apply linear genetic 
programming in the automatic synthesis of programs in 
assembly language for the PIC 18F452 microcontroller, 
showing as examples, the implementation of optimal time 
control strategies in two cases: in the cart-centering problem 
and in the problem of balancing an inverted pendulum in a 
minimum amount of time. The authors in [16] used linear 
genetic programming in the automatic synthesis of assembly 
program for the PIC 18F452 microcontroller for optimized 
control of a water bath plant. In both research works [15][16], 
a classical evolutionary algorithm is used, and two simulators 
for the fitness evaluation of an individual have been 
organized: a simulator of the microcontroller CPU; and, based 
on its dynamic equations, a simulator of the plant. 

Serruto and Casas [17] have proposed to apply linear 
genetic programming with multi-objective optimization for the 
automatic synthesis of programs for the AT89S52 
microcontroller of 8051 architecture. The generated programs 
are: 4x3 matrix keyboard scan program, initialization program 
of the text LCD screen, and a character display program on the 
LCD screen. For the first case, the authors have proposed the 
fitness evaluation based on an exhaustive search of the bits of 
the result, and for the last two cases, the fitness evaluation is 
carried out by comparing the timing diagrams produced by the 
genetic program with the target timing diagrams. Serruto and 
Casas in [18] improved the program generator by introducing 
the cooperative coevolutionary algorithm, which allowed 
generating the 4x4 matrix keyboard scanning program and the 
character display program with a better hit rate. To apply the 
cooperative coevolutionary algorithm, a machine code 
program is considered to be made up of program segments, 
and each segment corresponds to a species. To calculate the 
fitness of an individual (program segment) a complete 
program is formed with the individual and the representatives 
of the other species. 

In the proposed work, a methodology of programming of 
the Arduino Mega board using cooperative coevolutionary 
multi-objective linear genetic programming is described. The 
application of the methodology is shown in an illustrative 
example of developing the program for a digital thermometer 
circuit based on the Arduino Mega board. 

III. THEORETICAL FUNDAMENTALS 

A. Circuit with the Arduino Mega Board 

The program that will be developed using genetic 
programming will run on the Arduino Mega board, which will 
be part of a circuit that will also include other devices 
connected to the digital or analog pins of the board. This 
circuit is a system based on the ATmega 2560 microcontroller. 
In Fig. 1 we show an example of a circuit made up of the 
Arduino Mega board, a text LCD module connected to digital 
pins, and a temperature sensor connected to an analog pin. The 
details of the connection are given in Table I. The program 
that will be elaborated, following the proposed methodology, 
as an illustrative example, will allow the circuit of Fig. 1 to 
function as a thermometer. The concepts on which the 

proposed methodology is based are inductive programming, 
linear genetic programming, multi-objective optimization, and 
cooperative coevolution. Next, these concepts are formulated 
adapting them to the problem of the synthesis of programs for 
a microcontroller. 

B. Inductive Programming 

In the inductive programming method, the starting point is 
an input/output table [11], from which, the inductive 
programming technique allows generating a program that 
makes each input correspond to the output given in the table, 
and also extrapolates values for other inputs. An input-output 
table is used in some functions in everyday spreadsheets 
(Flash-Fill in Microsoft Excel), in which a string processing 
program is automatically generated, from one or more 
examples provided by the user [10]. In [19] a formulation of 
the problem for programming-by-example is shown: Given a 
set of M input-output examples (desired input-output table): 

(E0, 𝑆0), (E1, 𝑆1), … , (E𝑀−1, 𝑆𝑀−1) 

a P program must be found that performs all the 

transformations correctly: 

𝑃(E0) → 𝑆0;  𝑃(E1) → 𝑆1; … ;  𝑃(E𝑀−1) → 𝑆𝑀−1 

To find the P program, in the proposed work a multi-
objective cooperative coevolutionary linear genetic 
programming algorithm is used. 

 

Fig. 1. Circuit Example based on the Arduino Mega. 

TABLE I. CONNECTIONS IN THE CIRCUIT EXAMPLE BASED ON THE 

ARDUINO MEGA 

Device 

 

Device 

Line 

Arduino Mega 

Pin 

ATmega 2560 

Microcontroller Pin 

LM35 sensor Output A0 PF0/ADC0 

LM016L 

LCD Module 

RS 34 PC3/A11 

E 35 PC2/A10 

RW 36 PC1/A9 

D4 33 PC4/A12 

D5 32 PC5/A13 

D6 31 PC6/A14 

D7 30 PC7/A15 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

540 | P a g e  
www.ijacsa.thesai.org 

C. Linear Genetic Programming 

Linear genetic programming (LGP) is the branch of 
genetic programming that evolves sequences of instructions 
from an imperative programming language or machine 
language [20]. In the automatic generation of routines for 
Arduino Mega, a subset of the ATmega 2560 microcontroller 
instruction set is used [21][22]. For the generation of 
programs, which do not interact with the input/output ports, 
the instructions in Table II are used. When generating 
programs that produce timing diagrams on Port C, in addition 
to the instructions in Table II, the instructions in Table III 
must be used. If the timing diagrams are generated on another 
port, then in the instructions in Table III, the operand “PORT 
C” must be changed to the corresponding Port. 

TABLE II. INSTRUCTIONS USED IN THE SYNTHESIS OF PROGRAMS 

Instruction Instruction Instruction Instruction 

NOP AND R0,R20 INC R20 ASR R1 

ADD R0,R1 AND R1,R0 DEC R0 ASR R20 

ADD R0,R20 AND R1,R20 DEC R1 SWAP R0 

ADD R1,R0 AND R20,R0 DEC R20 SWAP R1 

ADD R1,R20 AND R20,R1 TST R0 SWAP R20 

ADD R20,R0 ANDI R20,K TST R1 BST R0,b 

ADD R20,R1 OR R0,R1 TST R20 BST R1,b 

ADC R0,R1 OR R0,R20 CLR R0 BST R20,b 

ADC R0,R20 OR R1,R0 CLR R1 BLD R0,b 

ADC R1,R0 OR R1,R20 CLR R20 BLD R1,b 

ADC R1,R20 OR R20,R0 SER R20 BLD R20,b 

ADC R20,R0 OR R20,R1 MUL R0,R1 SEC 

ADC R20,R1 ORI R20,K MUL R1,R20 CLC 

SUB R0,R1 EOR R0,R1 MUL R0,R20 SEN 

SUB R0,R20 EOR R0,R20 MULS R20,R20 CLN 

SUB R1,R0 EOR R1,R0 LSL R0 SET 

SUB R1,R20 EOR R1,R20 LSL R1 CLT 

SUB R20,R0 EOR R20,R0 LSL R20 SEH 

SUB R20,R1 EOR R20,R1 LSR R0 CLH 

SUBI R20,K COM R0 LSR R1 MOV R0,R1 

SBC R0,R1 COM R1 LSR R20 MOV R0,R20 

SBC R0,R20 COM R20 ROL R0 MOV R1,R0 

SBC R1,R0 NEG R0 ROL R1 MOV R1,R20 

SBC R1,R20 NEG R1 ROL R20 MOV R20,R0 

SBC R20,R0 NEG R20 ROR R0 MOV R20,R1 

SBC R20,R1 CBR R20,K ROR R1 LDI R20,K 

SBCI R20,K INC R0 ROR R20  

AND R0,R1 INC R1 ASR R0  

TABLE III. ADDITIONAL INSTRUCTIONS USED IN THE SYNTHESIS OF 

PROGRAMS 

Instruction 

OUT PORTC,R0 

OUT PORTC,R1 

OUT PORTC,R20 

SBI PORTC,b 

CBI PORTC,b 

D. ATmega 2560 Microcontroller used Registers 

In the microcontrollers of the AVR architecture [23], there 
are 32 general-purpose registers with names R0, R1, R2,…, 
R31. These registers are mapped to memory occupying the 
lowest 32 addresses. The working registers used in the 
evolutionary process, in genetic programs, are R0, R1, and 
R20. Register R20 has been included to use the instructions 
with immediate addressing ANDI, ORI, SUBI, LDI that only 
work with registers R16 to R31. In code conversion problems, 
at the completion stage of the program, K registers are used 
from register R5 to register R(K + 4), where K is the number 
of bits in the result. In the generation of programs that interact 
with an input-output Port, the PORT, DDR, and PIN registers 
of this Port are used. All genetic programs use the SREG 
register that stores the status of the program. 

E. Multi-Objective Evolutionary Optimization 

In this work, to find the program P, multi-objective 
optimization is used. For this purpose, we form K objective 
functions. In the generation of code conversion routines, each 
objective function corresponds to one bit of the objective 
code. In the generation of routines that produce timing 
diagrams in an input/output Port, each objective function 
corresponds to a pin of the Port. Next, we formulate the multi-
objective optimization problem, adapted to the synthesis 
problem of a microcontroller program, based on the 
formulation given in [24]: 

Maximize 

𝑓(𝑃) = (𝑓0(𝑃), 𝑓1(𝑃), … , 𝑓𝐾−1(𝑃) ) 

Subject to condition  

𝑃 ∈ 𝑈 

where 𝑃 = [𝐼0, 𝐼1, … , 𝐼𝑁−1] is a genetic program in 
machine language, 𝐼𝑖 is an instruction from Table II or Table 
III, U is the feasible set, 𝑓(𝑃) = (𝑓0(𝑃), 𝑓1(𝑃), … , 𝑓𝐾−1(𝑃) ) 
is the vector of objective functions. 

The target vector 𝑓(𝑃) indicates the degree of similarity of 
the input-output table, generated after running the genetic 
program P, and the desired input-output table. The multi-
objective genetic programming algorithm aims that the 
generated table is equal to the desired one. When this occurs, 
the objective functions have the highest value. Thus, in the 
microcontroller program synthesis problem, studied in this 
work, multi-objective optimization seeks to maximize the 
vector of objective functions. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

541 | P a g e  
www.ijacsa.thesai.org 

F. Multi-Objective Cooperative Coevolutionary Linear 

Genetic Programming Algorithm (MOCCLGPA) 

The automatic generation of a routine for Arduino is a 
complex problem, so in addition to multi-objective 
optimization, in the proposed work, a cooperative 
coevolutionary algorithm is used. Cooperative coevolutionary 
algorithms are based on decomposing the problem into 
subcomponents also called “species” that evolve in 
collaboration with each other [25]. 

To apply cooperative coevolution in program synthesis, a 
machine code program is considered to be made up of 
program segments, and each segment corresponds to a species. 
The calculation of the fitness of an individual of a species is 
carried out by previously forming a complete solution (genetic 
program) combining the individual (program segment) with 
the selected representatives of the other species as detailed in 
[18]. In the proposed work, the number of species is 10 and 
the representatives are the two best individuals of each 
species. The Multi-Objective Cooperative Coevolutionary 
Linear Genetic Programming Algorithm (MOCCLGPA) used 
in the proposed work is Algorithm 1 taken and modified from 
[18]. 

In Algorithm 1, each time the fitness of a genetic program 
is evaluated, the number of evaluations n is increased, the 
values of f, fsum, fop, and fopsum are determined, and the 
Pbest program is updated if a better one was found. The 
sorting of a list is done according to the value of the scalar 
fopsum. The insertion of an individual in a list is carried out 
using the vector fop and the concept of Pareto dominance. The 
algorithms for the selection of representatives, selection of 
parents, and variation are described in [18]. At the end of 
Algorithm 1, the synthesized Pbest program, after the 
completion operation, becomes the generated program. 

G. Structure of the Automatic Routine Generator 

The automatic routine generator consists of an 
evolutionary program synthesizer and a program completion 
block. In turn, the synthesizer is made up of the program that 
implements the MOCCLGPA algorithm and a simulator of the 
ATmega 2560 microcontroller CPU. The fitness evaluation, in 
the MOCCLGPA algorithm, and the completion of the 
program, is carried out according to the type of routine that is 
generated. 

IV. FITNESS EVALUATION 

A. Fitness Evaluation in the Conversion of One Code to 
Another 

Authors in [17] proposed to evaluate the fitness through an 
exhaustive search of each bit of the binary representation of 
the output. In the algorithm description, the output value 
corresponding to the E𝑗  input, expressed in binary, is 

represented. 

Algorithm 1.  Multi-objective cooperative coevolutionary linear 

genetic programming algorithm 

𝑆𝑡 is a species (program segment) (𝑡 = 0, … , 𝑇 − 1) 

Each species has two non-Pareto-dominated fronts 𝑃1𝑡 and 𝑃2𝑡 and 

two temporary lists 𝑄𝑡 and 𝐷𝑡 

Pbest is the best program found so far 
Nlimit is the limit number of evaluations 

1. for 𝑡 = 0 to 𝑇 − 1 do 

2.  Random generation of 𝑃1𝑡 and 𝑃2𝑡 

3.   Selection of representatives of 𝑆𝑡 

4. end for 

5. for 𝑡 = 0 to 𝑇 − 1 do 

6.  Fitness evaluation of each individual of 𝑃1𝑡 and 𝑃2𝑡 

7.   Sorting of 𝑃1𝑡 

8.   Sorting of 𝑃2𝑡 

9. end for 

10. while n < Nlimit do 

11.   for 𝑡 = 0 to 𝑇 − 1 do 

12.   Selection of representatives of 𝑆𝑡 

13.    𝑄𝑡 ← Parent selection (𝑃1𝑡 , 𝑃2𝑡) 

14.   𝑄𝑡 ← Variation (𝑄𝑡) 

15.  end for  

16.  for 𝑡 = 0 to 𝑇 − 1 do 

17.    Fitness evaluation of each individual of 𝑃1𝑡, 𝑃2𝑡 and 𝑄𝑡 

18.  end for 

19.  for 𝑡 = 0 to 𝑇 − 1 do 

20.    Insertion of the best from 𝑄𝑡 in 𝑃1𝑡 and those discarded 

 in 𝐷𝑡 

21.   Insertion of the best from 𝐷𝑡 in 𝑃2𝑡 

22.    Sorting of 𝑃1𝑡  

23.    Sorting of 𝑃2𝑡  

24.   end for 

25. end while 

as(𝑆𝑗
𝐾−1 , … 𝑆𝑗

𝑡 , … 𝑆𝑗
0).  In this way, each output bit 𝑆𝑡  is a 

combinational function. 

The algorithm uses the RVM register value matrix that 
contains the value of the three working registers R0, R1, and 
R20, at the end of each 𝐼𝑖 instruction of the P program, and for 
each value of the E𝑗  input, therefore, the matrix has three 

dimensions. Each element of the RVM matrix is a binary value 

that we represent 𝑅𝑉𝑀𝑖𝑗
𝑏  where the index i corresponds to the 

instruction number in the genetic program, j corresponds to 
the input E𝑗 in the input-output table, and b is the number of 
bit in the range 0 to 23 (bit numbers 0 to 7 correspond to 
register R0, 8 to 15 to R1, and 16 to 23 to R20). Algorithm 2 
describes the fitness evaluation of a genetic program in the 
generation of a code conversion program. 

For each combinational function 𝑆𝑡  corresponding to an 
output bit, with the following formula, the most similar 
combinational function is found in RVM matrix: 

𝑓 = (𝑓0, 𝑓1, … , 𝑓𝐾−1) ∀ 𝑡 = 0, … , 𝐾 − 1 

𝑓𝑡 = max
0 ≤ 𝑏 ≤ 23

0 ≤ 𝑖 ≤ 𝑁−1

∑ {𝑅𝑉𝑀𝑖𝑗
𝑏 ⊙ 𝑆𝑗

𝑡}𝑀−1
𝑗=0            (1) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

542 | P a g e  
www.ijacsa.thesai.org 

where the operator ⊙ represents the nor-exclusive 
operation. The result of this operation, which can be “0” or 
“1”, is then considered an integer value that participates in the 
arithmetic sum represented by the summation symbol. 

Algorithm 2.  Fitness evaluation of a genetic program of code 

conversion  

IOT is the input-output table with the outputs in binary 
representation: 

(E0, (𝑆0
𝐾−1 , … 𝑆0

𝑡 , … 𝑆0
0)), 

… 

(E𝑗, (𝑆𝑗
𝐾−1 , … 𝑆𝑗

𝑡 , … 𝑆𝑗
0)), 

… 

(E𝑀−1 , (𝑆𝑀−1
𝐾−1 , … 𝑆𝑀−1

𝑡 , … 𝑆𝑀−1
0 )), 

𝑓𝑚𝑎𝑥 = 𝐾 ∙ 𝑀 is the maximum value of fsum. 

𝑃 = [𝐼0 , 𝐼1 , … , 𝐼𝑖 , … , 𝐼𝑁−1] is the genetic program to evaluate.  

Pbest is the best program found so far of NEbest size with fitness 
fsumbest 

RVM is the array of register values 
1. Clear (RVM) 

2. for each E𝑗 of IOT do 

3.  SREG ← 80H  

4.  R0 ← E𝑗 

5.  R1 ← E𝑗  

6.  R20 ← E𝑗  

7.  for i = 0 to N-1 do 
8.   Execute (𝐼𝑖)  

9.    𝑅𝑉𝑀𝑖𝑗 ← (R20) (R1) (R0)  

10.   end for 
11.  end for 
12. Calculate f, fsum, BLM, NE, fop and fopsum using formulas (1), 

(2), (3), (4), (5) and (6) respectively 
13. if (fsum > fsumbest) or ((fsum = fmax) and (NE < NEbest)) then 
14.   Pbest ← P; NEbest ← NE; fsumbest ← fsum 

15. end if 
16. Return BLM, NE, fop, fopSum 

To find out if the maximum value has been reached, the 
sum of all the elements of fitness f is calculated: 

𝑓𝑠𝑢𝑚 = ∑ 𝑓𝑡𝐾−1
𝑡=0              (2) 

The best bit location for each element of fitness f is stored 
in the bit location matrix (BLM): 

𝐵𝐿𝑀 = [(𝑖0, 𝑏0), … , (𝑖𝑡 , 𝑏𝑡), … , (𝑖𝐾−1, 𝑏𝐾−1)]          (3) 

The effective size of the program is: 

𝑁𝐸 = 1 + max
0≤𝑡≤𝐾−1

(𝑖𝑡)            (4) 

For smaller programs to have better fitness we use the formula: 

𝑓𝑜𝑝 = (𝑓𝑜𝑝
0 , 𝑓𝑜𝑝

1 … , 𝑓𝑜𝑝
𝐾−1) ∀ 𝑡 = 0, … , 𝐾 − 1 

𝑓𝑜𝑝
𝑡 = 𝑓𝑡 − 𝛼 ⋅ 𝑁𝐸             (5) 

α has been assigned a value of 0.001. 

The fitness 𝑓𝑜𝑝  is used in insertion operations of 

individuals on Pareto fronts. On Pareto fronts the sorting 
operations are based on the scalar value: 

𝑓𝑜𝑝𝑆𝑢𝑚 = ∑ 𝑓𝑜𝑝
𝑡𝐾−1

𝑡=0              (6) 

B. Fitness Evaluation in the Generation of Timing Diagrams 

without Input Values 

We represent the timing diagrams of the pins of a 
microcontroller Port as a string of decimal values in which 
two consecutive values are not equal. 

The algorithm for fitness evaluation of a program that 
generates timing diagrams proposed in [17], adapted to the 
AVR architecture, is shown in Algorithm 3, where L 
represents the number of values in the timing diagrams and K 
is the number of pins where the timing diagrams are 
generated. When the generated timing diagrams G are 
updated, a new value is recorded only if it is different from the 
previous one by at least one bit. Each component of the fitness 
vector corresponds to the timing diagram of a Port pin. After 
the execution of the genetic program, the generated timing 
diagrams (G) are compared with the target timing diagrams 
(S) in binary representation with the formula: 

𝑓 = (𝑓0, 𝑓1, … , 𝑓𝐾−1) for all 𝑝 = 0, … , 𝐾 − 1 

𝑓𝑝 = ∑ {(𝐿 − 𝑑)(𝐺𝑑
𝑝

⊙ 𝑆𝑑
𝑝

)}𝐿−1
𝑑=0             (7) 

where (L - d) is a weight assigned to d time. The first bits 
have greater weight compared to the last ones. This allows 
that, in the evolutionary process, the correct values are 
established, with greater probability, starting with the previous 
times and ending with the later ones, to improve the speed of 
convergence of the algorithm. 

During the execution of the program, a VNI vector is 
formed with the indices of the instructions, whose execution 
has produced a change in some Port pin: 

Algorithm 3.  Fitness evaluation of a genetic program for the 
generation of timing diagrams without input values 

𝑆 = (𝑆0 , , … 𝑆𝑑 , … , 𝑆𝐿−1 , ) are the target timing diagrams. 

𝐺 = (𝐺0, , … 𝐺𝑑 , … , 𝐺𝐿−1 , ) are the generated timing diagrams. 

Each value of 𝑆 is represented in binary 𝑆𝑑 = [𝑆𝑑
𝐾−1 … 𝑆𝑑

0] 

Each value of 𝐺 is represented in binary 𝐺𝑑 = [𝐺𝑑
𝐾−1 … 𝐺𝑑

0] 
𝑃 = [𝐼0 , 𝐼1 , … , 𝐼𝑖 , … , 𝐼𝑁−1] is the genetic program to be evaluated 

𝑓𝑚𝑎𝑥 = 𝐾 ∙ (𝐿 + 1) ∙ 𝐿 2⁄  is the maximum value of fsum. 

Pbest is the best program found so far of NEbest size with fitness 
fsumbest  

1. SREG ← 80H  
2. PORT ← 00H  
3. DDR ← FFH  
4. R0 ← 0 
5. R1 ← 0  
6. R20 ← 0 

7. Clear (𝐺)  

8. Clear (VNI) 
9. for i = 0 to N - 1 do 
10.  Execute (Ii)  
11.  Update (𝐺) 

12.  Update (VNI) 

13. end for 
14. Calculate f, fsum, NE, fop y fopsum using formulas (7), (2), (9), 

(5) and (6) respectively 
15. if (fsum > fsumbest) or ((fsum = fmax) and (NE < NEbest)) then 
16.   Pbest ← P; NEbest ← NE; fsumbest ← fsum 

17. end if 
18. Return NE, fop, fopSum 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

543 | P a g e  
www.ijacsa.thesai.org 

𝑉𝑁𝐼 = [𝑖0, 𝑖1, … , 𝑖𝑑 , … , 𝑖𝐿−1]            (8) 

The effective size of the program is: 

𝑁𝐸 = 1 + max
0≤𝑑≤𝐿−1

(𝑖𝑑)            (9) 

C. Fitness Evaluation in the Generation of Timing Diagrams 

According to Input Values 

Algorithm 4 describes the fitness evaluation of a program 
that generates timing diagrams according to input values. In 
the algorithm, L represents the number of values in each 
timing diagram, M is the number of input values, and K is the 
number of pins where the timing diagrams are generated. To 
compare the generated timing diagrams with those desired for 
the E𝑗  input, the formula is: 

𝑓𝑗 = (𝑓𝑗
0, 𝑓𝑗

1, … , 𝑓𝑗
𝐾−1) ⩝ 𝑝 = 0, … , 𝐾 − 1 

𝑓𝑗
𝑝

= ∑ {(𝐿 − 𝑑)(𝐺𝑗,𝑑
𝑝

⊙ 𝑆𝑗,𝑑
𝑝 )}𝐿−1

𝑑=0           (10) 

The fitness vector 𝑓 is equal to the sum of all the fitness 
vectors 𝑓𝑗. For the fitness vector 𝑓 the sum is calculated: 

𝑓 = (𝑓0, 𝑓1, … , 𝑓𝐾−1) 

𝑓𝑠𝑢𝑚 = ∑ 𝑓𝑝𝐾−1
𝑝=0             (11) 

Algorithm 4.  Fitness evaluation of a genetic program for the 
generation of timing diagrams according to input values. 

In the input-output table (IOT) each output is a sequence of values: 

(E0, (𝑆0,0, … 𝑆0,𝑑 , … 𝑆0,𝐿−1)), 

… 

(E𝑗 , (𝑆𝑗,0, … 𝑆𝑗,𝑑 , … 𝑆𝑗,𝐿−1)), 

… 

(E𝑀−1, (𝑆𝑀−1,0, … 𝑆𝑀−1,𝑑 , … 𝑆𝑀−1,𝐿−1)), 

Each value in the sequence is represented in binary: 

𝑆𝑗,𝑑 = [𝑆𝑗,𝑑
𝐾−1 … 𝑆𝑗,𝑑

0 ] 

𝑃 = [𝐼0 , 𝐼1 , … , 𝐼𝑖 , … , 𝐼𝑁−1] is the genetic program to be evaluated 

𝑓𝑚𝑎𝑥 = 𝑀 ∙ 𝐾 ∙ (𝐿 + 1) ∙
𝐿

2
 is the maximum value of fsum. 

Pbest is the best program found so far of NEbest size with fitness 
fsumbest  

1. Clear ( f ) 

2. for each input E𝑗 do 

3.  DDR ← FFH  

4.  PORT ← 00H  

5.  SREG ← 80H  

6.  R0 ← E𝑗;  

7.  R1 ← E𝑗;  

8.  R20 ← E𝑗;  

9.   Clear (Gj);  

10.   Clear (VNIj) 

11.  for i = 0 to N-1 do 

12.   Execute (Ii)  

13.    Update (Gj)  

14.    Update (VNIj) 

15.  end for 

16.   f j is calculated with the formula (10) 

17.   f ← f + f j  

18. end for 

19. Calculate fsum, NE, fop, fopsum using formulas (11), (12), (13) and (14) 

respectively 

20. if (fsum > fsumbest) or ((fsum = fmax) and (NE < NEbest)) then 

21.   Pbest ← P; NEbest ← NE; fsumbest ← fsum 

22. end if 
23. Return NE, fop, fopsum 

As in the generation of timing diagrams without input 

values, for each input 𝐸𝑗  there is a vector of indices to 

instructions: 

𝑉𝑁𝐼𝑗 = [𝑖𝑗,0, 𝑖𝑗,1, … , 𝑖𝑗,𝑑 , … , 𝑖𝑗,𝐿−1] 

based on which the scalar 𝑁𝑈𝐼𝑗 = max
0≤𝑑≤𝐿−1

( 𝑖𝑗,𝑑)  is 

calculated which is the index of the instruction that produced 
the last change in the timing diagrams for 𝐸𝑗 . Therefore, the 

effective size of the program is: 

𝑁𝐸 = 1 + max
0≤𝑗≤𝑀−1

(𝑁𝑈𝐼𝑗) 

To prevent that, for different 𝐸𝑗  inputs, the vectors 𝑉𝑁𝐼𝑗 

are different, and the program sizes are also different, based 
on all the vectors 𝑉𝑁𝐼𝑗, the VDIF vector of size L is formed, in 

which each element of position d is equal to the difference 
between the maximum value and the minimum value of all the 

values of that position in the vectors 𝑉𝑁𝐼𝑗: 

𝑉𝐷𝐼𝐹𝑑 = max
0≤𝑗≤𝑀−1

(𝑖𝑗,𝑑) − min
0≤𝑗≤𝑀−1

(𝑖𝑗,𝑑)        (12) 

Then it is calculated: 

𝐷𝐼𝐹𝑚𝑎𝑥 = max
0≤𝑑≤𝐿−1

(𝑉𝐷𝐼𝐹𝑑), 

When the evolutionary process ends, 𝐷𝐼𝐹𝑚𝑎𝑥  must be 
equal to 0. Using 𝑁𝐸 and 𝐷𝐼𝐹𝑚𝑎𝑥, the fitness vector 𝑓𝑜𝑝 and 

its sum 𝑓𝑜𝑝𝑠𝑢𝑚 are calculated with the following formulas: 

𝑓𝑜𝑝 = (𝑓𝑜𝑝
0 , 𝑓𝑜𝑝

1 … , 𝑓𝑜𝑝
𝐾−1) 

𝑓𝑜𝑝
𝑝

= 𝑓𝑝 − 𝛼 ⋅ (𝐷𝐼𝐹𝑚𝑎𝑥 + 𝑁𝐸)          (13) 

𝑓𝑜𝑝𝑠𝑢𝑚 = ∑ 𝑓𝑜𝑝
𝑝𝐾−1

𝑝=0            (14) 

V. AUTOMATIC ROUTINE GENERATION FOR ARDUINO 

MEGA 

A. Generation of the Routine for Determining the 
Temperature Value (ADC_BIN) 

As can be seen in the circuit in Fig. 1, the LM35 
temperature sensor is connected to the A0 analog input of the 
Arduino Mega, which in the ATmega 2560 microcontroller is 
an input to the analog-digital converter (ADC). The ADC 
converts the voltage provided by the sensor into an integer that 
we represent as ADCvalue. 

If the reference voltage on the ADC is Vcc = 5V, and the 
resolution is 10 bits; then the ADC converts the voltage range 
from 0V to 5V, proportionally, in the integer range from 0 to 
1023. When the LM35 temperature sensor is configured to 
produce 10mV per °C, to convert the output value of the ADC 
in temperature value, in degrees centigrade, the following 
formula is used: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(°𝐶) =
500∙𝐴𝐷𝐶𝑣𝑎𝑙𝑢𝑒

1024
          (15) 

The LM35 sensor, as configured, allows a temperature 
measurement range of 0° C to 150°C. To simplify the input-
output table, we set the temperature range from 0°C to 99°C. 
In a spreadsheet, formula (15) is calculated for all the ADC 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

544 | P a g e  
www.ijacsa.thesai.org 

output values in the range from 0 to 203, obtaining the column 
“Temperature (°C)” of Table IV. Then, these values are 
rounded to the nearest one, obtaining the column “Rounded 
Temperature”. The input-output table for the routine generator 
is made up of the columns “ADC Value” (Input) and 
“Rounded Temperature” (Output) of Table IV. 

The evolutionary process follows Algorithm 1 with the 
fitness evaluation described in Algorithm 2. In the completion 
stage, to the synthesized program Pbest, instructions are 
inserted and added with the information from the bit location 
matrix (BLM). For each (𝑖𝑡 , 𝑏𝑡)  pair of BLM, after the 
instruction with index 𝑖𝑡 , a MOV instruction is inserted to 
copy the register containing the bit 𝑏𝑡  into a temporary 
register. For each bit, a different register is used from register 
R5 to register R(K + 4). At the end of the synthesized program 
Pbest, clear instruction of the R0 register is concatenated 
followed by pairs of BLD and BST instructions that copy the 
bits stored in the temporary registers into the R0 register. The 
completion of the program ends by inserting at the beginning, 
the instructions that place the initial values in the registers as 
indicated in Algorithm 2 on lines 3-6. 

Before the execution of the ADC_BIN routine, the output 
value of the ADC must be placed in the R0 register. After 
executing the ADC_BIN routine, the temperature value 
rounded to the nearest one is obtained in the same R0 register 
as a number in natural binary code in the range from 0 to 99. 

B. Generation of the Conversion Routine from a Natural 

Binary Number to Unpacked 2-Digit BCD (BIN_BCD2) 

The routine converts a natural binary number in the range 
0 to 99 to unpacked BCD code. The input-output table for the 
generator of this routine is shown in Table V, where for the 
numbers from 0 to 99, after separating the tens digit and the 
units digit, the operation Tens ∙ 256 + Units is calculated 
placing the tens digit in the high byte and the units digit in the 
low byte that corresponds to the representation of the number 
in unpacked BCD code. 

The evolutionary process follows Algorithm 1 with the 
fitness evaluation described in Algorithm 2. The completion 
of the program is done similarly to that carried out in the 
generation of the ADC_BIN routine, with the difference that 
now the most significant bits are placed in the register R1. 

To invoke the BIN_BCD2 routine, the natural binary value 
is placed in register R0. The result of the conversion is 
obtained in registers R1 and R0. In register R1 the BCD tens 
digit is obtained and in register R0, the BCD units digit. 

C. Generation of the “Home” Command Routine for the LCD 

Screen (LCD_HOME) 

As can be seen in the circuit of Fig. 1 and Table I, the LCD 
text display module is connected to digital pins on the Arduino 
Mega board that correspond to Port C of the ATmega 2560 
microcontroller. The “Home” routine performs the command 
to return the LCD screen to the initial state causing the cursor 
to return to the first left position of the first row. For the 
execution of this command, the microcontroller must generate 
in Port C the timing diagrams corresponding to the command 
with hexadecimal code 02 of the LCD screen controller. 

According to the datasheet of the LCD module, in the 
timing diagrams, the RS and RW signals have value “0”, 
while the enable signal E, for each nibble of the command, 
during a time interval has value “1” and in the next interval, 
the value “0”. Therefore, in Table VI, at times 1 and 2 when 
the lines D7-D4 have a value of 0 (high nibble of the 
hexadecimal value 02), E = 1 at time 1, and E = 0 at time 2. It 
is important that at the beginning (time 0) and at the end (time 
5) all signals are deactivated with a value of “0”. The row 
“Port C” of Table VI is obtained by expressing the value of 
the Port C pins in decimal representation. The input-output 
table is made up of the row “Time” (Input) and the row “Port 
C” (Output) of Table VI. 

The evolutionary process follows Algorithm 1 with the 
fitness evaluation of a genetic program according to 
Algorithm 3. When the stop condition is met, the synthesized 
program is Pbest of NE size. 

The completion of the program consists of inserting at the 
beginning the instructions that place the initial values in the 
registers as indicated in Algorithm 3 on lines 1-6. 

TABLE IV. OBTAINING THE INPUT-OUTPUT TABLE FOR THE GENERATION 

OF THE ADC_BIN ROUTINE 

ADC value  Temperature (°C) Rounded Temperature 

0 0.0000 0 

1 0.4883 0 

2 0.9766 1 

3 1.4648 1 

4 1.9531 2 

…   

201 98.1445 98 

202 98.6328 99 

203 99.1211 99 

TABLE V. INPUT-OUTPUT TABLE FOR THE BIN_BCD2 ROUTINE 

GENERATION 

Temperature Unpacked BCD 

0 0 

1 1 

2 2 

…  

97 2311 

98 2312 

99 2313 

TABLE VI. OBTAINING THE INPUT-OUTPUT TABLE FOR THE GENERATION 

OF THE “HOME” COMMAND ROUTINE 

Time 0 1 2 3 4 5 

D7-D4 PC7-PC4 0 0 0 2 2 0 

RS PC3 0 0 0 0 0 0 

E PC2 0 1 0 1 0 0 

RW PC1 0 0 0 0 0 0 

- PC0 - - - - - - 

Port C 0 4 0 36 32 0 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

545 | P a g e  
www.ijacsa.thesai.org 

In the generation of routines that produce timing diagrams 
on a Port, such as Port C, to overcome timing problems, after 
each instruction with the PORTC operand the CALL DELAY 
instruction is inserted. 

D. Generating the LCD Screen Initialization Routine 

(LCD_INI) 

According to the datasheet of the LCD screen module, to 
configure the module with a 4-bit interface and non-visible 
cursor, the microcontroller must generate timing diagrams on 
Port C corresponding to the hexadecimal sequence of 
commands: 33, 32, 28, 0C. 

As in the generation of the “Home” routine, the RS and 
RW signals must have a value of “0” and the E signal for each 
nibble of command must have a value of “1” during a time 
interval, and then it must change to “0”. In Table VII, the 
obtaining of the decimal sequence corresponding to the timing 
diagrams for the initialization of the LCD screen is shown. 
The input-output table consists of the row “Time” (Input) and 
the row “Port C” (Output) of Table VII. 

The evolutionary process follows Algorithm 1 with the 
fitness evaluation according to Algorithm 3. When the stop 
condition is met, the synthesized program is Pbest of NE size. 
The program is completed with the insertion of the 
instructions that place the initial values in the registers, as 
indicated in lines 1-6 of Algorithm 3, at the beginning of the 
program. As in the generation of the LCD_HOME routine, 
after each instruction with the PORTC operand the CALL 
DELAY instruction is inserted. 

E. Generating the Symbol Writing on the LCD Screen 

Routine (BCD1_LCD) 

This routine allows the display of symbols on the LCD 
screen such as decimal digits from 0 to 9, space, decimal 
point, and capital letter C. To be displayed, the symbols must 
be sent to the LCD screen in ASCII code. As an example, 
Table VIII shows the obtaining of the timing diagrams in Port 
C to display the decimal digit “1”. Proceeding similarly with 
all symbols, the timing diagrams are obtained in columns S0 
to S5 of Table IX. The input-output table for the routine 
generator consists of the column “Code” (Input) and the 
columns from S0 to S5 (Output). 

TABLE VII. OBTAINING THE INPUT-OUTPUT TABLE FOR THE GENERATION OF THE LCD_INI ROUTINE 

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

D7-D4 PC7-PC4 0 3 3 3 3 3 3 2 2 2 2 8 8 0 0 12 12 0 

RS PC3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

E PC2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 

RW PC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

- PC0 - - - - - - - - - - - - - - - - - - 

Port C 0 52 48 52 48 52 48 36 32 36 32 132 128 4 0 196 192 0 

TABLE VIII. OBTAINING THE TIMING DIAGRAMS TO DISPLAY THE DECIMAL DIGIT “1” ON THE LCD SCREEN 

Time 0 1 2 3 4 5 

D7-D4 PC7-PC4 0 3 3 1 1 0 

RS PC3 0 1 1 1 1 0 

E PC2 0 1 0 1 0 0 

RW PC1 0 0 0 0 0 0 

- PC0 - - - - - - 

Port C 0 60 56 28 24 0 

TABLE IX. OBTAINING THE INPUT-OUTPUT TABLE FOR THE BCD1_LCD ROUTINE GENERATION 

Symbol Code ASCII (Hex) S0 S1 S2 S3 S4 S5 

0 0 30 0 60 56 12 8 0 

1 1 31 0 60 56 28 24 0 

2 2 32 0 60 56 44 40 0 

3 3 33 0 60 56 60 56 0 

4 4 34 0 60 56 76 72 0 

5 5 35 0 60 56 92 88 0 

6 6 36 0 60 56 108 104 0 

7 7 37 0 60 56 124 120 0 

8 8 38 0 60 56 140 136 0 

9 9 39 0 60 56 156 152 0 

Space 10 20 0 44 40 12 8 0 

. 11 2E 0 44 40 236 232 0 

C 12 43 0 76 72 60 56 0 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

546 | P a g e  
www.ijacsa.thesai.org 

The evolutionary process is developed according to 
Algorithm 1 with the fitness evaluation according to 
Algorithm 4. The completion of the program is carried out 
with the insertion, at the beginning of the program, of the 
instructions that perform the operations indicated in rows 3-8 
of Algorithm 4. As explained before, after each instruction 
with the PORTC operand, the CALL DELAY instruction is 
inserted. To invoke the BCD1_LCD routine, the input value 
(symbol code) must be in the R0 register. 

VI. EXPERIMENTAL WORK 

In the design of systems based on the Arduino Mega 
board, when the circuit includes devices such as LCD screen 
module, matrix keyboard, seven-segment indicators, sensors, 
and others, the methodology proposed in this article for 
developing the program consists of executing the following 
steps: 1) the global task is divided, if possible, into subtasks 
that are expressed through an input-output table; 2) the input-
output tables are made with the help of a spreadsheet; 3) the 
routines described by input-output tables are automatically 
generated by the generator implemented based on the algorithms 
shown in previous sections; 4) the main program and routines 
that were not described with tables are manually written in 
assembly language. The main program has two parts: the first 
run only once and sets the system configuration, the second is 
a loop that repeats indefinitely. For the implementation of the 
digital thermometer, the main program, shown in Fig. 2(a), 
which was manually written, mainly contains register transfer 
instructions (MOV) and routine call instructions (CALL). The 
routines whose names are in green have been written 
manually, while the routines with names in red have been 
generated automatically. Within the infinite loop, the tasks are 
sequentially executed: place the LCD screen cursor in the 
initial state, read the ADC value, convert the ADC value into 
natural binary temperature value, convert the natural binary 
value into two-digit unpacked BCD code, display the tens 
digit, display the units digit, and display the letter C. 

When the entire assembly language program is written 
manually, it is necessary to write routines to perform 
multiplication and/or division operations in the determination 
of temperature, and routines that perform the operations for 
handling the LCD screen. In the proposed methodology, these 
operations are carried out at the stage of making the input-
output tables in a spreadsheet; therefore, the application of the 
proposed method is less complex compared to the manual 
writing of the entire program in assembly language. 

Fig. 2(b) shows the program written in Arduino 
programming language for the circuit in Fig. 1, with the 
modification of connecting the RW signal of the LCD module 
to the ground. Because it is a high-level programming 
language, writing the program in this language is less complex 
than writing according to the proposed methodology. In the 
program in Fig. 2(b), the setup function configures the system 
and is executed only once; the loop function repeats 
indefinitely. In the loop function, the following operations are 
carried out: placing the LCD screen cursor in the first position 
of the first row, reading the microcontroller ADC value, 
calculating the temperature, displaying the temperature, and 
displaying the letter C. 

.INCLUDE 
“M2560DEF.INC” 
 LDI R16,HIGH(RAMEND) 
 OUT SPH,R16 
 LDI R16,LOW(RAMEND) 
 OUT SPL,R16 
 CALL SYS_INI 
 CALL ADC_INI 
 CALL LCD_INI 
LOOP: 
 CALL ADC_HOME 
 CALL ADC_READ 
 MOV R0,R24 
 CALL ADC_BIN  
 CALL BIN_BCD2 
 MOV R2,R0 
 MOV R0,R1 
 CALL BCD1_LCD 
 MOV R0,R2 
 CALL BCD1_LCD 
 LDI R24,0X0C 
 MOV R0,R24 
 CALL BCD1_LCD 
 JMP LOOP 

int ADCvalue;  
float Temper;  
#include <LiquidCrystal.h> 
LiquidCrystal lcd(34, 35, 33, 32, 31, 30); 
void setup() { 
 lcd.begin(16, 2); 
} 
void loop() { 
 lcd.setCursor(0, 0); 
 ADCvalue = analogRead(0);  
 Temper=round((500.0*ADCvalue)/1024);  
 lcd.print(Temper,0);  
 lcd.print(“C”);  
} 

(a) (b) 

Fig. 2. Program for the Digital Thermometer for the Arduino Mega Board. 

(a) In Assembly Programming Language following the Proposed 

Methodology (Only the main Program). (b) In Arduino Programming 
Language. 

As can be seen, the two programs in Fig. 2 have similar 
structures. The programmer who follows the proposed 
methodology must have basic knowledge about the assembly 
programming language and the microcontroller architecture to 
manually write the main program, system configuration 
routine, ADC initialization routine, ADC reading routine, and 
a delay routine. All the other routines, which represent a 
significant percentage of the entire program (73%), have been 
automatically generated. The complete program, obtained with 
the proposed methodology, is shown in Fig. 3, with the 
routines automatically generated on a light blue background. 
Compiling this program generates a 614-byte machine code. 
On the other hand, writing the program in the Arduino 
programming language requires knowledge of this language, 
which is similar to the C++ language, and its compilation 
produces a 3788-byte machine code, which means that the use 
of the proposed methodology preserves the advantage of 
assembly language to produce smaller machine code 
compared to other programming languages. 

In the stage of convergence and stability tests of the 
algorithms used in the proposed methodology, the generator of 
each routine has been executed 10 times. Table X shows the 
most important characteristics of the tests carried out in the 
generation of these routines. As can be seen in Table X, when 
the input-output table has a large number of rows (ADC_BIN 
routine), or when the table has several output columns 
(BCD1_LCD routine) the hit rate may be low (30%); this also 
occurs when the output has a low correlation or is not 
correlated with the input. For the generator of the BIN_BCD2 
routine, the hit rate is the highest (100%) since the input and 
the output are quite correlated. The test parameters are: The 
size of the initial population of each species is 100, the 
number of species (program segments) is 10, the number of 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

547 | P a g e  
www.ijacsa.thesai.org 

representatives per species is 2, the initial size of the program 
segment has a minimum value of 2 and maximum value 4, the 
coefficient α in the fitness evaluation is 0.001. The programs 
have been compiled in AtmelStudio software and simulated in 

Proteus software using the Simulino Mega model. In the 
simulation or the implementation, if necessary, in the DELAY 
procedure, the waiting time can be varied by modifying the 
initial value placed in register R21 or R22. 

.INCLUDE “M2560DEF.INC”  RJMP SALTO  MUL R0,R20  MOV R13,R1  LDI R20,0X00   NEG R0  CALL DELAY  

 LDI R16,HIGH(RAMEND)  LDS R24,ADCL  INC R1  MOV R14,R1  OUT PORTC,R20   ADC R1,R0  SBI PORTC,2 

 OUT SPH,R16  LDS R25,ADCH  MOV R5,R1  MOV R15,R1  CALL DELAY   EOR R1,R0  CALL DELAY  

 LDI R16,LOW(RAMEND)  RET  MOV R6,R1  MOV R16,R1  LDI R20,0X80   ADD R1,R20  CBI PORTC,2 

 OUT SPL,R16 DELAY:  MOV R7,R1  MUL R0,R20  OUT SREG,R20   EOR R20,R0  CALL DELAY  

 CALL SYS_INI  IN R21,SREG  MOV R8,R1  MUL R1,R20  LDI R20,0   ORI R20,12  SBI PORTC,2 

 CALL ADC_INI  PUSH R21  MOV R9,R1  MOV R6,R1  MOV R0,R20   MOV R0,R20  CALL DELAY  

 CALL LCD_INI  LDI R21,1;*  MOV R10,R1  MOV R7,R1  MOV R1,R20   SUBI R20,208  CBI PORTC,2 

LOOP: SAL1:   MOV R11,R1  MOV R8,R1  SBCI R20,219  SUB R1,R0  CALL DELAY  

 CALL LCD_HOME  LDI R22,10;*  CLR R0  CLR R0  SBI PORTC,2  OUT PORTC,R20  ANDI R20,102 

 CALL ADC_READ SAL2:   BST R5,1  BST R5,0  CALL DELAY   CALL DELAY   OUT PORTC,R20 

 MOV R0,R24  LDI R23,255  BLD R0,0  BLD R0,0  CBI PORTC,2  CBI PORTC,2  CALL DELAY  

 CALL ADC_BIN  SAL3:   BST R6,2  BST R6,1  CALL DELAY   CALL DELAY   CBI PORTC,2 

 CALL BIN_BCD2  DEC R23  BLD R0,1  BLD R0,1  OUT PORTC,R20  ADD R20,R1  CALL DELAY  

 MOV R2,R0  BRNE SAL3  BST R7,3  BST R7,2  CALL DELAY   AND R20,R0  OUT PORTC,R20 

 MOV R0,R1  DEC R22  BLD R0,2  BLD R0,2  CBI PORTC,2  ADD R1,R20  CALL DELAY  

 CALL BCD1_LCD  BRNE SAL2  BST R8,4  BST R8,3  CALL DELAY   OUT PORTC,R1  CBI PORTC,2 

 MOV R0,R2  DEC R21  BLD R0,3  BLD R0,3  OUT PORTC,R0  CALL DELAY   CALL DELAY  

 CALL BCD1_LCD  BRNE SAL1  BST R9,5  BST R9,7  CALL DELAY   CBI PORTC,2  MULS R20,R20 

 LDI R24,0X0C  POP R21  BLD R0,4  BLD R0,4  RET  CALL DELAY   LDI R20,133 

 MOV R0,R24  OUT SREG,R21  BST R10,6  BST R10,7 BCD1_LCD:  CLR R20  OUT PORTC,R20 

 CALL BCD1_LCD  RET  BLD R0,5  BLD R0,5  LDI R20,0XFF   OUT PORTC,R20  CALL DELAY  

 JMP LOOP ADC_INI:  BST R11,7  BST R11,7  OUT DDRC,R20   CALL DELAY   LDI R20,196 

SYS_INI:  LDI R22,0X00  BLD R0,6  BLD R0,6  LDI R20,0X00   RET  CBI PORTC,2 

 IN R20,MCUCR  STS ADMUX,R22  RET  BST R12,7  OUT PORTC,R20  LCD_INI:  CALL DELAY  

 ANDI R20,0XEF  LDS R22,ADCSRB BIN_BCD2:  BLD R0,7  CALL DELAY   LDI R20,0XFF   OUT PORTC,R1 

 OUT MCUCR,R20  ANDI R22,0B11110111  LDI R20,0X80  CLR R1  LDI R20,0X80   OUT DDRC,R20   CALL DELAY  

 LDI R20,255  STS ADCSRB,R22  OUT SREG,R20  BST R13,0  OUT SREG,R20   LDI R20,0X00   CBI PORTC,2 

 OUT DDRC,R20  LDI R22,0B10000111  MOV R20,R0   BLD R1,0  MOV R20,R0   OUT PORTC,R20   CALL DELAY  

 LDI R20,0X00  STS ADCSRA,R22   MOV R1,R0   BST R14,1  MOV R1,R0   CALL DELAY   OUT PORTC,R20 

 OUT PORTC,R20  ANDI R22,0B11011111   ROR R1  BLD R1,1  ANDI R20,9  LDI R20,0X80   CALL DELAY  

 RET  STS ADCSRA,R22   MOV R5,R0  BST R15,2  ADC R0,R1  OUT SREG,R20   CBI PORTC,2 

ADC_READ:  RET  MOV R9,R0  BLD R1,2  LSR R20  LDI R20,0   CALL DELAY  

 LDS R22,ADCSRA ADC_BIN:  MOV R10,R0  BST R16,3  AND R0,R20  MOV R0,R20   CLR R1 

 ORI R22,(1<<ADSC)  LDI R20,0X80  MOV R11,R0  BLD R1,3  AND R20,R1  MOV R1,R20   OUT PORTC,R1 

 STS ADCSRA,R22  OUT SREG,R20  MOV R12,R0  RET  LSL R20  SUBI R20,203  CALL DELAY  

SALTO:  MOV R20,R0   INC R1 LCD_HOME:  EOR R1,R20  OUT PORTC,R20  RET 

 LDS R22,ADCSRA  MOV R1,R0   LDI R20,51  LDI R20,0XFF   SUBI R20,243  CALL DELAY  

  SBRC R22,ADSC  LDI R20,250  MUL R1,R20  OUT DDRC,R20   SWAP R1  CBI PORTC,2 

 
Fig. 3. The Complete Program, Obtained with the Proposed Methodology, for the Example of the Digital Thermometer based on the Arduino Mega Board. 

TABLE X. FEATURES AND RESULTS OF THE ROUTINE GENERATION TESTS 

Feature/Result ADC_BIN BIN_BCD2 LCD_HOME LCD_INI BCD1_LCD 

Number of rows in the input-output table 204 100 6 18 13 

Number of bits of the input value 8 7 - - 4 

Number of output columns in the input-output table 1 1 1 1 6 

Number of output bits or number of output pins 7 12 7 7 7 

Hit rate 30% 100% 60% 40% 30% 

Minimum number of evaluations 500279 247441 524155 2915945 22868727 

Maximum number of evaluations 2390847 1990565 2707987 4030899 39725057 

Minimum program size 30 48 22 51 42 

Limit number of evaluations (stop condition) 5x106 5x106 5x106 5x106 40x106 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

548 | P a g e  
www.ijacsa.thesai.org 

The limitations of the proposed methodology are: 1) the 
application of the methodology depends on the existence of 
subtasks that are described by input-output tables; 2) the size 
of the input-output tables cannot be too large, tables of up to 
204 rows and up to 6 columns of output have been used in the 
tests; 3) depending on the speed of the computer, in some 
cases, the generation of the program may take a long time; 
4) in the generation of peripheral device management routines, 
in addition to the simulator of the microcontroller CPU, it is 
necessary to simulate the interface of the microcontroller with 
the peripheral device. 

VII. CONCLUSIONS AND SUGGESTIONS 

In this article, a programming methodology for the 
Arduino Mega board has been described. This methodology is 
applicable in cases when, in addition to the Arduino Mega 
board, the circuit includes devices such as LCD screen, matrix 
keyboard, seven-segment indicators, sensors, etc. The 
methodology makes use of an automatic generator of 
assembly language routines, whose operating algorithms, 
based on multi-objective cooperative coevolutionary linear 
genetic programming, are described in this work. 

The application of the methodology has been shown in an 
illustrative example that consists of the development of the 
program for a digital thermometer organized on a circuit 
formed by the Arduino Mega board, an alphanumeric LCD 
module, and a temperature sensor. The result is an assembly 
language program where 73% of the program lines have been 
generated automatically; which means that writing the 
program following the proposed methodology is less complex 
than manually writing the entire program in assembly 
language. The example has also shown that the application of 
the proposed methodology preserves the advantage of 
assembly language programming of generating machine code 
of a much smaller size than that generated by the Arduino 
programming language. 

In the illustrative example, the temperature range is 0°C to 
99°C displaying only the integer value of the temperature; 
however, it is also possible to display the values with tenths 
and hundredths, but with a lower temperature range. As part of 
future work, the authors intend to follow the methodology for 
programming other Arduino-based measurement instruments. 

In the ATmega 2560 microcontroller instruction set, there 
are fractional multiplication instructions FMUL, FMULS, and 
FMULSU, which have not been used in this work. In future 
work, we recommend the inclusion of these instructions in the 
table of instructions used by the microcontroller simulator, 
which could lead to an improvement in the performance of the 
automatic routine generator, especially when generating 
routines for calculating mathematical formulas. 

REFERENCES 

[1] Arduino, http://www.arduino.cc/, Accessed: 2020-09-29. 

[2] Curtis G. Jones, Chengpeng Chen, An arduino-based sensor to measure 
transendothelial electrical resistance, Sensors and Actuators A: Physical, 

Volume 314, 2020, 112216, ISSN 0924-4247. 

[3] Nur Aliya Arsyad, Syafruddin Syarif, Mardiana Ahmad, Suryani As’ad, 
Breast milk volume using portable double pump microcontroller 

Arduino Nano, Enfermería Clínica, Volume 30, Supplement 2, 2020, 
Pages 555-558, ISSN 1130-8621. 

[4] Shunchang Yang, Yikan Liu, Na Wu, Yingxiu Zhang, Spyros Svoronos, 

Pratap Pullammanappallil, Low-cost, Arduino-based, portable device for 
measurement of methane composition in biogas, Renewable Energy, 

Volume 138, 2019, Pages 224-229, ISSN 0960-1481. 

[5] Congduc Pham, Communication performances of IEEE 802.15.4 
wireless sensor motes for data-intensive applications: A comparison of 

WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image 
surveillance, Journal of Network and Computer Applications, Volume 

46, 2014, Pages 48-59, ISSN 1084-8045. 

[6] Arduino Web Editor, https://www.arduino.cc/en/Main/Software, 
Accessed: 2020-09-29. 

[7] Bob Dukish,Coding the Arduino: Building Fun Programs, Games, and 

Electronic Projects, Canfield, Ohio, USA, 2018, ISBN-13 (pbk): 978-1-
4842-3509-6 ISBN-13 (electronic): 978-1-4842-3510-2. 

[8] Alexandre Mota, Juliano Iyoda, Heitor Maranhão, Program synthesis by 

model finding, Information Processing Letters, Volume 116, Issue 11, 
2016, Pages 701-705, ISSN 0020-0190. 

[9] De Ridder L., Vercammen T. (2019) Deriving Formulas for Integer 
Sequences Using Inductive Programming. In: Atzmueller M., 

Duivesteijn W. (eds) Artificial Intelligence. BNAIC 2018. 
Communications in Computer and Information Science, vol 1021. 

Springer, Cham. 

[10] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen 
H. Muggleton, Ute Schmid, and Benjamin Zorn. 2015. Inductive 

programming meets the real world. Commun. ACM 58, 11 (November 
2015), 90–99. DOI:https://doi.org/10.1145/2736282. 

[11] Flener P., Schmid U. (2017) Inductive Programming. In: Sammut C., 

Webb G.I. (eds) Encyclopedia of Machine Learning and Data Mining. 
Springer, Boston, MA. 

[12] Sumit Gulwani, Oleksandr Polozov and Rishabh Singh, “Program 

Synthesis”, Foundations and Trends® in Programming Languages: Vol. 
4: No. 1-2, pp 1-119. (2017). 

[13] Alexandre Correia, Juliano Iyoda, Alexandre Mota, Combining model 

finder and genetic programming into a general purpose automatic 
program synthesizer, Information Processing Letters, Volume 154, 

2020, 105866, ISSN 0020-0190, https://doi.org/10.1016/j.ipl.2019. 
105866. 

[14] Grochol D., Sekanina L. (2017) Comparison of Parallel Linear Genetic 

Programming Implementations. In: Matoušek R. (eds) Recent Advances 
in Soft Computing. ICSC-MENDEL 2016. Advances in Intelligent 

Systems and Computing, vol 576. Springer, Cham. 

[15] Douglas Mota Dias, Marco Aurélio C. Pacheco, José F. M. Amaral, 

“Automatic synthesis of microcontroller assembly code through linear 
genetic programming”, In Genetic Systems Programming: Theory and 

Experiences, Springer Berlin Heidelberg, Berlin, 2006, pp 193 – 227. 

[16] Dias D.M., Pacheco M.A.C., Amaral J.F.M. (2006) Genetic 
Programming of a Microcontrolled Water Bath Plant. In: Gabrys B., 

Howlett R.J., Jain L.C. (eds) Knowledge-Based Intelligent Information 
and Engineering Systems. KES 2006. Lecture Notes in Computer 

Science, vol 4253. Springer, Berlin, Heidelberg. 

[17] W. F. Serruto and L. A. Casas, “Automatic Code Generation for 
Microcontroller-Based System Using Multi-objective Linear Genetic 

Programming,” 2017 International Conference on Computational 
Science and Computational Intelligence (CSCI), Las Vegas, NV, 2017, 

pp. 279-285, doi: 10.1109/CSCI.2017.47. 

[18] Serruto, Wildor Ferrel and Alfaro, Luis, Many-Objective Cooperative 
Co-evolutionary Linear Genetic Programming applied to the Automatic 

Microcontroller Program Generation, International Journal of Advanced 
Computer Science and Applications, 2019, Volume 10, Number 1, 

Pages 21-31. 

[19] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, 
Abdel-rahman Mohamed, Pushmeet Kohli, RobustFill: Neural Program 

Learning under Noisy I/O, 2017. 

[20] Oliveira, V.P.L., Souza, E.F.d., Goues, C.L. et al. Improved 
representation and genetic operators for linear genetic programming for 

automated program repair. Empir Software Eng 23, 2980–3006 (2018). 

[21] Atmel Corporation, ATmega640/V-1280/V-1281/V-2560/V-2561/V, 8-

bit Atmel Microcontroller with 16/32/64KB In-System Programmable 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

549 | P a g e  
www.ijacsa.thesai.org 

Flash datasheet, 1600 Technology Drive, San Jose, CA 95110 USA, 

2014. 

[22] Atmel Corporation, AVR Instruction Set Manual, 1600 Technology 
Drive, San Jose, CA 95110 USA, 2016. 

[23] Sarmad Naimi, Muhammad Ali Mazidi, Sepehr Naimi, The AVR 

Microcontroller and Embedded Systems Using Assembly and C: Using 
Arduino Uno and Atmel Studio, Microdigitaled, 632 pages, 2017. 

[24] Nyoman Gunantara, Qingsong Ai (Reviewing editor) (2018) A review 

of multi-objective optimization: Methods and its applications, Cogent 
Engineering, 5:1, DOI: 10.1080/23311916.2018.1502242. 

[25] Rodriguez-Coayahuitl L., Morales-Reyes A., Escalante H.J., Coello 

Coello C.A. (2020) Cooperative Co-Evolutionary Genetic Programming 
for High Dimensional Problems. In: Bäck T. et al. (eds) Parallel Problem 

Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in 
Computer Science, vol 12270. Springer, Cham. 

 


