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Abstract—In this paper, we introduce a novel band selection
approach based on the Kolmogorov Variational Distance (KoVD)
for Hyperspectral image classification. The main reason we are
taking interest in KoVD is its unique relation to the classifi-
cation error. Our previous works on band selection using the
Mutual Information (MI), the Divergence Distance (DD), or the
Bhattacharyya Distance (BD) inspire this study; thus, we are
particularly interested in finding out how KoVD performs against
these distances in terms of the numbers of band retained and the
classification accuracy. All the distances in this study are modeled
with the Gaussian Mixture Model (GMM) using the Bayes
Information Criterion (BIC) / Robust Expectation-Maximization
(REM). The experiments are carried on four benchmark Hy-
perspectral images: Kennedy Space Center, Salinas, Botswana,
and Indian Pines (92AV3C). The results show that band selection
based on the Kolmogorov Variational Distance performs better
than BD and DD, meanwhile against MI the results were too
close.
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I. INTRODUCTION

In hyperspectral imaging, sensors record data from hun-
dreds of contiguous bands of the electromagnetic spectrum.
However, the Hughes phenomenon [1] [2] [3] and computa-
tional complexity [4] are two problems that appear during the
classification process. Due to the small sample size problem
[5] and the large number of bands acquired from the sensors,
the classifier won’t be properly trained [3]. Therefore, dimen-
sionality reduction is needed.

Two approaches for dimensionality reduction can be found
in literature, band selection [6] [3] [7] [8] and band extrac-
tion [9] [10] [11] [12]. The aim for band extraction is to
create a new reduced dataset from the existing one using a
linear/non-linear transformation [6]. The Principal Component
Analysis, Projection Pursuit, Independent Component Anal-
ysis, Orthogonal Subspace Projection, Segmented Principal
Component Analysis, and others [13] [14] have been used to
reduce the data volume. However, due to the linear/non-linear
transformation, the original data are replaced by a new set of
variables with no actual physical meaning [6] which can be a
disadvantage in some applications. Band selection, on the other
hand, tries to find an optimal subset from the original pool by
only selecting relevant bands with valuable information for the
classifier, through maximizing a class separability criterion [6].

Between band extraction and band selection, in this study, the
later is the preferred one since, with band selection, the data
remains unchanged and the physical meaning is preserved [15].

Band selection techniques can be broadly classified into
two categories: wrapper and filter techniques. The wrapper
approach [6] take advantage of the classifier itself and use
it as the criterion for band selection [16], the result is a subset
with a high classification score, however, the drawback of this
technique is that the bias toward the used classifier. Unlike
the wrapper approach, the filter [6][16] deploy metrics and
distances to evaluate the bands without involving the classifier.
In theory, the best criterion to measure the pertinence of a band
is the Bayes error. However, the calculation of the Bayes error
is, in general, a very complex problem [17]. Therefore, some
approach seeks an upper bound of the error probability such
as the Chernoff and Bhattacharyya bounds.

A new band selection approach is introduced in this paper,
based on the Kolmogorov Variational Distance for Hyperspec-
tral image classification. This work is a sequel on our previous
research on band selection with Mutual Information [18],
Bhattacharyya Distance [8] and Divergence Distance [19]. The
primary interest in KoVD is the fact that is uniquely related
to the classification error [20] [6], which is often difficult to
estimate [17]. KoVD has been used in other fields such as
signal selection, communication and radar systems [20] [21]
but not in the hyperspectral imaging context.

To model the Kolmogorov Variational Distance, the
Gaussian Mixture Model is used with The Expectation-
Maximization (EM) algorithm [9], however, with the EM
algorithm we face two issues: The first one is the choice of the
number of components K as it can affect the estimation of the
covariance matrix [8] and the second issue is the sensitivity
to the initial values choice [22]. With a bad choice of K,
we can easily end up with the Curse of Dimensionality. As a
solution two approaches are proposed; a GMM based on the
Bayes Information Criterion (BIC) and a Robust Expectation-
Maximization (REM) algorithm [22].

Our main contributions in this study is a novel band
selection approach with the Kolmogorov Variational Distance
modeled with GMM-REM and GMM-BIC. To assess the
performances of KoVD two criteria are being used: the num-
bers of the retained band and the classification accuracy. The
experiments are performed on four hyperspectral benchmark
datasets: The scene Indian Pines (92AV3C), Botswana scene,
Kennedy space center scene, and Salinas scene.

This paper is structured as follows: Sections II and III
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describe the fundamentals and the proposed band selection al-
gorithm. Section IV discusses the experimental results. Finally
the conclusion in Section V.

II. BACKGROUND

A. Kolmogorov Variational Distance

The Kolmogorov Variational Distance (KoVD) is the in-
tegral of the absolute difference between two posterior prob-
abilities. It expresses the distance between the densities [6].
The main advantage for KoVD is its direct relation to the
classification error [20] [6]. KoVD is expressed as follows [6]:

JKoVD(ω1, ω2) =

∫
|P (ω1|x)− P (ω2|x)|P (x)dx (1)

KoVD provides an indication of the amount of probability
mass by which the two distributions differ. If the classes ω1 and
ω2 are similar, P (ω1|x) = P (ω2|x) then JKoVD will equal
zero, and if the classes ω1 and ω2 are disjoint P (ω1|x) = 0
and P (ω1|x) 6= 0, JKoVD will attains its maximum value [6].

In the case of multi-class problem, between each pairwise
class (ωi, ωj), KoVD is computed as the average cost function.

J =
∑
i

∑
j

P (ωi)P (ωj)JKoVD(ωi, ωj) (2)

B. Mutual Information

Given X and Y , two discrete random variables, the Mutual
Information (MI) is the defined as [18]:

I(X;Y ) = H(X)–H(X/Y ) (3)

I(X;Y ) expresses the information we gain by decreasing the
uncertainty contained in the random variable X after knowing
Y . With The entropy H(X) of a random variable X and
H(X/Y ) the conditional entropy of X given Y [18] [23].

C. Divergence Distance

The divergence distance (DD) [19] is a probabilistic dis-
tance that measure of the similarity between two classes ω1 and
ω2 often used in information theory. DD is the sum of the two
Kullback-Leibler divergences. Given P (x|ω1) and P (x|ω2),
DD is defined as [6]:

JDD(ω1, ω2) =

∫
[p(x|ω1)− p(x|ω2)] ln

p(x|ω1)

p(x|ω2)
dx (4)

DD distance is interpreted as the amount of information
necessary to change the prior probability distribution into
posterior probability distribution [24]. In the case of multi-
class problem, between each pairwise class (ωi, ωj), DD is
computed as the average cost function according to equation
(2).

D. Bhattacharyya Distance

The Bhattacharyya distance (BD) [8] is a similarity mea-
surement of the scatter degree of two classes ω1 and ω2. The
bhattacharyya distance is expressed as [6]:

JBD(ω1, ω2) = − log

∫
(p(x|ω1)p(x|ω2))

1
2 dx (5)

In the case of multi-class problem, between each pairwise
class (ωi, ωj), BD is computed as the average cost function
according to equation (2).

E. Gaussian Mixture Model

The Gaussian Mixture Model (GMM) models the density
as the sum of one or more weighted Gaussian components [25]
[8]. For a GMM, a probability density function is the sum of
K Gaussian components:

p(x|ω) =
K∑

k=1

πkp(x|µk,Σk) (6)

where K the number of mixture component, πk the mixing
weight (0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1) and p(x|µk,Σk) a

d-dimensional gaussian distribution

p(x|µk,Σk) =
1

(2π)
d
2 |Σk|

1
2

exp

[
−1

2
(x− µk)T Σ−1k (x− µk)

]
(7)

With µk the mean and Σk the covariance matrix for the kth
component.
The parameters {πc, µc,Σc} are usually estimated by the EM
algorithm [9].

III. BAND SELECTION BY KOLMOGOROV VARIATIONAL
DISTANCE

Given a set of band F = {bi}di=1, the goal is to find an
optimal subset S = {b′i}d

′

i=1, S ⊂ F, d′ ≤ d that only keeps
the relevant bands that contribute to the classification task
while discarding any redundancy. An exhaustive search for
the optimal subset S can be impractical from a computational
viewpoint, and the Sequential forward selection (SFS) is one
of the simplest search strategy [26] [18]. With an empty set
of bands S at the beginning, we start to add sequentially the
bands that maximizes the KoVD cost function until the desired
number of band is achieved, or no longer maximize the cost-
function. SFS algorithm have a relatively low computational
burden [27].

The algorithm (Fig. 1) is the same as [18] [28] [29]
except the computation of the Mutual Information as a cost
function between multiple variables. Instead, KoVD is used as
a criterion between multiple bands to select the salient ones
for hyperspectral image classification.

A. Bayes Error

In theory, the best criterion to measure the pertinence of
a band is the Bayes error. The lower the error the better.
However, the calculation of the Bayes error is, in general, a
very complex problem [17] and it is often difficult to evaluate
its probability.
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Fig. 1. The Band Selection Algorithm by Kolmogorov Variational Distance

In m-class case, the Bayes Error Probability e is given as
[30]:

e =

∫
[1−maxiP (ωi|x)]P (x)dx (8)

where the posterior probability

P (ωi|x) =
P (x|ωi)× P (ωi)

P (x)

P (x) =

C∑
c=1

P (x|ωc)× P (ωc)
(9)

P (x) is the mixture density function and P (ωi) is the prior
probability

A direct calculation of equation (8) in general is often
impossible or impractical [17]. In two class case, the Error
Probability can be expressed as:

e =
1

2

{
1−

∫
|P (ω1|x)− P (ω2|x)|P (x)dx

}
(10)

The Kolmogorov Variational Distance is the integral from
the equation (10) . From equation (1) and (10), the Error
Probability e can be expressed as:

e =
1

2

{
1− JKoVD(ω1, ω2)

}
(11)

From equation (11) we can notice that KoVD can be expressed
in terms of classification error. It has a direct relation to Bayes
Error Probability, which is its main advantage unlike other
probabilistic distances that only provides a bound on the error.
However, KoVD requires an estimate of a probability density
function and its numerical integration, which can restricts its
usefulness in many practical situations [6].

(a) Iter 1 (b) Iter 10 (c) Iter 30

Fig. 2. Robust Expectation Maximization Implementation on Synthetic Data
(a) All Data Points Initialization of the REM Algorithm using -(b) Reducing

the Number of Clusters -(c) Finding the Optimum Number of Clusters
k = 6.

B. KoVD Based on Gaussian Mixture Model

The Kolmogorov Variational distance based on Gaussian
Mixture Model can be expressed as follows:

JKoVD(ωi, ωj) =
∑
|P (ωi|x)− P (ωj |x)|P (x) (12)

With the equation (6) and the equation (9), the KoVD can be
expressed as:

JKoVD(ωi, ωj) =
∑
|P (x|ωi)× P (ωi)− P (x|ωj)× P (ωj)|

=
∑
|

Ki∑
ki=1

πkip(x|µki,Σki)× P (ωi)

−
Kj∑

kj=1

πkjp(x|µkj ,Σkj)× P (ωj)|

(13)

To compute our cost-function JKoVD(ω1, ω2) from equa-
tion (13) we need to estimate the following parameters: the
number of clusters K, the covariance matrix Σ, the mean µ
and the mixing coefficient π.

With GMM the challenge is the estimation of the parame-
ters π, µ,Σ,K, the first three the parameters can be estimated
with the Expectation-Maximization (EM) algorithm [16]. And
K the number of components, the fourth parameter, is user-
defined and has to be given a priori. Choosing the right value
for the number of components K is crucial since it has a direct
effect on the estimation of the covariance matrix. With a bad
choice of K, ill-conditioned covariance matrices can be formed
and the Curse of Dimensionality then can’t be avoided [5] [2].

To overcame this challenge, we pursuit two approaches in
order to define the optimal value for the parameter K. The first
one is based on the Bayes Information Criterion (BIC) [31].
BIC is a popular measure for comparing maximum likelihood
models and the model with the smallest value is the preferred
one [32] [33]. BIC was introduced by [34], and defined as:

BIC = −2× ln(likelihood) + ln(N)× k (14)

With k the number of parameters estimated and N the number
of observations.

The second approach is the Robust Expectation-
Maximization (REM) algorithm [22]. The main advantage
of this algorithm is its ability to find an optimal number of
clusters K automatically, thus the number of the component
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will no longer have to be defined a priori. REM also solves
the issue of the initial value of the standard EM algorithm,
the problem of choosing cluster centers. At first, the Robust
Expectation-Maximization algorithm uses all data points as
centers, and from there try to automatically reach an optimal
number of clusters by discarding the clusters that do not meet
the required criteria (see Fig. 2); For more detail about the
algorithm, see [22].

C. Regularization Problem

For the estimation of the covariance matrix in hyperspec-
tral imaging, the ”Hughes phenomenon” and the singularity
problems [25] are usually caused by the small sample size
datasets. And by partitioning the already small dataset we
can easily end up with an ill-conditioned mixture model
[35]. For each component the sample size must not be less
than the dimensionality of the data [25], since the covariance
matrix should be invertible in order to compute equation (7).
For Gaussian Mixture Model, the curse of dimentionality is
primarily related to the estimation of the covariance matrix
[36], and regularization techniques are one way around this
problem:

1) Leave One Out Covariance (LOOC) : To avoid the sin-
gularity problem the LOOC estimator can be used to regulate
the covariance matrix [37] [25] [3] [36]. Let S and diag(S)
be respectively the covariance matrix its diagonal version:

Slooc
i (αi) =


(1− αi)diag(Si) + αiSi if 0 ≤ αi ≤ 1

(2− αi)Si + (αi − 1)S if 1 ≤ αi ≤ 2

(3− αi)S + (αi − 2)diag(S) if 2 ≤ αi ≤ 3
(15)

The LOOC estimator evaluate several values of αi, and the
value that maximize the average log likelihood of the Gaussian
density is the optimal choice [37]. In our case, since we
are using an iterative approach to select bands, using this
regularization techniques as described by equation (15), did
add to the complexity of the algorithm and to the computation
time.

2) Maximum Entropy Covariance Selection (MECS): The
MECS method deals directly with singular and unstable co-
variance matrices; rather than optimizing the group likelihood
or the classification accuracy, MECS maximize the information
under an incomplete and consequently uncertain context [38].
We are particularly interested in this method since according
to [38], an optimization procedure isn’t required, whenever co-
variance matrices are ill-posed or poorly estimated, and finally
it has a much lower computational cost while performing as
well as any other method.

IV. EXPERIMENTAL STUDY

A. Dataset

1) Indian Pines dataset: This scene was firstly used by
David Landgrebe and his students [25] [39] [37] [2] and
since become a benchmark dataset. Indian Pines dataset also
known as 92AV3C dataset is a 145× 145 pixels by 224 bands
hyperspectral image scene captured over the Indian Pines test
site in North-western Indiana on June 12, 1992, by AVIRIS
sensor, with a spatial resolution of 18m. Fig. 3 is a false-color
composite of the Indian Pines scene and its ground truth map,
and Table I describe the dataset.

(a) (b)

Fig. 3. (a) False Color Composite Image of Indian Pines Dataset and (b)
Ground Truth.

2) Botswana dataset: In 2001-2004, over the Okavango
Delta Botswana, the NASA EO-1 satellite with the Hyperion
sensor gathered a sequence of data over a strip of 7.7km.
Fig. 4 is a false-color composite of the Botswana dataset and
its ground truth map. The UT Center for Space Research
Preprocessed the data, 14 classes were identified from the
observations as described in Table II, and 145 bands were
retained [10 − 55, 82 − 97, 102 − 119, 134 − 164, 187 − 220]
after removing the uncalibrated and noisy bands.

(a) (b)

Fig. 4. (a)False Color Composite Image of the Botswana Dataset and
(b)Ground Truth Map.

3) Kennedy Space Center (KSC): This scene was acquired
by the NASA AVIRIS, on March 23, 1996, over the Kennedy
Space Center (KSC), Florida. The dataset got 176 bands after
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TABLE I. DATA DESCRIPTION OF THE INDIAN PINES 16 CLASS FULL SCENE

Class number Class name Total samples Training samples Test samples
1 Alfalfa 54 29 25
2 Corn-notill 1434 719 715
3 Corn-mintill 834 419 415
4 Corn 234 117 117
5 Grass-pasture 497 249 248
6 Grass-trees 747 374 373
7 Grass-pasture-mowed 26 13 13
8 Hay-windrowed 489 243 246
9 Oats 20 10 10

10 Soybean-notill 968 483 485
11 Soybean-mintill 2468 1234 1234
12 Soybean-clean 614 304 310
13 Wheat 212 108 104
14 Woods 1294 644 650
15 Buildings-Grass-Trees-Drives 380 190 190
16 Stone-Steel-Towers 95 46 49

TABLE II. DATA DESCRIPTION OF THE BOTSWANA DATASET

Class number Total samples Training samples Test samples
1 270 133 137
2 101 52 49
3 251 126 125
4 215 106 109
5 269 134 135
6 269 133 136
7 259 132 127
8 203 104 99
9 314 158 156
10 248 127 121
11 305 152 153
12 181 89 92
13 268 137 131
14 95 46 49

removing low SNR bands with 18 m spatial resolution, and 13
classes of various types of land cover. Fig. 5 is a false-color
composite of the Kennedy Space Center (KSC) scene and its
ground truth map, and further details of the dataset are given
in Table III

(a) (b)

Fig. 5. The Kennedy Space Center Data Set. (a) False Color Composite
Image and (b) Ground Truth.

4) Salinas: Over Salinas Valley in California, the AVIRIS
sensor collected 512× 217 pixels by 224 bands with a spatial
resolution as high as 3.7-meter per pixel. Including vineyard

TABLE III. DATA DESCRIPTION OF THE KENNEDY SPACE CENTER
DATASET

Class number Total samples Training samples Test samples
1 761 373 388
2 243 122 121
3 256 128 128
4 252 127 125
5 161 79 82
6 229 116 113
7 105 51 54
8 431 214 217
9 520 259 261

10 404 203 201
11 419 211 208
12 503 250 253
13 927 465 462

fields, bare soils, and vegetables, 16 classes were defined in
the dataset and 20 water absorption bands were removed [108-
112], [154-167], 224. Fig. 6 is a false-color composite of
Salinas scene and its ground truth map.

B. Experimental Setup

The band selection approach using the Kolmogorov Vari-
ational Distance was tested using the following hardware
setup: a 64-bit PC (i7-2.20GHz) with 6 GB RAM and Matlab
(R2014a). The experiment was run on four benchmark hyper-
spectral images: the Indian Pine (92AV3C), Salinas, Kennedy
Space Center, and Botswana datasets. For classification pur-
poses, the dataset is split into two halves of training/testing.
The selected bands are fed to classifiers in order de show
their classification performances. The used classifier is SVM
through the LIBSVM library with RBF as kernel function and
the grid search technique to find the C and γ parameters [40].

C. Results and Discussions

To evaluate our proposed approach, tests were run on the
benchmark dataset Indian Pine, as this scene has been often
used in various studies such as [25] [39] [37] [2]. In the first
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(a) (b)

Fig. 6. Salinas Data Set. (a) False Color Composite Image and (b) Ground
Truth.

experiment, we measure each band independently from the rest
and see how it ranks in terms of class separability according
to our KoVD cost-function. The higher the value the more the
classes are separable on that band. Fig. 7 we do notice that
band region 170 ∼ 190 have the highest value.

Fig. 7. KoVD Score for Each Band for 92AV3C Dataset.

In previous studies on the Indian Pine dataset [39] [41]
[42] the bands [104 − 108, 150 − 163, 220] were reported to
be in the water absorption region with no useful information
just noise as it can be seen in Fig. 7 and Fig. 8 as they
got the lowest value. Hence, band selection with KoVD can
successfully measure the pertinence of a band and discard
those with no valuable information from the selection process.

For the second experiment, the goal is to measure the per-
formance of the KoVD band selection algorithm with just the
first two selected bands and to answer the question of whether
KoVD modeled with GMM can separate classes successfully
or not. For easier visual inspection the experiment was carried
out on a portion of the benchmark dataset Indian Pine working

(a) (b)

Fig. 8. (a) Scene at Band Number 168 in 92AV3C Dataset, (b) Scene at
Band Number 153 in 92AV3C Dataset.

Fig. 9. Density Estimation by GMM and the Decesion Boundry that
Separate between the 4 Classes.

with 4 classes instead of 16 similar to [39] [41]. The data as
seen in Fig. 9 is highly correlated, nonetheless, we were able
to separate one class from the rest with just 2 bands out of
220 with an SVM classification score of 81.92%. On the other
hand, the other classes are still correlated thus the need to add
more bands to achieve the desired result. For this sub-scene, a
classification score accuracy of 93.81% with SVM is achieved
with only five bands and a classification score of 97.04% at
dimension thirty-six. Thus, the KoVD criterion modeled with
GMM can be used as a class separability measurement for
band selection.

In the next step, we are going to compare the perfor-
mances of KoVD against its peers - the mutual information,
the divergence, and Bhattacharyya distances - in terms of
classification score and the number of retained bands. Due to
the complexity of the dataset, all the probabilistic distances
were computed through the Gaussian mixture model. The
probability estimation is computed with GMM-BIC and the
GMM-REM approach, meanwhile, the SVM is used as a
classifier.

In Fig. 10, 11, 12 and 13 we do notice that, for the Indian
Pine dataset, the SVM classification Score for the selected
bands with KoVD performs better than the ones selected
with the Bhattacharyya and Divergence distances. Meanwhile,
compared to the mutual information, in terms of classification
Accuracy, KoVD is slightly better, in fact, the curves almost
overlap each other.
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(a) GMM-BIC

(b) GMM-REM

Fig. 10. Overall Classification Accuracy of the Selected Bands for Dataset
92AV3C using (a) GMM-BIC, (b) GMM-REM

Depending on the number of the selected bands, on how
well the GMM was estimated, on how well the classifier
parameter was chosen and on the data set itself how correlated
it is and how its post-treatment was to deal with the outliers,
we do notice that KoVD performs the best at times and
others times the MI. According to Fig. 10, 11, 12 and 13,
the results are close to each other and the margin between the
classification curves of the selected bands with both distances
is not wide enough to concur on the superiority of one on
the others. Therefore, it is hard to decide which one of the
distances is the best. Thus, we can conclude that in our
setup, the KoVD performs as well as the MI and both of
them perform better than the Divergence and Bhattacharyya
Distances.

V. CONCLUSION

In this paper, a novel band selection approach based on
the Kolmogorov Variational Distance for Hyperspectral image
classification was introduced. The first experiment performed
on the Indian Pine dataset have proved the efficiency and
reliability of the KoVD criterion as a similarity measure.

(a) GMM-BIC

(b) GMM-REM

Fig. 11. Overall classification Accuracy of the Selected Bands for Dataset
Salinas using (a) GMM-BIC, (b) GMM-REM.

KoVD can measure the pertinence of a band, thus given a
hyperspectral image dataset we can cluster the optimal bands
while discarding those with no relevant information. This
study was inspired by our previous work on the MI, BD,
and DD. Thus, we were particularly interested in finding out
how KoVD performs against these distances in terms of the
numbers of bands retained and the classification accuracy. The
experimental study showed that KoVD performs better than
BD and DD, meanwhile against MI the results were too close;
therefore, in the current setup, it is hard to decide which one
is the best. Thus we can conclude that the KoVD performs as
well as the MI.
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