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Abstract—Gastrointestinal parasitic diseases represent a latent
problem in developing countries; it is necessary to create a
support tools for the medical diagnosis of these diseases, it is
required to automate tasks such as the classification of samples
of the causative parasites obtained through the microscope using
methods like deep learning. However, these methods require large
amounts of data. Currently, collecting these images represents
a complex procedure, significant consumption of resources, and
long periods. Therefore it is necessary to propose a computational
solution to this problem. In this work, an approach for generating
sets of synthetic images of 8 species of parasites is presented, using
Deep Convolutional Adversarial Generative Networks (DCGAN).
Also, looking for better results, image enhancement techniques
were applied. These synthetic datasets (SD) were evaluated in
a series of combinations with the real datasets (RD) using the
classification task, where the highest accuracy was obtained with
the pre-trained Resnet50 model (99,2%), showing that increasing
the RD with SD obtained from DCGAN helps to achieve greater
accuracy.
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I. INTRODUCTION

Diseases caused by parasites are a public health problem
on a global scale; they can be of high risk and high prevalence,
as shown by their incidence rates in the population. According
to the World Health Organization (WHO), the malaria disease
caused by the Plasmodium parasite causes 400000 deaths per
year [1], and more than 2 billion people are infected with soil-
transmitted helminthiases. [2].

According to the National Institute of Health of Peru
(INS), intestinal parasitism increased its prevalence rate among
sectors with fewer resources [3]. Although the cases registered
in the south of the country with a diagnosis of intestinal
parasitism were more frequent in children or people in school
age 41.75%, this problem also affects people in adulthood
or youth, who also presented a considerable percentage of
incidence in this disease with 20.45% and 35.09%, respectively
[4].

Here is the importance of addressing this problem using
computational methods to implement support systems for
medical diagnosis, recognition, and classification of images
obtained through the microscope. However, methods based
on deep learning that have had excellent results in similar

applications require large datasets. The collection of medical
data involves a lengthy procedure that may require applying
different protocols and the intervention of a specialist. There-
fore it is a task that represents a significant consumption of
time and resources.

In this work, the application of two techniques for image
enhancement is presented, Wiener and Wavelet, in order to
obtain an improvement in the quality of the images; also,
an approach to increase data is presented for the generation
of synthetic training samples of microscopy images of eight
species of gastrointestinal parasites, using DCGAN a variation
of GAN [5], from a reduced initial dataset. In total, three sets
of augmented data are generated resulting from the training of
DCGAN, both for the dataset resulting from the application of
image enhancement with Wiener filter, the dataset resulting
from image enhancement with Wavelet denoising, and the
original dataset without enhancement. The three datasets are
used for training in classification models pre-trained by transfer
learning, Resnet34, Resnet50, among others, independently to
verify a performance improvement and compare the results
obtained.

The article’s structure is explained below: In Section II,
related works are addressed, Section III describes the method-
ology used, to finish with the results and conclusions in
Sections IV and V, respectively.

II. RELATED WORKS

According to the literature, various authors have applied
deep learning in analyzing medical images [6], [7]. And in
particular for the treatment of microscopy images of parasites
[8], [9].

However, RD collection usually has a difficult and time-
consuming procedure; this generates insufficient data for ex-
perimentation with deep learning methods for tasks such as
image segmentation and classification. For this reason, some
authors focus on increasing datasets for better results.

To address this problem in classifying in microscopy im-
ages of parasites, some authors used: The Python Augmentor
library, [10], or traditional data augmentation techniques, [11].
On the other hand, due to the problems encountered when
working with layered laser scanning microscopy image data,
in [12] M. Bloice et. al, present their own software package:
Augmentor which is a stochastic pipeline-based augmentation
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library of images and includes features relevant to the domain
of biomedical images, in order to to ensure that the new data
is meaningful.

In recent works, GANs have been used for the task of rec-
ognizing microscopic images of parasites [13], where through
transfer learning, the authors intend to identify the parasite
Toxoplasma gondii using Fuzzy Cycle Generative Adversarial
Network (FCGAN) and in [10], where V. Fomene proposes
a classifier for the diagnosis of malaria in rural areas using
MobileNet and GAN.

GAN has even been used to the transfer between different
modalities of microscopy images, as presented in [14], the
authors investigate a conditional GAN in order to use the
monitoring techniques of cells through the microscope: Phase
Contrast (PC) and Differential Interference Contrast (DIC),
passing from one to the other through the proposed algorithm.
The focus of this work is to use GANs for the generation
of data augmentation in order to face the problem of data
deficiency for the application of deep learning models in tasks
such as the segmentation [15], [16], and classification [17],
[18], of microscopy images.

GANs have also been used to segmentation microscopic
images of pluripotent retinal pigmented epithelial stem cells
[19], where M. Majurski et al., use GAN in one of their
approaches to optimize the coefficients of their Convolutional
Neural Network (CNN). Some authors used Conditional GAN
(CGAN), a conditional version of GAN, in which auxiliary
information is fed to both the discriminator and the generator
as an additional input layer [20]. This version was used to
increase the dataset made up of polycrystalline iron images
[15], where they also presented the transfer learning appli-
cation with data fusion simulations obtained with the Monte
Carlo Potts model and the image style information obtained
from real images. CGAN was also used to increase the dataset
of microscopic images of red blood cells [17]. The architecture
that was proposed in [16], for the generation of the nuclei cell
image-mask pair, consists of 2 stages where they first use a
GAN to learn the data distribution of the masks and generate
a synthesized binary mask and then incorporate this mask
synthesized in the second GAN which also learns a mapping
of the random noise vector to perform a conditional generation
of the synthesized image.

On the other hand, Deep Convolutional GAN (DCGAN)
has also been considered for data augmentation. DCGAN,
which is a variation of GAN that uses convolutional layers in
the discriminator and convolutional-transpose in the generator,
where also the discriminator is composed of stridden convolu-
tion layers, batch norm layers, and LeakyReLU activations, and
the generator is composed of convolutional-transpose layers,
batch norm layers, and ReLU activations, [21].

R. Verma et al., present in [18], use DCGAN to generate
synthetic samples of 5 classes of proteins, which were used in
the classification task both before and after the increase of SD,
comparing DCGAN results with those of traditional methods.
In search of better results, some authors have modified the
original structure of the GANs by including two discriminators
[14]; it has also been considered to include U-net structural
elements in their GANs [14], [19].

It has also tried to improve the quality of microscopic im-

ages as preprocessing before data augmentation, such as con-
trast enhancement with Histogram Equalization (HE), Adap-
tive Histogram Equalization (AHE), and Contrast Limited
Adaptive Histogram Equalization (CLAHE) [18].

Some of the resulting augmented datasets have been eval-
uated in pre-trained deep learning models under a transfer
learning approach, such as VGG, Resnet, NasNet, Inception,
MobileNet. Because these have become popular in medical
image classification and segmentation work [11], [13], [18].

The review of the related works shows that the use of
GANs for data augmentation is competitive, performs well,
or even outperforms traditional augmentation methods.

This work’s contribution is a) the improvement of the
quality of the dataset of microscopy images of eight species of
gastrointestinal parasites with the Wiener and Wavelet filters,
b) the use of DCGAN to augment the dataset by generating
SD, and c) the resulting datasets for the training of deep
learning pre-trained classification models by transfer learning
and finally the comparison of the results obtained.

III. MATERIALS AND METHODS

For the development of this experimental research, a
process that is applied in steps was defined. The proposed
methodology consists of image preprocessing with improve-
ment techniques, use of DCGAN for data augmentation, and
evaluating synthetic datasets generated by classifying images
with previously trained models using the transfer-based learn-
ing approach. In Fig. 1, the methodology of the approach for
this work is detailed.

A. Dataset

The dataset consists of a vector of characteristics of each
image to be trained. Microscopy images of parasites were used.
There are a total of 954 images:

• Ascaris.

• Hookworms.

• Trichuris trichiura.

• Hymenolepis nana.

• Diphyllobothrium pacificum.

• Taenia solium.

• Fasciola hepatica.

• Enterobius vermicularis.

Each image from ground truth has 1200 x 1600 (height
by width) and has three channels. A zoomed sample of each
species of these parasites is presented in Fig. 2.

B. Image Enhancement

Two techniques were applied independently, Wiener filter
and Wavelet denoising to improve the set of images.

1) Wiener filter: Wiener filter has been applied for image
enhancement to reduce the additive noise and add variations
in images. Wiener filter is one of the most known filters used
for image enhancement [22].
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2) Wavelet denoising: Wavelet denoising has been applied
with the purpose to vary characteristics in the images [23].

Fig. 3, shows a sample of the results in terms of image
enhancement.

C. Generative Adversarial Network

CNNs are designed for data with spatial structures, and they
are composed of many filters, which convolve or slide through
the data and produce an activation at each slide position. These
activations produce a feature map representing how much the
data in that region activated the filter.

On the other hand, GANs are a type of generative model
because they learn to copy the data distribution of the data they
give them. Therefore, they can generate novel images that look
alike. A GAN is called an “adversary” because it involves two
competing networks (adversaries) trying to outwit each other.

The generator (G) is a neural network, which takes a vector
of random variables (Latent Space), and produces an image
igenerator.

The discriminator (D) is also a neural network, which
takes an image, I, and produces a single output p, deciding

Fig. 1. Methodology. Top images should correspond to a specific species
of parasite; then, it could be applied filter wiener or wavelet denoising as
a preprocessing technique. After this, a DCGAN is able to generate images
with one generator and one discriminator. Finally, ground truth and generated
images are evaluated with classifiers Resnet34, Resnet50, and VGG. The
process of data augmentation is applied independently for each parasite
species.

Fig. 2. Parasite species: A sample of each parasite species that is addressed
in this work is presented, and special characteristics of the edges of these are
highlighted in the red boxes. Hymenolepis nana has (from outside to inside)
a wide rim, a semitransparent middle part, and an inner part with a texture
similar to the outer ring. Trichiuris trichiura has different color intensities
on edge. Hookworms have a semitransparent membrane with an irregular
internal shape. Enterobius vermicularis has a semitransparent membrane with
an internal oval shape.

the probability that the image is real. When p = 1p = 1, the
discriminator strongly believes that the image is real, and when
p = 0p = 0, the discriminator strongly believes that the image
is false.

The discriminator (D) receives igenerator, and is taught
that the image is false. In more concrete terms, the discrimina-
tor maximizes log(1−pgenerator). The discriminator receives
a real image, ireal, and is taught that the image is real, or
maximizes log(preal).

The generator tries to do the exact opposite; it also tries
to make the discriminator maximize the probability that it
believes that the false image is real, so the generator will be
trying to maximize log(pgenerator) [5].

As mentioned in Section II, a DCGAN uses convolutional
layers in the discriminator (D) and convolutional-transpose lay-
ers in the generator (G). The discriminator, composed of strid-
den convolution layers, batch norm layers, and LeakyReLU
activations, receives an image and returns a scalar probability
that it is from the distribution of real data.

The generator, consisting of convolutional-transpose layers,
batch norm layers, and ReLU activations, receives a latent vec-
tor, z, which is extracted from a standard normal distribution
and returns an RGB image [21].

D. Data Augmentation

DCGAN was used as part of the proposed methodology for
the generation of synthetic images for data augmentation. For
the DCGAN, binary cross-entropy is used as a loss function.
And for discriminator and generator, Adam optimizers are
applied with a learning rate of 0.0002. In Table I, DCGAN
structure used for this work is detailed. A class called GAN
is created. It imports the relevant classes and initializes the
variables. A generator model was created with the following
layers:

• Convolutional transpose 2D layer with an input of
100x100 image with 3 channels.

• Batch normalization: normalizes the data.
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Fig. 3. Enhanced image samples. (a) Microscopy image of Fasciola hepatica parasite corresponding to the original dataset, (b) Image enhanced with Wiener
filter, (c) Image enhanced with Wavelet denoising.

• ReLU.

These last three layers are repeated and make a block of four
CBR (Convolutional Transposed 2D - Batch Normalization -
ReLU) Finally, the following layers are applied:

• Convolutional transpose 2D

• Hyperbolic Tangent

A discriminator can also become a sequential model by
going in the opposite direction. The discriminator was built as
a model that is governed by the following directives:

• The first layer is for applying a convolution to a 64x64
image with 3 channels.

• Add a Leaky ReLU activation feature.

Then, the following three layers are applied:

• Convolution 2D

• Batch normalization 2D

• Leaky ReLU.

Finally, the following layers are applied to get the output
decision:

• Convolution 2D

• Sigmoid

E. Evaluation

Classification task is defined to evaluate the synthetic
microscopy image datasets generated by DCGAN. For this, the
pre-trained deep learning models Resnet34, Resnet50, VGG16,
Densenet121, and Inceptionv3 are used under a transfer learn-
ing approach.

1) Accuracy: The metric that was chosen to evaluate the
models is Accuracy1.

Accuracy =

∑
c TPc + FNc∑

c TPc + TNc + FPc + FNc
(1)

TABLE I. DCGAN STRUCTURE

LAYER DESCRIPTION

ConvTranspose2d Applies a 2D transposed convolution operator over
the image.

BatchNorm2d Applies Batch Normalization over a 4D input.

ReLU Applies the rectified linear unit function element-
wise.

Tanh Applies hyperbolic tangent function element-wise.

Conv2d Applies a 2D convolution over an input signal
composed of several input planes.

LeakyReLU Applies leaky rectified linear unit function
element-wise.

Sigmoid Applies sigmoid function element-wise.

IV. EXPERIMENTATION AND RESULTS

A. Tools and technological infrastructure

For the experimentation, the following software tools were
used: Python (libraries such as Pytorch, Numpy, Scipy, Scikit
Image) and Cuda. The preprocessing, training and classifica-
tion tasks were performed in a workstation with a processor
Intel Xeon Gold 5115 CPU, Memory 128 GB, and a Video
card Quadro P5000 16GB.

B. Data Augmentation Results

DCGAN was trained separately in isolation for each of the
image sets for each mentioned parasite species. The average
execution time for the datasets without any image enhance-
ment considering 15000 epochs was 11 hours; the average
execution time for the datasets improved with the Wiener filter,
considering 15000 epochs was 8 hours. As for the data sets
improved with the Wavelet denoising. Initially, 15000 epochs
were considered. However, it had to be reduced to only 3000
epochs due to the long execution time that represented a high
computational cost and the small number of images generated,
obtaining an average of 7 hours, Fig. 4.

The numbers of synthetic images obtained in these runs
were 612 for the datasets without image enhancement, 470
for the datasets enhanced with the Wiener filter, and 159 for
the datasets enhanced with Wavelet denoising. These results
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represent an increase of 65.88%, 50.59%, and 17.12%, over the
original dataset, respectively. Fig. 5, shows the most significant
amounts of synthetic images generated for each species of
parasite.

According to [16], large-scale GAN imaging and training
stability is challenging. The original size of the images 1200
x 1600 was kept for the training in DCGAN; the synthetic im-
ages obtained have allowed magnifying the domain, providing
a greater training ground for the classification of parasites’
species. Fig. 6, shows a data grid with 64 generates synthetic
images.

Fig. 4. Execution time for generating synthetic images in DCGAN

Fig. 5. Increment of the dataset. Real Data: Images generated from real data
without enhancement. Real Data + Wiener: Images generated from real data
enhanced with Wiener. Real Data + Wavelet: Images generated from real data
enhanced with Wavelet.

C. Results and Discussion

It was decided to train model using Resnet34, Resnet50,
VGG16, Densenet121, and Inceptionv3, independently, resiz-
ing the images from 1200 x 1600 to 64 x 64 to improve
the results and to evaluate the datasets and get a comparative
view of the accuracy metric, considering only 50 epochs, with
the datasets: First, only with the original RD without any

Fig. 6. Grid of synthetic images generated after 6000 epochs, parasite: Ascaris
without image enhancement before DCGAN training.

preprocessing or image enhancement applied. Second, with the
original RD without any preprocessing or image enhancement
combined with the SD generated. Third, only with the RD
obtained after applying the Wiener filter. Fourth, with the
RD obtained after applying the Wiener filter combined with
the SD generated from it. Fifth, only with the RD obtained
after applying the Wavelet denoising and sixth, with the RD
obtained after applying the Wavelet denoising combined with
the SD generated from it.

The results can be seen in Table II. The best accuracy:
0.992 was obtained with the Resnet50 model, and the dataset:
SD obtained after applying the Wiener filter + the RD. This
shows that using SD in the image classification task improves
the accuracy results.

According to the literature, no data augmentation works
have been found for classification of microscopy images of
the eight species of gastrointestinal parasites using DCGAN.

However, the use of different techniques was found, for
objectives similar to those that have been raised in the present
work. M. Roder et. al, present in [24], the use of Restricted
Boltzmann Machines for data augmentation and the classifica-
tion of helminth eggs using Deep Belief Networks, obtaining
a balanced accuracy of 92.09%, the authors worked with
grayscale microscopy images , while in this work RGB scale
images were used.

The work of R. Verma et al. [18] is considered a similar
methodology to that described in the present work. Verma used
DCGAN for the generation of SD of 5 classes of proteins
and also classification models based on transfer learning with
which they obtained a result of 0.924 for the accuracy measure
in VGG16 training. The best result in classification was
obtained with the Resnet50 model with 0.992 for the accuracy
measure in this work. It should be noted that in their work, the
authors used different preprocessing techniques and datasets.

V. CONCLUSIONS

DCGAN was used to increase synthetic data, and the
results generated were compared through the classification
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TABLE II. CLASIFICATION RESULTS.

Model Cassification Metric: Accuracy

No Dataset
Enhancement

Dataset with
Wiener filter

Dataset with
Wavelet

denoising

RD RD + SD RD RD + SD RD RD + SD

ResNet34 0.619 0.974 0.978 0.978 0.935 0.990

ResNet50 0.989 0.961 0.967 0.992 0.978 0.930

VGG16 0.869 0.902 0.826 0.892 0.847 0.888

Densenet121 0.967 0.987 0.967 0.985 0.956 0.907

Inceptiov3 0.967 0.980 0.956 0.956 0.956 0.990

task so that greater precision was obtained with the Resnet50
model, with an accuracy of 0.992, and the dataset: RD +
SD obtained after applying the Wiener filter. Other pr-trained
models also showed similar results, such as Resnet34 and In-
ceptionv3, with an accuracy of 0.990, both with the dataset: RD
+ SD obtained after applying Wavelet denoising. Therefore, it
is shown that the use of RD + SD provides greater accuracy
in the classification compared to using only the RD.

The combinations of datasets that gave the best results with
an average accuracy of 0.961 were: RD + SD obtained from
the set of images without improvements and RD + SD obtained
from the set of images improved with the Wiener filter.

The highest amount of SD generated from RD was obtained
without improvements (612). On the other hand, the amount of
SD obtained after applying both the Wiener filter (470) and the
Wavelet denoising (159) was lower due to the characteristics
of the images as it highlights impurities present in the samples.

Despite the complexity and computational cost of the
DCGAN training stage, an accuracy of 99.2% was achieved.
However, there is still room for improvement. In the future, it is
intended to find preprocessing techniques that allow improving
all image sets in order to generate quality synthetic images
for the eight species of parasites. It is recommended to use
techniques other than Wiener filter and Wavelet denoising
for Uncinaria, Trichiuris trichiura, and Enterobius vermicularis
parasites that highlight their morphological characteristics to
obtain better samples of synthetic data.
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