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Abstract—Ice concentration estimation method with satellite-
based microwave radiometer by means of inversion theory is 
proposed. Through experiments, it is found that the proposed 
methods are superior to the existing methods, the NASA Team 
algorithm and the Comiso's Bootstrap algorithm with up to 45% 
of improvement on ice concentration estimation accuracy based 
on the simulation study. Also 1.5 to 2.1% of improvement was 
achieved for the proposed method compared to the NASA Team 
and Comiso's Bootstrap algorithms for the actual The Special 
Sensor Microwave Imager (SSM/I) data of Okhotsk using 
Japanese Earth Resources Satellite: JERS-1/Synthetic Aperture 
Radar: SAR data as a truth data for estimating ice 
concentration. 
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I. INTRODUCTION 
Observation of sea ice is important in considering the 

global environment. This is because the sea ice areas on both 
poles of the earth cover 10% of the sea surface and not only 
have a great influence on the heat balance of the earth, the 
movement of the ocean and the atmosphere, but are also the 
places where the effects of global warming phenomena are 
likely to appear [1]. In addition to scientific observation 
purposes, it also has the purpose of preventing marine 
accidents, such as ensuring navigation and sea work safety in 
polar regions and ice floes. 

Global maps of sea ice concentration, age and surface 
temperature derived from NIMBUS-7 satellite onboard 
Special Sensor Microwave Radiometer: SSMR: A case study 
is conducted and well reported together with importance of ice 
concentration estimation for global warming [2]. A microwave 
technique for mapping thin ice is investigated [3]. 

Special Sensor Microwave Imager: SSM/I concentrations 
using the bootstrap algorithm as the NASA standard product is 
well documented [4]. Also, temperature corrected bootstrap 
algorithm is proposed [5]. 

Estimating occupancy of in-pixel covering class by solving 
inverse problem, is conducted and well reported [6]. Area 
ratio estimation (mixing ratio estimation) by pixel category 
decomposition is proposed and validated [7]. Category 

decomposition based on maximum likelihood estimation is 
proposed [8]. 

Advanced Microwave Scanning Radiometer: AMSR is 
well reported in terms of requirements and preliminary design 
study [9]. Method for proportion estimation of mixed pixels 
by means of inversion problem solving is proposed for mixing 
ratio estimation [10]. 

On the other hand, inversion techniques for proportion 
estimation of Mixed Pixel: Mixels in high spatial resolution of 
satellite image is proposed [11]. Inversion for emissivity-
temperature separation with Advanced Spaceborne based 
Sensor for Thermal Emission and Radiation: ASTER data is 
proposed [12]. Meanwhile, method for ice concentration 
estimation with microwave scanning radiometer data by 
means of inversion is proposed [13]. 

Estimation accuracy of ice concentration is not good 
enough for the global warming problem-solving. Therefore, 
strong demands of improvement of ice concentration 
estimation accuracy are raised among the global change 
research community. In this paper, a microwave radiometer 
installed on an artificial satellite is used to observe sea ice, and 
the method of category decomposition is used based on the 
brightness temperature data of multiple frequencies observed 
by the microwave radiometer. The author proposes a method 
to estimate ice concentration. 

In the following section, related research works are 
described. Then, the proposed method is described followed 
by experimental set-up together with experimental results. 
After that, concluding remarks and some discussions are 
described. 

II. RELATED RESEARCH WORKS 
A method for ice concentration estimation with microwave 

radiometer data by means of inversion techniques is proposed 
[14]. An inversion for emissivity-temperature separation with 
ASTER data is proposed [15]. 

Spatial resolution enhancement by means of inversion is 
proposed [16]. Inversion techniques for proportion estimation 
of Mixels in high spatial resolution of satellite image analysis 
is also proposed [17]. 

Ice concentration estimation based on local inversion is 
proposed [18]. Application of inversion theory for image 
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analysis and classification is investigated [19]. Sea Surface 
Temperature: SST estimation method with linearized 
inversion of Radiative Transfer Equation: RTE code for 
Advanced Earth Observing Satellite: ADEOS / Ocean Color 
and Temperature Scanner: OCTS is proposed [20]. 

Estimation of SST, wind speed and water vapor with 
microwave radiometer data based on simulated annealing is 
proposed as one of the microwave radiometer data 
applications [21]. Nonlinear optimization-based SST 
estimation methods with remote sensing satellite-based 
Microwave Scanning Radiometer: MSR data is proposed. 
[22]. 

Simultaneous estimation of geophysical parameters with 
microwave radiometer data based on accelerated Simulated 
Annealing: SA is proposed [23]. Meanwhile, sensitivity 
analysis for water vapor profile estimation with infrared 
sounder data based on inversion is proposed [24]. 

Data fusion between microwave and thermal infrared 
radiometer data and its application to skin sea surface 
temperature, wind speed and salinity retrievals is proposed 
[25]. Comparative study of optimization methods for 
estimation of SST and ocean wind with microwave radiometer 
data is proposed [26]. 

III. CONVENTIONAL METHOD 

A. Traditional Method for Estimation of Sea Ice 
Concentration 
The estimation of sea ice concentration using a microwave 

radiometer has been actively performed since 1972, when the 
satellite NIMBUS-5 equipped with the microwave radiometer 
Electrically Scanning Microwave Radiometer: ESMR was 
launched. Gloersen et al. Have proposed a method for 
estimating the sea ice concentration of Antarctic one-year ice 
by the following equation. 

C=(Tb-135)/(εTs-135)             (1) 

where, C is the sea ice concentration, Tb is the brightness 
temperature observed by the sensor, Ts is the physical 
temperature of the 1-year ice, ε is the emissivity of the ice, and 
is 0.92 in the case of the 1-year ice in the nadir. The constant 
135 is the sum of the brightness temperature of the open water 
surface (120K) and the atmospheric radiation (15K). 

U.S. Navy uses the same NIMBUS-5 / ESMR, and as 
shown in Fig. 1, the brightness temperature when sea ice is 
100% is 240K, and the brightness temperature when seawater 
is 100% is 135K, and the observed brightness temperature 
during that period is 135K. 

The sea ice concentration was expressed as a linear 
relationship with the brightness temperature, and the sea ice 
concentration map was created constantly. In Japan, MOS-1 / 
MSR is often used to estimate the sea ice concentration of 
one-year ice. For example, a formula using a band of 31 GHz 
has been proposed as follows. Here, is the output (digital 
number) D of the 31 GHz channel. 

C = 4.17D－220.83              (2) 

 
Fig. 1. A Relationship between Ice Concentration and Brightness 

Temperature. 

B. Comiso’s Bootstrap Algorithm 
Furthermore, recently, NASA Team algorithm and 

Comiso's Bootstrap algorithm have been proposed to improve 
the estimation accuracy [3],[4]. In the NASA Team algorithm, 
a linear combination function of the sum / difference ratio 
(PR) of the vertical and horizontal polarization channels at 19 
GHz and the sum / difference ratio (GR) of the vertically 
polarized waves at 37 GHz and 19 GHz is used by regression 
analysis beforehand. It is estimated using the obtained 
coefficients. At this time, it is considered that it is possible to 
estimate the composition ratio separately for one-year ice and 
perennial ice, and it is also called a weather filter to remove 
cloud and water vapor. It is also being done. 

PR=(Tb(19V)－Tb(19H))/(Tb(19V)+Tb(19H))          (3) 

GR=(Tb(37V)－Tb(19V))/(Tb(37V)+Tb(19V))          (4) 

f=(C1+C2PR+C3GR+C4PR*GR)/D  
          (5) 

Cm=(C9+C10PR+C11GR+C12PR*GR)/D           (6) 

D=C5+C6PR+C7GR+C8PR*GR            (7) 

where, the Weather Filter means that if the GR calculated 
from 19 and 37 GHz is 0.05 and the GR calculated from 19 
and 22 GHz is 0.045 or more, the sea ice concentration is 0. 

Here, Cf and Cm are the composition ratios of one-year 
and perennial ice. In Comiso's Bootstrap algorithm, training 
samples are pre-instructed by a human in advance, and they 
are referred to obtain the sea ice concentration by the 
following formula. 

𝐼𝐶 =
�(𝑇𝑏1−𝑇𝑏1

𝑤 )2+(𝑇𝑏2−𝑇𝑏2
𝑤 )2

�(𝑇𝑏1
𝑙 −𝑇𝑏1

𝑤 )2+(𝑇𝑏2
𝑙 −𝑇𝑏2

𝑤 )2
             (8) 

where, IC is the sea ice density, Tbx is the brightness 
temperature of different frequency channels (19 and 37 GHz 
are often used), and Tbx

 w is the open surface and ice 
brightness temperature, respectively. Represents temperature. 
Furthermore, in the Comiso's Bootstrap algorithm, a sea 
surface mask algorithm is also proposed, and correction of sea 
ice temperature is also considered [5]. 

Thus, several formulas for estimating sea ice concentration 
have been proposed, but it is said that the antenna brightness 
temperature of a microwave radiometer is expressed as a 
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linear combination by the mixing ratio of the brightness 
temperature of sea ice and sea water. It is based on 
assumptions. However, as can be seen from the two-
dimensional scatter diagram of vertically polarized waves of 
19 and 37 GHz of SSM / I in the Arctic Ocean region (image 
shown in Fig. 3) on January 1, 1989, as shown in Fig. 2. 

The distributions of 1-year ice and perennial ice have a 
large overlap and show a large dispersion, and further, they 
also largely overlap with those of cloud or water vapor-rich 
regions. Therefore, it is difficult to improve the estimation 
accuracy of sea ice concentration. 

 
Fig. 2. Two-Dimensional Scatter Plot between 19 V and 37 V Channels of 

SSM/I Data of Arctic Ocean Area Acquired on Jan. 1 1989. 

 
Fig. 3. A Portion of SSM/I 19 GHz H-Polarization of Image. 

In addition, the antenna brightness temperature of the 
microwave radiometer changes depending on other factors 
such as water vapor and cloud water content. Therefore, an 
algorithm that considers those influences is necessary. In this 
research, we tried to use the method of category 
decomposition for sea ice concentration estimation. In doing 
so, the effects of cloud and water vapor are added by adding 
them to the category. 

IV. PROPOSED METHOD 

A. Linear Model of Pixel Spectral Vector 
The author has already proposed a method of category 

decomposition based on the solution of the inverse problem6). 
According to this, when k types of categories are included in 
the pixels of the multiple spectral image, if the area ratio of 
each category is aj, (j = 1, ..., k), the spectral vector P is It is 
represented by the following equation by a typical spectral 
vector Mj. 

𝑃 = ∑ 𝑎𝑗𝑀𝑗
𝑘
𝑗=1               (9) 

∑ 𝑎𝑗 = 1𝑘
𝑗=1             (10) 

𝑎𝑗 ≥ 0              (11) 

The area ratio can be estimated by the following equation, 
where n is the number of observation channels and k is the 
number of decomposed categories. 

P=MA 

𝑃 = [𝑝1,𝑝2, … ,𝑝𝑛]𝑡 

𝑀 = [𝑀1,𝑀2, … ,𝑀𝑘]  

𝐴 = [𝑎1,𝑎2, … ,𝑎𝑘]𝑡           (12) 

P is a vector that aligns the brightness temperatures 
observed at different frequencies, and Mj is a vector that 
consists of representative brightness temperatures of 
categories such as sea ice and open water surface in each 
observation channel. A is a vector showing the area ratio of the 
category. Hereinafter, P, A, Mj, and M will be referred to as an 
observation vector, an area ratio vector, an average vector, and 
an average matrix, respectively. 

It is already known that M can be estimated by extracting 
training samples from the image, and P is an observed value. 
Based on this basic model, the area ratio of each category (one 
of them is sea ice concentration) is obtained by using the 
inverse problem-solving method. This method includes the 
Moore-Penrose type generalized inverse matrix, the observed 
least squares method, the area ratio least squares method, the 
maximum likelihood grid search method, etc., as shown in [6]. 

B. Moore-Penrose Type Generalized Inverse Matrix 
In the above linear model, if the mean matrix M is regular, 

there is an inverse matrix: 

A = M-1P             (13) 

Therefore, the area ratio can be easily calculated. However, 
since M is rarely regular, the Moore-Penrose generalized 
inverse matrix shown below is needed. 
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A = (MtM) -1MtP = M + P           (14) 

However, since this method does not consider the 
measurement error of the data, the estimation error may be 
large, or the total of the mixing ratios may not be 1. Therefore, 
the method using the least squares method with the following 
constraint conditions is used. 

C. Estimation using the Least Squares Method based on 
Observed Value 
If the observed value contains an error, the accuracy is 

improved by minimizing the error between the observed 
vector P and the estimated value P '= MA of the true value. 
The restraint conditions at that time are as follows: 

|P-MA|→min 

𝑢𝑡𝐴 = 1 (𝑢 = [1,1, … ,1]𝑡) 

𝑎𝑗 ≥ 0(𝑗 = 1,2, … , 𝑘)           (15) 

If the non-negative condition aj=0 is removed, it can be 
analytically solved by using Lagrange's undetermined 
multiplier method as the constrained least squares method. 
Therefore, let λ be an undetermined multiplier and consider 
the following function F. 

𝐹(𝐴, 𝜆) = 1
2

|𝑃 −𝑀𝐴|2 − 𝜆(𝑢𝑡𝐴 − 1)         (16) 

A can be obtained by solving the following simultaneous 
equations. Eq. (17) can be rewritten in vector form and Mt (P
－MA) － λu = 0. 
𝜕𝐹
𝜕𝑎𝑗

= −𝑚𝑗
𝑡(𝑃 −𝑀𝐴) − 𝜆 = 0(𝑗 = 1,2,3)         (17) 

𝜕𝐹
𝜕𝑎𝑗

= −(𝑢𝑡𝐴 − 1) = 0           (18) 

This equation can be solved for A if mj (1,2,3) is first-order 
independent, and becomes. 

A = M + P + λ (MtM) -1u           (19) 

Substituting this into Eq. (18) gives and λ is determined. 

𝜆 = 1−𝑢𝑡𝑀+𝑃
𝑢𝑡(𝑀𝑡𝑀)−1𝑢

(𝑀𝑡𝑀)−1𝑢           (20) 

Therefore, from Eq. (19), the estimated value of the area 
ratio vector A is obtained as. 

A = M + P + 1−𝑢𝑡𝑀+𝑃
𝑢𝑡(𝑀𝑡𝑀)−1𝑢

(𝑀𝑡𝑀)−1𝑢          (21) 

By the way, in the actual measurement data, the matrix M 
is not always equal to the true representative value vector Mo. 
Let this difference be E. If the true area ratio vector A0 and the 
observation vector does not include an error, the following 
equation holds. 

M=M0+E 

P=M0A0             (22) 

Therefore, when M and P are given by Eq. (22), the area 
ratio vector A1 obtained by Eq. (21) is 

𝐴1=𝐴0- M + E𝐴0 + 𝑢𝑡𝑀+𝐸𝐴0
𝑢𝑡(𝑀𝑡𝑀)−1𝑢

(𝑀𝑡𝑀)−1𝑢         (23) 

which is an estimated error of the area ratio vector can be 
estimated by the following Eq. (24). 

𝐴1 − 𝐴0 =- M + E𝐴0 + 𝑢𝑡𝑀+𝐸𝐴0
𝑢𝑡(𝑀𝑡𝑀)−1𝑢

(𝑀𝑡𝑀)−1𝑢 

≥ ��
𝑢𝑡𝑀+𝐸𝐴0

𝑢𝑡(𝑀𝑡𝑀)−1𝑢
(𝑀𝑡𝑀)−1𝑢� − {𝑀+𝐸𝐴0}� 

= �𝑐𝑜𝑠(𝛽)
𝑐𝑜𝑠(𝛼)

− 1� |𝑀+𝐸𝐴0|            (24) 

where α is the angle between u and (MtM) -1u, and β is the 
angle between u and M + EA0. On the other hand, the area 
ratio vector A' calculated algebraically for the same data and 
its estimation error are as follows: 

A’=A0-EA0 

|A’-A0|=|M+EA0|            (25) 

and from Eq. (24), in some cases a much larger error can 
occur than in the algebraic solution. 

That is, the estimation accuracy depends on the accuracy 
of the matrix M composed of the representative values of each 
category. 

D. Estimation by Area Ratio Least Squares Method [7] 
In the least-squares method of observed values, the area 

ratio was obtained because the problem of the 
representativeness of M can be expressed as the error of the 
observation vector. However, when using the actual 
measurement data, the representativeness of M is more 
important than P, and it has a great influence on the estimation 
accuracy of the area ratio. Therefore, the estimated value N of 
the generalized inverse matrix M0

+ of the true representative 
value matrix and the area ratio vector A are set as unvalued, 
and A that minimizes the residual difference between M+ and 
N is obtained from the following formula. 

|M+-N|→min 

A=NP 

utA=1              (26) 

The area ratio vector obtained by this method agrees with 
the one obtained by the following least squares method with 
constraints. 

|A-M+P|→min 

utA=1              (27) 

bNow, again, Lagrange's undetermined multiplier method 
is used to solve equation (27). Eliminating A from Eq. (27) 
from the residual V = M+-N, the following equation is 
obtained. 

|V|→min 

Ut(M+-V)P=1            (28) 

91 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 12, 2020 

Let λ be an undetermined multiplier and consider the 
following function. 

𝐹(𝑉, 𝜆) = 1
2

|𝑉|2 − 𝜆(𝑢𝑡(𝑀+ − 𝑉)𝑃 − 1)         (29) 

V is obtained as the solution of the simultaneous cubic 
equation (Eq. (30), (31). 
𝜕𝐹
𝜕𝑉𝑗𝑖

= 𝑉𝑗𝑖 + 𝜆𝑝𝑖 = 0 (𝑗 = 1,2, . . ,𝑛), (𝑖 = 1,2, . . . ,𝑛)        (30) 

𝜕𝐹
𝜕𝜆

= −{𝑢𝑡(𝑀+ − 𝑉)𝑃 − 1} = 0          (31) 

Also, Eq. (30) can be rewritten in the form of a matrix and 
becomes m. 

V=- 𝜆𝑢𝑃+            (32) 

By substituting this into Eq. (31) and determining λ, 

𝜆 = 1−𝑢𝑡𝑀+𝑃
|𝑢|2|𝑃|2

            (33) 

Therefore, V, N, and A are obtained as follows. 

𝑉 = −1−𝑢𝑡𝑀+𝑃
|𝑢|2|𝑃|2

𝑢𝑃2           (34) 

𝑁 = 𝑀+ + 1−𝑢𝑡𝑀+𝑃
|𝑢|2|𝑃|2

𝑢𝑃𝑡           (35) 

𝐴 = 𝑀+𝑃 + 1−𝑢𝑡𝑀+𝑃
|𝑢|2

𝑢           (36) 

where, if M and P are given in the same way as in the case 
of the observed least squares method, the estimated area ratio 
vector A2 and the estimation error | A2-A0 | are given by (37) 
and (38). 

𝐴2 = 𝐴0 − 𝑀+𝐸𝐴0 + 1−𝑢𝑡𝑀+𝑃
|𝑢|2

𝑢          (37) 

|𝐴2 − 𝐴0|2 = |𝑀+𝐸𝐴0|2 − 1−𝑢𝑡𝑀+𝐸𝐴0
|𝑢|2

         (38) 

The estimation accuracy of the area ratio least squares 
method is as good as the second term on the right side of (38), 
and the problem that the estimation accuracy is extremely 
poor depending on the property of the matrix M as in the 
conventional method is solved. It seems to be that. utA = 1 is 
an equation of a plane in k-dimensional vector space, where A 
is a variable, and its normal vector is u. M+P is also a point in 
the k-dimensional vector space. 

This is to find the point on the plane utA1 with the 
minimum distance from the point M + P. In other words, it is 
enough to find the foot of the perpendicular line from the 
point M + P to the plane utA = 1. Since the perpendicular is 
parallel to the vector u, the equation of the perpendicular can 
be written as v with λ as a parameter. 

A=M+P+ 𝜆𝑢            (39) 

Eq. (36) is obtained by finding the intersection of this and 
the plane. 

utA = 1             (40) 

then eliminating A and finding λ. 

E. Maximum Likelihood Grid Search Method [8] 
As in the case of the least square method, the observation 

value vector is P, the area ratio vector is A, and the 
representative value matrix is M. At that time, it is assumed 
that the observation value is given in a form in which the 
observation error ε is added to the linear combination of M 
and A. 

P=MA+ 𝜀 

𝑃 = [𝑝1,𝑝2, … ,𝑝𝑛]𝑡 

𝑀 = �
𝑚11 … 𝑚1𝑘
⋮ ⋮ ⋮

𝑚𝑛1 … 𝑚𝑛𝑘

� 

𝐴 = [𝑎1,𝑎2, … ,𝑎𝑘]𝑡 

𝜀 = [𝜀1, 𝜀2, … , 𝜀𝑘]𝑡           (41) 

Then, assume that the element mij protection of M follows 
the normal distribution: 𝑁(𝑚𝑖𝑗

∗ ,𝜎𝑖𝑗2)  with mean mij and 
variance σ ij

2, and ε i follows 𝑁(𝑜,𝜎𝑒𝑖2 ) , and consider the 
observation value vector P as a random variable. At that time, 
the observed value of the i-th band pi follows the normal 
distribution 𝑁(𝑚𝑖

∗,𝜎𝑖2) of mean mi and variance σ ij
2 expressed 

by the following equations (42) and (43). However, the 
representative values of each category are assumed to be 
independent of each other. 

𝑚𝑖 = 𝑚𝑖
∗・𝐴,𝑚𝑖

∗ = [𝑚𝑖1
∗ ,𝑚𝑖2

∗ , … ,𝑚𝑖𝑘
∗ ]         (42) 

𝜎𝑖2 = 𝐴𝑡・𝑆𝑖 + 𝜎𝑒𝑖2 , 𝑆𝑖 = 𝑑𝑖𝑎𝑔(𝜎𝑖12 ,𝜎𝑖22 , … ,𝜎𝑖𝑘2 )        (43) 

where diag represents a diagonal matrix. The probability Q 
(pi) that the observed value pi of the i-th band is observed is 
expressed by the following equation. 

𝑄(𝑝𝑖) = 1

�2𝜋𝜎𝑖
2
𝑒𝑥𝑝 �− (𝑝𝑖−𝑚𝑖)2

2𝜎𝑖
2 �           (44) 

where the probability that the observed value vector P is 
observed is Q (P), it is expressed by the following equation.  

𝑄(𝑃) = Π𝑖=1𝑛  𝑄(𝑝𝑖)           (45) 

The calculated area ratio A is the value when Q (P) is at its 
maximum. Therefore, the area ratio A that minimizes the 
following equation R (P) must be obtained. 

R(P)=-ln{Q(P)}            (46) 

∑ 𝐴𝑗𝑘
𝑗=1 = 1,𝐴𝑗 ≥ 0, (𝑗 = 1,2, … , 𝑘)         (47) 

In practice, the ratio of each category is changed every 1%, 
R (P) is calculated for all the combinations, and A is 
determined. Therefore, it is called the maximum likelihood 
grid search method. 

V. EXPERIMENTS 
The most important thing in valid intercomparing between 

methods is correct data. Here, we tried the evaluation by the 
simulation data that can give the correct answer and the 
evaluation by the correct answer data created from the 
synthetic aperture radar image. 
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A. Simulation Data Used 
The SSM / 1 data of 19GHz vertical, horizontal 

polarization, 22GHz vertical polarization, 37GHz vertical, 
horizontal polarization of the above-mentioned January 1, 
1989 Arctic were used. Simulation data is created based on the 
training sample data extracted from SSM / I data, and the 
proposed method is applied to compare the accuracy. The 
procedure for creating the simulation data was as follows. 

1) Create mixture ratio data for multiple categories. 
2) Extract training samples for the category to be 

classified from the SSM / I image. 
3) Considering the variance of the training sample in (2), 

output the data given the error according to the normal 
distribution according to the mixing ratio in (1) for the number 
of bands. 

4) Obtain a new training sample from the data obtained in 
(3). 

In this experiment, there are four categories: annual ice, 
perennial ice, open water surface, and clouds, and sea ice 
concentration is calculated as the sum of the mixing ratios of 
annual ice and perennial ice. 1-year ice is from the mouth of 
the Amur River to the open ocean, perennial ice is from the 
Arctic, open water is from the Scandinavian Peninsula and the 
North Atlantic Ocean in Greenland, and clouds are in the 
Newfoundland and central Portugal. From the located Atlantic 
Ocean, respectively, they were extracted as training samples. 
The bands used are 5 bands of 19H, 19V, 22V, 37H, 37V. 
Table I is a training sample of each category extracted from 
the actual SSM / I image. 

B. Simulation Result 
Table II shows the Root Mean Square: RMS error and 

CPU Time (Elapsed time) from the correct data. 

In this table, LSQ is the least squares and MLH is the 
maximum likelihood grid search method, respectively. As for 
the inverse problem-solving method, the method with the 
constraint condition is more accurate. It is also slightly better 
than the NASA Team and Comiso's Bootstrap algorithms. 
Furthermore, the maximum likelihood grid search method was 
confirmed to improve the accuracy by 45% with respect to the 
Comiso's Bootstrap algorithm. However, as the number of 
categories increases, the amount of calculation increases 
exponentially, so it takes considerably longer than the linear 
solution method. 

C. Experimental Method with Real SAR Data 
SAR has a much higher spatial resolution than SSM / I. In 

addition, in the case of L-band SAR, sea ice generally has a 
higher backscattering cross section than the sea discharge 
surface, so it is relatively easy to identify it if effects such as 
sea surface wind speed are taken into consideration. 
Furthermore, because of its long wavelength, it is hardly 
affected by clouds. Utilizing this, sea ice concentration data 
corresponding to SSM / I images was created from SAR 
images, and the accuracy of the inverse problem-solving 
method was evaluated using the data as correct answer data. 

First, for each pixel of the SAR image, the categories of 
sea ice and open water surface are classified using the 
difference in backscattering cross section. Due to the 
difference in resolution, there are about 7,000 SAR pixels 
corresponding to SSM / I pixels. Since the latitude and 
longitude are known in both images, the sea ice concentration 
was estimated from the SAR image by matching both images 
based on them. 

JERS-1 / SAR images of the Sea of Okhotsk facing the 
coastline of northern Hokkaido were used. The date and time 
are from February 4 to 9, 1994, and the exact location is 
143~146 degrees east longitude and 43.5~46 degrees north 
latitude. One pixel of JERS-1 is 12.5mx 12.5m, but this time 
we used the data processed to 300mx 300m. Each pixel is data 
corresponding to −20 dB to 5.5 dB. Here, the important point 
is the threshold that distinguishes sea ice from open water. Fig. 
4 is a histogram of pixel values of the SAR image used this 
time. 

The higher backscattering cross section is sea ice, and the 
lower backscatter cross section is the open water surface 
distribution. From this figure, it is appropriate to set it to 60 to 
70 (actual value is -14dB to -13dB). In the experiment, -13.5 
dB was used as the threshold. 

Fig. 5 shows the image of JERS-1/SAR data of Okhotsk 
acquired on February 4 to 9 1994. 

TABLE I. MEAN AND VARIANCE OF THE TRAINING SAMPLES 

 Mean of Brightness Temperature (K)  

 19H 19V 22V 37H 37V 

Multi Year Ice 209.8 228.2 224.4 193.8 206.8 

First Year Ice 235.1 246.4 244.3 229.4 236.7 

Open Water 105.1 179.4 187.8 138.1 203.6 

Could 163 211.4 235.3 208.6 237.7 

 Standard Deviation of Brightness Temp. (K) 

Multi Year Ice 24.82 23.19 23.9 35.57 40.86 

First Year Ice 25.3 28.24 28.01 34.3 28.45 

Open Water 24.26 12.31 15.2 33.58 12.72 

Could 120.9 69.22 76.75 188.37 99.68 

TABLE II. A COMPARISON OF RMS ERROR AND CPU TIME 

Method RMSE CPU Time(sec) 

Moore-Penrose 7.83 4.32 

LSQ Minimizing Observation Vector 7.66 4.43 

LSQ Minimizing Mixing Vector 7.53 4.17 

MLH Search All Possible Solution 4.2 9.88 

NASA Team Algorithm 7.71 4.26 

COMISO's Bootstrap Algorithm 7.67 4.75 
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Fig. 4. Histogram of the SAR Image (Digital Number VS Frequency). 

 
Fig. 5. JERS-1/SAR Image of Okhotsk acquired on February 4 to 9, 1994. 

D. Experimental Result with Real SAR Data 
Looking at the RMS error of each method, Moore-Penrose 

generalized inverse matrix (13.63%), observed least squares 
(12.96%), area ratio least squares (12.80%), NASA algorithm 
(12.66%), Comiso's Bootstrap algorithm (12.58%) and the 
maximum likelihood grid search method (12.40%) were 
confirmed, and it was confirmed that the accuracy was high in 
almost the same order as the comparative evaluation results by 
simulation. However, a low estimation accuracy was obtained 
overall, which is considered to be due to the following reasons. 

1) Error in alignment 
2) Error of estimated data from SAR image 
3) Moving sea ice 

Due to the large difference in the resolution of the images 
used this time, 25 km square and 0.3 km square, and the 
physical characteristics of sea ice concentration, it is possible 
that a slight error in the registration caused a large error in the 
estimation results. 

The author artificially generated images that were shifted 
by 0.5 pixels in SMM / I and in the north, south, east, and west. 
From the result, there is a possibility that the maximum is 
shifted by 0.5 pixels. If SSM / I pixel shifts by 0.5 pixel, it is 
12.5km, which is quite large. In addition, since the sea ice 
present at this site is drift ice, it is considered that the 
difference between the observation times of both data is also 
relevant. Furthermore, as can be seen from the histogram, the 
distribution of backscatter values of sea ice and the 
distribution of objects on the sea surface largely overlap. An 
estimation error occurs from here. The threshold that 
minimizes the estimation error can be set but cannot be 0. The 
reason for this distribution is that the surface condition of the 
drift ice is complicated and has various forms. 

VI. CONCLUSION 
From the result of the simulation experiment and the 

experiment using the sea ice concentration estimated from the 
synthetic aperture radar, it was confirmed that the inverse 
problem solution is effective for the sea ice concentration. In 
particular, the least-squares method with the constraint of the 
square of the estimation error of the observed value and the 
estimation error of the mixture ratio was found to be effective. 
However, the accuracy of estimation is slightly inferior to that 
of the maximum likelihood grid search method because the 
calculated area ratio does not include a non-negative condition 
and the variance of the brightness temperature of the training 
samples in the category is not taken into consideration. 

Compared to these, the NASA Team and Comiso's Boot-
strap algorithms have almost the same estimation accuracy as 
the least-squares method that constrains the squares of the 
estimation error of the observed value and the estimation error 
of the mixture ratio, and the maximum likelihood grid search 
method. It was also confirmed that the estimation accuracy 
was slightly inferior. 

The maximum likelihood grid search method was 2.1% 
and 1.5% higher than that of NASA Team and Comiso's 
Bootstrap algorithm, respectively, based on the results of 
experiments using the correct solution of sea ice concentration 
estimated from the synthetic aperture radar in the Okhotsk sea 
area. It was confirmed that the estimation accuracy of was 
improved. The reason is that only the maximum likelihood 
grid search method considers not only the average value of the 
brightness temperature of each category but also the variance. 

VII. FUTURE RESEARCH WORKS 
The proposed method must be tested with the other 

microwave radiometer data as well as synthetic aperture data. 
Also, influences of sea ice concentration on global warming 
based on the estimated concentrations. 
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