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Abstract—Convolutional Neural Networks (CNN) is a 
powerful deep learning method which is mostly used in image 
classification and image recognition applications. It has achieved 
acceptable accuracy in these fields but it still suffers some 
limitations. One of these limitations of CNN is the lack of ability 
to be invariant to the input data due to some transformations 
such as rotation, scaling, skewness, etc. In this paper we present 
an approach to optimize CNN in order to enhance its 
performance regarding the invariant limitation by using Hu’s 
moments. The Hu’s moments of an image are weighted averages 
of the image’s intensities of the pixels, which produce statistics 
about the image, and these moments are invariant to image 
transformations. This means that, even if some changes were 
made to the image, it will always produce almost the same 
moments values. The main idea behind the proposed approach is 
extracting Hu’s moments of the image and concatenating them 
with the flatten vector then feeding the new vector to the fully 
connected layer. The experimental results show that an 
acceptable loss, accuracy, precision, recall and F1 score have 
been achieved on three benchmark datasets which are MNIST 
hand written digits dataset, MNIST fashion dataset and the 
CIFAR10 dataset. 

Keywords—CNN; image transformations; invariant; Hu’s 
moments 

I. INTRODUCTION 
Convolutional Neural Networks (CNN) have achieved an 

acceptable accuracy in classifying images, but it still suffers 
some limitations [1],[17],[21]. One of these limitations is the 
lack of ability to be spatially invariant to the input data due to 
some transformations [14]. Most present approaches usually 
use dataset augmentation to solve this issue [2],[4],[21], but 
this needs larger number of model parameters and more 
training data, and may result in significantly increased training 
time and larger chance of under- or overfitting [14],[25]. The 
effect of this issue is even more obvious when dealing with 
domain-specific problems. E.g. in medical imaging datasets, 
the rotation can be extraneous due to the symmetric nature of 
some biological assemblies. However, the scale is constant 
during imaging process and should not be deemed as a 
nuisance factor. Moreover, scale-invariance can decrease the 
performance if object size is informative, for example, in case 
of classifying healthy cells from cancer cells [15],[28]. 

Equivariance and invariance are sometimes used 
interchangeably but these terms are different from each other. 
“Equivariance” means varying in a similar or “equivalent 
proportion” while “invariant” means “no variance at all” 
[6]. More formally, a function ƒ is equivariant with respect to 

transformation Ƭ if ƒ(Ƭ(x)) = Ƭ (ƒ(x)). This means that, 
applying the transformation to x is similarly equivalent to 
applying the transformation to the result ƒ(x). Invariant is a 
special case of equivariant. A function ƒ is invariant with 
respect to a transformation Ƭ if ƒ(Ƭ(x)) = ƒ(x). this means the 
result through ƒ does not change when a transformation is 
applied to the input image [27],[8]. 

CNN is translation equivariance by nature because of the 
convolution operations [32], since it convolves all over the 
input image in order to detect the image’s features. So, even if 
an object was shifted, it will still be detected regardless to its 
position in the image. Also, pooling operations can make 
CNN rotation equivariance but only if the object was rotated 
slightly, but as the degree of rotation increases the CNN may 
fail to classify the object correctly. Although CNN is 
translation and slight rotation equivariance, it is not 
translation, scaling or rotation invariant 
[5],[7],[24],[26],[32],[31]. 

The problem of transformation invariant in image 
classification might cause issues in some fields like robotics 
and autonomous cars. Because of the movement of the robot 
or the car, the received images might be distorted, translated, 
scaled or rotated. Therefore, even if the robot or the car is 
trained to recognize an object they might fail to do so and 
might cause problems [17],[3],[35]. Image classification is 
important in surveillance systems to detect unusual activities. 
Therefore, the invariant problem might cause problems either 
by classifying an object to be a threat while it is not then 
making a false alarm, or by classifying an object as a safe 
object while it is a threat and, in this case, it might lead to a 
breach of the system [17]. In health care, image classification 
is used to classify medical images of the patient in order to 
help diagnose him/her based on the classified images. The 
invariant problem in this application might cause issues that 
lead to a misdiagnose of the patient’s condition. 

The main objective and contribution of this work is to 
enhance CNN regarding the invariant limitation in order to 
achieve higher accuracy in image classification by using Hu’s 
moments of the image [23]. The Hu’s moments of an image 
are weighted averages of the image’s intensities of the pixels, 
which produce statistics about the image, and these moments 
are invariant to image transformations [18], [36]. This means 
that, even if some changes were made to the image or if the 
shape outline got slightly thicker, it will always produce 
almost the same moments values [9].  Therefore, the Hu’s 
moments of the image can be fed to the CNN in order to make 
it invariant to image transformations. The taxonomy of this 
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paper will be as follows: Section 2 shows some previous 
works in this field, Section 3 explains the basics of CNN, 
Section 4 presents the proposed approach, Section 5 shows the 
experimental results, and Section 6 shows conclusion. 

II. RELATED WORK 
Mahesh et al., [18],[19] and Tahmasbi et al. [29] proposed 

approaches to solve the invariant problem of CNN using 
Zernike moments. Mahesh et  al., [18],[19]  proposed a 
technique which uses Zernike moments in CNN to evaluate 
the discrimination between face and non-face patterns, and 
gender classification using facial expression recognition. Their 
main contribution is the use of Zernike moments as an initial 
filter, in order to show some unique features of the image that 
might be helpful to distinguish faces from non-faces image, 
and gender classifications. They have achieved an accuracy of 
100% in distinguishing faces from non-faces images but that 
is not impressive as it sounds because the discrimination 
between faces and non-faces is not a hard problem in 
computer vision any more [10]. In facial expression 
recognition, they have achieved an accuracy of 87.22%. The 
main drawback of their work is feature loss. The use of a filter 
based on Zernike moments might lead to feature loss in some 
cases. 

McNeely-White, et al., [21] Anselmi, et al. [2] and Bruna 
& Mallat, [4] studied the CNN representations invariance and 
equivariance to input image transformations. McNeely-White, 
et al. [21] estimated the linear relationships between 
representations of the original and transformed images. 
Although they have achieved good results but their work is 
considered as data augmentation, and it is not a solid solution 
to the invariant problem of the CNN. 

Cohen & Welling, [7] Gens & Domingos [11] and Mallat 
[20], analyzed the behavior of the linear representations in 
relation to symmetry groups, resulting in feature maps that are 
more invariant to these symmetry groups. Cohen & Welling 
[7], have revealed that the entire class of such models can be 
understood mathematically. Although, they have proven their 
concept mathematically, but their approach still suffers 
asymmetric world that we live in as described in their own 
words, “Our approach should also deal better with 
(approximately) symmetric objects, for which it is not possible 
to unambiguously estimate pose and motion (what is the pose 
of a circle?).”. Also, their current model is not suitable for 
dealing with large images and they consider it as a proof of a 
concept. 

Jaderberg, et al., [14] Hinton [13] and Tieleman [30], have 
introduced a self-contained module for neural networks. 
Jaderberg, et al., [14] performed spatial transformations of 
features by using localization network, parametrized sampling 
grid, and spatial transformer networks. As in [21] they have 
used data augmentation which, as it has previously mentioned, 
is not a robust solution for the invariant problem. 

Hinton, et al. [13] and Hinton, et al., [26] proposed a novel 
CNN architecture which is built up of capsules. These 
capsules contain group of neurons that are responsible of the 
instantiation parameters of an entity such as pose velocity and 

albedo; these capsules will then represent information in a 
hierarchal from. 

The basic theory of their work is that every entity is made 
up of several smaller entities, so each capsule will try to 
predict the output of the higher layer capsules, and the 
capsules which have a greater agreement with the higher layer 
will be coupled to the parent even more through a positive 
feedback loop. 

Although this work is impressive but it has some 
shortcomings. The authors have not stated how the weights 
“W” are learned. Also, the algorithm produces an additional 
hyper parameter “r” which means more computational 
complexity. Although the algorithm has achieved the state-of-
the-art accuracy on MNIST dataset but it fails to preform so 
well in CIFAR-10 dataset. 

Cheng, et al., [5] Girshick, et al. [12] and Zhang, et al., 
[34] proposed a method to make CNN rotation invariant. 
Cheng, et al., [5] added a rotation-invariant layer and Fisher 
discriminative layer to the CNN in order to make it rotation 
invariant. These layers will try to learn the objects rotations 
based on the class, so it can predict the rotation of an object 
when it recognizes it. They have implemented their algorithm 
to some famous CNN like VGG and AlexNet, and achieved 
high accuracy but their work is only directed to rotation 
invariant, but they did not solve translation or scaling invariant 
problem in CNN. 

Laptev, et al., [15] Su, et al. [28] and Wu, et al., 
[33] proposed a framework to combine a previous knowledge 
on nuisance variations with data when training the network. 
Laptev, et al. [15], formulated a set of transformations and 
generated multiple images based on these transformations. 
Then these transformed images are passed through initial   
layers of the network, and through TI-POOLING operator to 
from transformation-invariant features. Although they have 
achieved transformation invariance by pooling transformed 
features maps, but it added huge computational complexity to 
the network because of the forward and backward passes for 
each element. 

Worrall, et al., [32] Vedaldi [16] and Memisevic & Hinton, 
[22] presented a CNN which is equivariant to patch-wise 
shifting and continuous 360° rotation. Worrall, et al., 
[32] reconstructed the regular CNN filters by using derivations 
from complex harmonics, returning a maximal response and 
orientation for every receptive field patch. Using these derived 
filters CNN can be invariant to translation and rotation but not 
scaling. Also, their work has a disadvantage of the higher per-
filter computational cost as they must derive and reconstruct 
all the filters in the CNN. 

Up to our knowledge, most of the researches that were 
studied in the literature review solved the invariant problem of 
the CNN partially or used data augmentation. In this work, we 
proposed a general approach to solve the problem with no data 
augmentation. 
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III. CONVOLUTIONAL NEURAL NETWORK 
Convolutional Neural Network (CNN) [17] is a major in 

deep learning which is mostly used in image classification and 
image recognition tasks due to its convolutional architecture. 

Generally, CNN consists of the following phases: 

Phase 1: Feature extraction 

In this phase, number of filters or kernels will be used to 
scan the input image, in order to extract features from that 
image, for example, vertical edges, horizontal edges, corners, 
etc.  

Phase 2: Non-linearity activation 

After scanning the filters on the input image, each filter 
will produce an image which contains the extracted features. 
The output image must go through a mathematical function 
which is called Activation Function. In this work, the 
activation function that will be used is ReLU, which stands for 
Rectified Linear Unit, which simply converts all the negative 
values to 0 and keeps the positive values the same as shown in 
equation (1). 

R(x) = Max (0, x)             (1) 

Phase 3: Pooling 

Similar to the Convolutional Layer, the Pooling layer is 
responsible for reducing the spatial size of the Convolved 
Feature. This is to decrease the computational power required 
to process the data through dimensionality reduction. 

Phase 4: Dropout 

Dropout is used to reduce the CNN overfitting by 
randomly turning off neurons, so the CNN can take different 
paths in the training phase. An n-layer fully-connected neural 
network (ignoring bias) can be defined as: 
f (x; {Wi}i ∈ {1,….., n}) = Φn (Wn Φ n-1 (Wn -1 … (W n-1 … (Φ1 (W1x) (2) 

Phase 5: Input vector extraction 

In this phase, CNN converts the 2D matrix to 1D vector, 
so it can be fed into the neural network. 

Phase 6: Network training using the fully connected 
Neural Network. 

Fully connected layer is a neural network which is used to 
provide the final classification of an image based on matrix 
mutilation operations, weights and biases. The input of this 
phase is the flatten vector which was extracted in the previous 
phase and the output is the predicted classification. CNN can 
have several fully connected layers where the output of each 
layer is the input of the next fully connected layer. The 
objective of a fully connected layer is to take the results of 
the convolution/pooling process and use them to classify the 
image into a label. The output of convolution/pooling is 
flattened into a single vector of values; each of which 
represents a probability that a certain feature belongs to a 
label. For example, if the image is of a cat, features 
representing things like whiskers or fur should have high 
probabilities for the label “cat”.  Fig. 1 shows an example of 
how flatten network is fed to the fully connected layer. 

 
Fig 1. Fully Connected Layer. 

IV. PROPOSED APPROACH 
The main objective of our work is to make CNN invariant 

to image transformations, in order to achieve higher accuracy 
in image classification by using Hu’s moments of images [23]. 
The Hu’s moments of an image are weighted averages of the 
image’s intensities of the pixels, which produce statistics 
about the image, and these moments are invariant to image 
transformations [18], [36]. This means that, even if some 
changes were made to the image, it will always produce 
almost the same moments values. Therefore, the Hu’s 
moments of the image can be fed to the fully connected neural 
network in order to enhance CNN regarding invariant to 
image transformations limitation. 

The invariant features can be achieved using central 
moments, which are defined as follows [23], [36]: 

𝜇𝑝𝑞 = ∬ (𝑥 − �̅�)𝑝 (𝑦 − 𝑦�)𝑞 𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦∞
−∞           (3) 

Where p,q = 0,1,2,…. , �̅� = 𝑚10
𝑚00

 𝑎𝑛𝑑 𝑦� =  𝑚01
𝑚00

 

The pixel point (�̅� ,𝑦�) are the centroid of the image f (x, y). 
The centroid moments μpq computed using the centroid of the 
image f (x, y) is equivalent to the mpq whose center has been 
shifted to centroid of the image. Therefore, the central 
moments are invariant to image translations. Scale invariance 
can be obtained by normalization [36]. 

The normalized central moments are defined as follows: 

η𝑝𝑞 =  𝜇𝑝𝑞
𝜇00
𝛾  𝛾 = 𝑝+𝑞+2

2
,𝑝 + 𝑞 = 2,3, ….          (4) 

Based on normalized central moments,2,3 introduced seven 
moment invariants: 

Ø1 =  𝜼20 + 𝜼02                   (5) 

Ø2 = (𝜼20 −  𝜼02)2 + 4𝜼112 R                 (6) 

Ø3 = (𝜼30 −  𝟑𝜼12)2 + (𝟑𝜼21 −  𝝁03)2 R               (7) 

Ø4 = (𝜼30 + 𝜼12)2 + (𝜼21 + 𝝁03)2 R                (8) 

Ø5= (𝜼30 −  𝟑𝜼12)(𝜼30 + 𝜼12)[(𝜼30 + 𝜼12)2 −
 3(𝜼21 + 𝜼03)2] + (𝟑𝜼21 −  𝜼03)(𝜼21 + 𝜼03)[3(𝜼30 +
 𝜼12)2 −  (𝜼21 + 𝜼03)2]     

              (9) 

Ø6= (𝜼20 −  𝜼02)[(𝜼30 + 𝜼12)2 −  (𝜼21 + 𝜼03)2 ] +
 𝟒𝜼11(𝜼30 + 𝜼12 ) (𝜼21 + 𝜼03)              (10) 
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Ø7= (𝟑𝜼21 −  𝜼03)(𝜼30 + 𝜼12)[(𝜼30 + 𝜼12)2 −
3(𝜼21 + 𝜼03)2] −  (𝜼30 −  𝟑𝜼12)(𝜼21 + 𝜼03)[3(𝜼30 +
 𝜼12)2 − (𝜼21 + 𝜼03)2]               (11) 

The adopted research methodology comprises the 
following steps, as shown in Fig. 2: 

 
Fig 2. Methodology Phases. 

After the flattening operation, Hu’s moments of the 
original image are concatenated with the flattened vector, so 
the CNN can recognize these values in the testing phase. 

Hu’s moments concatenation should make the flatten 
vector more informative and expository. The new vector will 
be fed to the fully connected network; therefore, CNN will be 
trained to see the Hu’s moments, extent and solidity values 
alongside with the features vector, these values will affect the 
neurons’ activations in the network in order to achieve 
transformation invariant. Fig. 3 shows an example of Hu’s 
moments concatenation. 

 
Fig 3. Hu’s Moments Concatenation. 

V. EXPERIMENTAL RESULTS 
We have implemented the proposed approach using 

Python TensorFlow platform powered by Google Colab 
notebook. We have tested our approach on three datasets 
which were MNIST handwritten digits dataset, MNIST 
fashion dataset and CIFAR10 dataset. Finally, we have 
compared our results with the work of [18] which uses 
Zernike moments (ZM) as an initial filter to extract invariant 
features of the images, as motioned above, by implementing 
their approach on the three datasets. ZM are projections of an 
image on to the complex Zernike polynomials that are 
orthogonal over the unit circle. So, a radius must be provided 
in order to calculate the ZM of the image. Therefore, we have 

used the degrees 45° and 90° to extract ZMs of the images. 
Our approach has archived better loss, accuracy, precision, 
recall and F1 score compared with the work of [18] on the 
three dataset MNIST hand written digits, MNIST fashion 
dataset and CIFAR 10 dataset. The use of Zenick moments as 
initial filters led to feature loss which led to a decrease in loss, 
accuracy, precision, recall and F1 score. On the other hand, 
adding Hu’s moments to the flattening vector led to 
discriminative and more informative vector therefore a better 
performance. 

Table I and Table II shows the results of our approach 
compared to the results of [18] approach on MNIST 
handwritten digits dataset. Fig. 4, Fig. 5 and Fig. 6 illustrate 
the loss, accuracy precision, recall and F1 Score respectively 
and they show that our approach achieved better performance 
than [18] approach. 

TABLE I. MNIST HANDWRITTEN DIGITS LOSS AND ACCURACY 
COMPARISONS 

Approach # of Epochs 
Loss 
(cross-entropy) 

Accuracy 

Original CNN 

30 0.062 97.1% 

50 0.022 98.21% 

100 0.018 98.1% 

(Mahesh et al. 
2017) 
45 Degree 

30 0.042 97.7% 

50 0.002 98.81% 

100 0.014 98.4% 

(Mahesh et al. 
2017) 
90 Degree 

30 0.03 97.8% 

50 0.031 98.1% 

100 0.004 98.4% 

Our approach 

30 0.004 98.8% 

50 0.006 99% 

100 0.002 99.2% 

TABLE II. MNIST HANDWRITTEN DIGITS PRECISION, RECALL AND F1 
SCORE COMPARISONS 

Approach # of 
Epochs Precision Recall F1 Score 

Original CNN 

30 99.22% 99.42% 99.61% 

50 99.72% 99.56% 99.73% 

100 99.81% 99.78% 99.8% 

(Mahesh et al. 
2017) 
45 Degree 

30 99.83% 99.72% 99.82% 

50 99.88% 99.77% 99.85% 

100 99.93% 99.82% 99.88% 

(Mahesh et al. 
2017) 
90 Degree 

30 99.85% 99.75% 99.84% 

50 99.90% 99.81% 99.87% 

100 99.92% 99.85% 99.89% 

Our approach 

30 99.94% 99.85% 99.9% 

50 99.95% 99.88% 99.92% 

100 99.96% 99.91% 99.94% 
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Fig 4. MNIST Handwritten Digits Loss Comparison. 

 
Fig 5. MNIST Handwritten Digits Accuracy Comparison. 

 
Fig 6. MNIST Handwritten Digits Precision, Recall and F1 Score 

Comparison. 

Table III and Table IV and Fig. 7, 8 and 9 below show the 
results of our approach implemented on MNIST fashion 
dataset and we have compared our work with [18] approach 
and we achieved better results compared to their work. 

TABLE III. MNIST FASHION LOSS AND ACCURACY COMPARISONS 

Approach # of Epochs Loss (cross-
entropy) Accuracy 

Original CNN 
30 0.35 83.9% 
50 0.235 84.8% 
100 0.249 86.2% 

(Mahesh et al. 
2017) 
45 Degree 

30 0.25 84.6% 
50 0.216 85.9% 
100 0.228 87.1% 

(Mahesh et al. 
2017) 
90 Degree 

30 0.268 84.4% 
50 0.224 85.7% 
100 0.176 86.8% 

Our approach 
30 0.251 89.3% 
50 0.076 90.05% 
100 0.024 91.7% 

TABLE IV. MNIST FASHION PRECISION, RECALL AND F1 SCORE 
COMPARISONS 

Approach # of Epochs Precision Recall F1 Score 

Original CNN 

30 97.24% 97.9% 97.3% 

50 97.69% 98.04% 97.82% 

100 97.88% 98.19% 98.07% 

(Mahesh et al. 
2017) 
45 Degree 

30 97.74% 98.03% 97.88% 

50 97.9% 98.14% 98.02% 

100 97.99% 98.3% 98.15% 

(Mahesh et al. 
2017) 
90 Degree 

30 97.82% 97.85% 97.84% 

50 97.94% 98.01% 97.97% 

100 98.01% 98.21% 98.11% 

Our approach 

30 98.51% 97.85% 98.18% 

50 98.55% 98.14% 98.34% 

100 98.67% 98.28% 98.47% 

 
Fig 7. MNIST Fashion Loss Comparison. 
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Fig 8. MNIST Fashion Accuracy Comparison. 

 
Fig 9. MNIST Fashion Precision, Recall and F1 Score Comparison. 

Finally, we have tested our approach and [18] approach on 
CIFAR10 dataset and we have achieved better performance 
than their approach as shown below in Table V and Table VI 
and Fig. 10, 11 and 12. 

 
Fig 10. CIFAR10 Loss Comparison. 

 
Fig 11. CIFAR10 Accuracy Comparison. 

 
Fig 12. CIFAR10 Precision, Recall and F1 Score Comparison. 

TABLE V. CIFAR10 LOSS AND ACCURACY COMPARISONS 

Approach # of Epochs 
Loss (cross-
entropy) 

Accuracy 

Original CNN 

300 0.825 57.1% 

500 0.618 60.69% 

1000 0.483 64.83% 

(Mahesh et al. 
2017) 
45 Degree 

300 0.685 57.7% 

500 0.535 61.9% 

1000 0.33 65.3% 

(Mahesh et al. 
2017) 
90 Degree 

300 0.710 57.1% 

500 0.589 61.12% 

1000 0.421 64.8% 

Our approach 

300 0.173 69.9% 

500 0.155 70% 

1000 0.091 70.1% 
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TABLE VI. CIFAR10 PRECISION, RECALL AND F1 SCORE COMPARISONS 

Approach # of Epochs Precision Recall F1 Score 

Original 
CNN 

300 96.16% 93.91% 95.06% 

500 96.77% 94.85% 95.71% 

1000 97.02% 95.81% 96.22% 

(Mahesh et 
al. 2017) 

45 Degree 

300 96.96% 94.2% 95.56% 

500 96.97% 95.44% 96.2% 

1000 97.2% 96.05% 96.62% 

(Mahesh et 
al. 2017) 

90 Degree 

300 97.21% 94.9% 96.11% 

500 97.42% 95.87% 96.68% 

1000 97.86% 96.1% 96.78% 

Our 
approach 

300 97.15% 96.77% 96.96% 

500 97.18% 96.79% 96.98% 

1000 97.12% 96.86% 96.99% 

Fig. 13, 14 and 15 show some real prediction after 
implementing our approach on MNIST Hand Written Digits 
Dataset, MNIST Fashion Dataset and CIFAR10 Dataset, 
respectively. 

 
Fig 13. Results of MNIST Hand Written Digits Classification. 

 
Fig 14. Results of MNIST Fashion Dataset Classification. 

 
Fig 15. Results of CIFAR10 Dataset Classification. 

VI. DISCUSSION 
CNN suffers from the problem of being invariant to image 

transformations. Up to our knowledge most previous 
researches solved this problem partially or they used data 
augmentation. Our approach uses Hu’s moments to make the 
flatten vector more descriptive so when it is fed to the fully 
connected layer it should lead to a better classification 
regardless to the image transformations. Concatenating the 
moments with the flatten vector was challenging, since the 
vector size will increase and it should be the same as the input 
size of the fully connected layer. 

VII. CONCLUSION 
This paper presents an approach to enhance CNN 

regarding the invariant problem by using Hu’s moments. The 
mechanism behind this approach is by concatenating Hu’s 
moments with the flattening vector before feeding it to the 
fully connected layer in order to make the vector more 
discriminative and more informative. In this study we have 
implemented our approach then we have compared out work 
with the work of Mahesh et al., on the three dataset MNIST 
hand written digits, MNIST fashion dataset and CIFAR 10 
dataset. The results show that our method gave best results in 
all cases namely loss, accuracy, precision, recall and F1 score. 
The main limitation of our work is the fixed sizes of the flatten 
vector that means the size of the vector should precalculated 
and predefined so it be the same as the size of the input size of 
the fully connected layer. 
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