
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Secure Software Engineering: A Knowledge
Modeling based Approach for Inferring Association

between Source Code and Design Artifacts

Chaman Wijesiriwardana1
Faculty of Information Technology

University of Moratuwa
Katubedda, Sri Lanka

Ashanthi Abeyratne2, Chamal Samarage3,
Buddika Dahanayake4, Prasad Wimalaratne5

University of Colombo School of Computing
Reid Avenue, Colombo 07, Sri Lanka

Abstract—Secure software engineering has emerged in recent
decades by encouraging the idea of software security has to be
an integral part of all the phases of the software development
lifecycle. As a result, each phase of the lifecycle is associated
with security-specific best practices such as threat modeling and
static code analysis. It was observed that various artifacts (i.e.,
security requirements, architectural flaws, bug reports, security
test cases) generated as a result of security best practices tend
to be segregated. This creates a significant barrier to resolve
the security issues at the implementation phase since most of
them are originated in the design phase. In order to address this
issue, this paper presents a knowledge-modeling based approach
to semantically infer the associations between architectural level
security flaws and code-level security bugs, which is manually
tedious. Threat modeling and static analysis are used to identify
security flaws and security bugs, respectively. The case study
based experimental results revealed that the architectural level
security flaws have a significant impact on originating security
bugs in the code level. Besides, the evaluation results confirmed
the scalability of the proposed approach to large-scale industrial
software products.

Keywords—Software security; threat modeling; knowledge mod-
eling; security flaws

I. INTRODUCTION

Having identified the critical need for software security,
the paradigm shift of “Building Security In” has emerged
in the recent decades [1], [2], [3]. This paradigm shift re-
quires software security to be addressed in all phases of
the software development lifecycle. Literature reveals that
most security vulnerabilities result from defects that are un-
intentionally introduced in the software during the design
phase and the implementation phase [2]. Garry McGraw has
identified code reviews and architectural risk analysis as the
top two best practices to minimize the security vulnerabilities
in software systems [2]. These best practices are called as
security touchpoints associated with the artifacts produced by
the implementation phase (i.e., codebase) and the design phase
(i.e., design documents) respectively. Even in organizations
with mature software development processes, the artifacts
created are segregated from each other [4]. Furthermore, to
the best of our knowledge, existing tools are not capable of
identifying security-specific associations between the artifacts
generated during software development. This reveals a signifi-
cant research gap of interlinking the artifacts originated at the
implementation phase and the design phase.

This paper presents a conceptual framework and a proof-of-
concept implementation to semantically interlink architectural
level security flaws and code-level security bugs based on the
foundation laid in [5]. Security flaws are identified based on
STRIDE [6], [7] threat categorization model introduced by
Microsoft, which helps to identify threats from the attackers’
perspective by classifying attackers goals into six threat cat-
egories. Security bugs are determined based on OWASP Top
10 [8], [9], [10] vulnerabilities, which are the ten most critical
web application security risks providing a great awareness for
web application security. In this paper, security flaws and bugs
are interlinked by employing a knowledge-modeling based
technique, which facilitates inferring the associations that are
manually tedious.

In this approach, rather than directly interlinking different
artifacts, it is required to infer the associations among design
documents and source code to reveal whether the root causes
for security bugs lie in the design phase. Knowledge-modeling
based approaches are capable of handling large quantities of
data intelligently [11] and proven successful in the domain
of cybersecurity [12]. Besides, expertise in software security
is not readily available. Therefore, knowledge-modeling ap-
proaches are useful when security expertise is not available. It
also provides a common platform for integrating knowledge
on a large scale. Finally, knowledge bases are capable of
generating new knowledge by using the stored data.

More precisely, the key contributions of this paper are:

• a knowledge model and the association rules to infer
the hidden relationships across security flaws and
bugs, and

• results of the evaluation experiments conducted by
using the proof-of-concept implementation.

The remainder of this paper is organized as follows: Section
2 presents the related work. Section 3 describes the proposed
approach to interlink security artifacts. Section 4 presents the
proof-of-concept implementation followed by the evaluation in
Section 5. Section 6 concludes and present future work.

II. BACKGROUND AND RELATED WORK

Building Security In[2] is a collaborative effort that pro-
vides practices, tools, guidelines, rules, principles, and other

www.ijacsa.thesai.org 708 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

resources that software developers, architects, and security
practitioners can use to build security into software in every
phase of its development. Correspondingly Microsoft has car-
ried out a noteworthy effort under its Trustworthy Computing
Initiative which focused on people, process, and technology to
tackle the software security problem [13]. On the people front,
Microsoft trains every developer, tester, and program manager
in basic techniques of building secure products. Microsoft’s
development process has been enhanced to make security a
critical factor in design, coding, and testing of every product. A
key part of Microsoft’s Trustworthy Computing is the Security
Development Lifecycle (SDL) which focuses on software
development and introduces security and privacy throughout
all phases of the software development process. The Microsoft
SDL combines a holistic and practical approach to reduce the
number and severity of vulnerabilities in Microsoft products
[1]. Conforming to the aforementioned approaches introduced
to the SDLC, it conveys that Architectural risk analysis and
Code review are two significant steps which should be con-
ducted in a security specific SDLC process.

A. Architectural Risk Analysis

Frydman et al. [14] introduce an automated approach for
threat modeling by producing two data structures: identifica-
tion trees and mitigation trees. Identification trees are used to
determine threats in the software design, while mitigation trees
describe countermeasures of threats by classifying software
specifications that are required to mitigate a specific risk. The
two data structures and ranking information of threats have
combined in a knowledge base called attack patterns. Yuan et
al. [15] describe their approach to develop a tool to retrieve
relevant common attack pattern enumeration and classifica-
tion (CAPEC) type attack patterns for software development.
CAPEC attack patterns are valuable resources that can help
software developers to think like an attacker and have the
potential to be used in each phase of the secure software
development lifecycle. A metric has been defined in this tool to
measure the degree of usefulness of an attack pattern and the
degree of its relevance to a particular STRIDE category. Berger
et al. [16] propose a practical approach to architectural risk
analysis that leverages Microsoft threat modeling approach.
This proposed approach uses extended DFDs and a secu-
rity knowledge base to aid software developers in detecting
vulnerabilities in software architectures. The knowledge base
contains information on architectural weaknesses and possible
mitigations. However, these approaches explicitly operate only
on the design phase with no effort to interlink the threats with
source code level bugs.

B. Security Specific Code Analysis

A practical approach for implementing secure practices into
the software development lifecycle outlined in [17]. It has
introduced a development testing platform which allows the
development organizations to coherently integrate code testing
into the software development process. Coverity development
testing solutions train developers to address both security and
quality when testing the code which leads to secure software
development practices. The commonly found potentially crit-
ical security defects in the source code are identified from
this platform, which is an aid for the developers to fix them.

The major weakness of this platform is that it mainly focuses
on implementation phase without considering the actual root-
causes lie in the design phase. Alqahtani et al. [18] have
stressed the fact that despite the security concerns are reported
in specialized vulnerability databases; these repositories often
remain information silos. As a solution, they introduced a mod-
eling approach that eliminates these silos by linking security
knowledge with other software artifacts to improve traceability
and trust in software products. A Security Vulnerabilities
Analysis Framework (SV-AF) is introduced in this approach to
support evidence-based vulnerability detection. This approach
also explicitly focus the code level and connecting the design
phase with the identified bugs is not addressed.

1) Interlinking static analysis with other artifacts: Interlin-
ing of software artifacts has been extensively discussed in the
literature [19], [20], [21]. Implementation vulnerabilities differ-
entiate themselves from the design vulnerabilities because they
only exist in the source code and are not part of the original
design or requirements. The implementation vulnerabilities are
also very language-specific, especially the C and C++ coding
languages are infamous for their ease of creating implementa-
tion vulnerabilities [22], [23]. The languages memory control
is both its strength and weakness. The control the developer has
creates the opportunity to create optimized and fast software
but also insecure code that can easily be exploited. Some of
the most common causes of implementation vulnerabilities are
buffer overflows, format string bugs, integer overflows, null
dereferences, and race conditions.

A novel approach for implementing secure practices into
the software development lifecycle outlined in [17]. It has
introduced a development testing platform which allows the
development organizations to coherently integrate code testing
into the software development process. Coverity development
testing solutions train developers to address both security and
quality when testing the code which leads to secure software
development practices. The commonly found potentially crit-
ical security defects in the source code are identified from
this platform, which is an aid for the developers to fix them.
The major weakness of this platform is that it mainly focuses
on implementation phase without considering the actual root-
causes lie in the design phase. Alqahtani et al. [18] have
stressed the fact that despite the security concerns are reported
in specialized vulnerability databases; these repositories often
remain information silos. As a solution, they introduced a mod-
eling approach that eliminates these silos by linking security
knowledge with other software artifacts to improve traceability
and trust in software products. A Security Vulnerabilities
Analysis Framework (SV-AF) is introduced in this approach to
support evidence-based vulnerability detection. This approach
also explicitly focus the code level and connecting the design
phase with the identified bugs is not addressed.

In contrast, our approach is not limited to ensuring the
security in a single phase of the software development lifecycle
or a single artifact originated from a specific lifecycle phase.
Instead, we attempt to semantically interlink the artifacts
produced in the design phase and implementation phase. It
allows software practitioners to identify the root-causes for
the security bugs.

www.ijacsa.thesai.org 709 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

III. APPROACH

This approach aims at inferring the associations between
security flaws and security bugs introduced during the design
phase and the implementation phase of the lifecycle. As
stated previously, security flaws are identified in terms of
STRIDE threat categorization, and security bugs are repre-
sented regarding OWASP top 10 vulnerabilities. The approach
consists of three main constituents: threat modeling to identify
security flaws, static code analysis to identify security bugs,
and exploiting knowledge base to infer relationships among
flaws and bugs. The conceptual architecture of the proposed
approach, exhibiting its external data sources, internal compo-
nents, boundaries, and their associations, is depicted in Fig.
1.

Design Level
Security Flaws

Implementation
Level Security

Bugs
Inferring

Associations

Knowledge Base

Threat Modeling

Design
artifacts

Static Code
Analysis

Source Code

Rules Facts

Fig. 1. Conceptual Model to Infer Associations between Flaws and Bugs.

A. Identifying and Pre-Processing Security Flaws

Security flaws are identified through an architectural risk
analysis, which includes explicitly identifying security risks in
the software architecture/design. In this paper, threat modeling
used as the architectural risk analysis method due to several
noteworthy reasons such as the ability to work with high-level
design diagrams, simplicity to employ in different contexts,
and explicit tool support. For example, threat modeling process
can be initiated by drawing a data flow diagram (DFD). Ac-
cording to Abi-Antoun et al. [24], architectural level security
flaws can effectively identify by analyzing Level 0 or Level 1
DFDs. As depicted in Fig. 2, threat modeling process consists
of thee steps.

Fig. 2. Main Steps of the Threat Modeling Approach.

1) Decomposition:: This step concerned with gaining an
understanding of the application and how it interacts with
external entities. This knowledge helps in identifying entry
points to see where a potential attacker could interact with
the application, determining trust levels which represent the

access rights that the application will grant to external entities
and identify assets that the attacker would be interested. Thus,
this information is used to produce data flow diagrams (DFDs)
for the application.

2) Determine and rank threats:: In this step, threats are
determined and categorized according to a threat categorization
methodology. The goal of threat categorization is to identify
threats from both attackers perspective and defensive perspec-
tive. DFDs produced in step 1 is primarily used to identify
potential threat targets from the attackers perspective.

3) Countermeasures and mitigation:: In this step, mitiga-
tions, and countermeasures are identified for the ranked threats.

B. Using Static Analysis to Identify Security Bugs

Static analysis is used to detect the security bugs that
appear in the source code of the software project. For ade-
quately understanding the code level security bugs, they are
categorized based on OWASP Top 10 vulnerabilities. OWASP
Top 10 is the ten most critical web application security
risks which provide a powerful awareness document for web
application security. The different versions of OWASP T10 are
focused on identifying the most common vulnerabilities which
depict how an attacker can potentially harm a software system.
Though the static analysis detects the bugs that are categorized
into OWASP vulnerabilities, that information is not sufficient
to generate a relationship with security flaws. Therefore, it was
decided to utilize OWASP Proactive Controls1, which is a set
of developer-centric security techniques that can be included
in the every software project. Most importantly, each proactive
control helps in preventing one or more of the OWASP Top
Ten web application security vulnerabilities. OWASP top 10
vulnerabilities have been mapped to proactive controls.

C. Inferring Relationships among Flaws and Bugs

Inferring logical relationships between security flaws and
bugs are expected to obtain via STRIDE and OWASP. How-
ever, STRIDE mainly focuses on attacking perspective of soft-
ware security. On the other hand, Application Security Frame
(ASF)2 is a threat categorization model, which helps to identify
the threats from the defensive perspective. For an in-depth
analysis of the threats affecting the software application data
and functional assets, both the STRIDE attacker view and the
ASF defensive view for the enumeration of threats considered
as essential. As stated previously, threat modeling process only
focuses on attacker’s perspective based on STRIDE. Therefore,
to involve the defensive standpoint, a relationship has been
identified between STRIDE and ASF.

What the relationship depicts by UcedaVelez and Morana
[25] is not a complete association between ASF and STRIDE
due to each category of STRIDE lacks an association to ASF
type. Hence, this association further improved by combining
the findings of Adam Shostack[6]. Table I presents the im-
proved mapping between STRIDE and ASF.

1https://www.owasp.org
2https://msdn.microsoft.com/en-us/library/ff649461.aspx

www.ijacsa.thesai.org 710 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

TABLE I. MAPPING BETWEEN STRIDE AND ASF

STRIDE Attack Type ASF type
Spoofing Authentication
Tampering
Information Disclosure
Elevation of privileges

Authorization

Repudiation
Elevation of privileges

Configuration Management

Tampering
Information Disclosure

Data Protection in Storage and
Transit

Tampering Data Validation / Parameter Valida-
tion

Information Disclosure Error Handling and Exception
Management

1) Semantic Text Similarity between ASF and Proactive
Controls: The semantic text similarity calculated for every
single security control in ASF with every single Proactive Con-
trol. The descriptions of ASF security controls and Proactive
Controls are not limited to a single phrase. Accordingly, the
semantic text similarity of each phrase of the description of
a particular ASF security control calculated concerning each
phrase of the description of Proactive Control. Consequently,
the average semantic similarity score between a specific ASF
security control (Ai) and Proactive control (Pi) calculated as
follows.

SemS(Ai, P i) =

[(
nm∑
i=0

V i

)
÷ nm

]
(1)

where:

Ai = description of ASF having n phrases
Pi = description of proactive controls having m phrases
Vi = similarity between ASF and proactive control

2) Knowledge Base: Security specific information about
software projects can be in in the form of either structured or
unstructured in heterogeneous information sources. Some of
these information sources may frequently undergo significant
changes as well. Thus, a knowledge modeling approach would
more practical and beneficial in developing a security frame-
work for software development. The knowledge base of this
approach contains the facts and rules related to the STRIDE,
ASF, OWASP T10, Proactive Controls and Semantic Similarity
Scores between ASF and Proactive controls. A Frame-based
approach is used for knowledge representation of facts [26].
The structure of the frames for the facts STRIDE, OWASP
T10, and Similarity Matching are as follows.

Listing 1: Frame for STRIDE Categories

f rame (s t r i d e ,
[c a t e g o r y m o d e l [v a l t h r e a t] ,
t y p e s − [v a l [s p o o f i n g , t amper ing ,
i n f o r m a t i o n d i s c l o s u r e ,
d e n i a l o f s e r v i c e , e l e v a t i o n o f p r i v i l e g e s]]
])

Listing 2: Frame for OWASP Categories

f rame (owasp t10 ,
[c a t e g o r y m o d e l [v a l bug] ,
t y p e s − [v a l [a1 , a2 , a3 , a4 , a5 ,

a6 , a7 , a8 , a9 , a10]]

Listing 3: Frame for Semantic Similarity

f rame (s e m a n t i c s i m i l a r i t y
[p r o a c t i v e c o n t r o l [v a l c1] ,
s e c u r i t y c o n t r o l [v a l s1] ,
s c o r e [v a l v a l u e]

Prolog rules were designed to infer the association between
STRIDE and OWASP T10.

Rule 1: Querying the Knowledge-base

i s C a u s e d B y T h r e a t C a t e g o r i e s
(BugCategory , TLi s t Un ique) :−
f i n d a l l (T , i s C a u s e d B y T h r e a t C a t e g o r y
(BugCategory , T) , T L i s t) ,
s o r t (TLis t , TL i s t Un ique)

Rule 1 is used to query the knowledge base. The list of
unique threat categories can be discovered by querying the
knowledge base using a bug category. Each threat category
associated with bug category is revealed by the Rule 2.

Rule 2: Discovering the associated threat category using the
bug category

i s C a u s e d B y T h r e a t C a t e g o r y (BugCategory , T) :−
l a c k s P r o a c t i v e (BugCategory , P) ,
m a p s T o S e c u r i t y C o n t r o l (P , S) ,
i sWeakendByThrea tCa tegory (S , T)

Rule 2 is used to discover the associated threat category
using the bug category. The threat category is revealed using
the subsequent rules on the right-hand side of Rule 2. The lack-
sProactive(BugCateogry, ProactiveControl) is used to discover
the proactive controls violated due to the given bug category.

Rule 3 - Identifying the proactive controls of the relevant bug
categories

l a c k s P r o a c t i v e (BugCategory , C) :−
i s P r o a c t i v e L i s t O f (CLis t , BugCategory) ,
member (C , C L i s t)

Rule 3 is used to identify the proactive controls of the
relevant bug categories in succession.

Rule 4 - Discovering the associated threat category using the
bug category

i s P r o a c t i v e L i s t O f (CLis t , BugCategory) :−
owasp top10 (BugCategory , , C L i s t)

The Rule 4, isProactiveListOf(ProactiveControlList, Bug-
Category) used to identify the proactive list of the given bug
category using the owasp top10 frame.

www.ijacsa.thesai.org 711 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Rule 5 - Discovering the associated threat category using the
bug category

m a p s T o S e c u r i t y C o n t r o l (P r o a c t i v e , S) :−
i s M a p p i n g S e c u r i t y C o n t r o l L i s t (S L i s t , P r o a c t i v e) ,
member (S , S L i s t)

Rule 5 is used to identify the mapping ASF security
controls in succession by using the semantic text similarity
score between ASF security controls and proactive controls.
An ASF security control is mapping with a proactive control
if it belongs to the top three semantic text similarity scores
of the relevant proactive control. Additional six rules are used
to identify the mapping security controls using the semantic
text similarity scores, which is not listed here due to space
limitations.

Rule 6 - Discovering the associated threat category using the
bug category

i sWeakendByThrea tCa tegory (S e c u r i t y C o n t r o l , T):−
s t r i d e (, T , , S e c C o n t L i s t) ,
member (S e c u r i t y C o n t r o l , S e c C o n t L i s t)

The association results given by the Knowledge-base are
used to create the associations between Bugs and Threats. The
facts regarding STRIDE and ASF security controls are static
facts while OWASP T10 and Proactive Controls are dynamic
facts. The reason for keeping OWASP T10 and Proactive
Controls as dynamic is that both of these facts are continu-
ously getting revised based on technological advancements and
industrial best practices. Thus, the knowledge base generates
new knowledge based on the regular updates.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

In this research, as a proof-of-concept, a security analysis
framework has implemented to infer the relationships between
design flaw and implementation bugs by adhering to the
theoretical foundation described in the previous section. Figure
3 provides an overview of the proof-of-concept implementa-
tion and its main constituents: (a) STRIDE Categorization of
Security Flaws, (b) OWASP Categorization of Security Bugs,
and (c) Knowledge-base and Association inferencing.

A. STRIDE Categorization of Security Flaws

As described previously, design-level security flaws are
identified by using Threat Modeling. A threat model will
be generated by analyzing the Level-0 or Level-1 DFD of
the software system under investigation. The threat model is
created using the Microsoft Threat Modeling Tool (TMT),
which categorizes the threats according to the STRIDE model.
The threat model generated from Microsoft TMT obtained as
an XML file, which is further processed to extract the threats.
After that, the extracted threats converted into threat objects
that contains the relevant details of the threats introduced based
on the proposed design as depicted in the DFD. Then threat
category objects are created based on STRIDE categorization,
which facilitates identifying the specific threat category of a
specific threat introduced in the design phase. Users can either
upload an external DFD or manually draw it.

B. OWASP Categorization of Security Bugs

SA-SEC facilitates code analysis in two distinct ways. First,
it can use SonarQube to analyze the source code. SonarQube
allows the categorization of the vulnerabilities identified as
security bugs into OWASP Top 10. However, SA-SEC does
not entirely depend on a third-party tool like Sonarqube
for bug categorization. A novel mechanism based on Case-
based reasoning [27] is introduced to categorize the bugs into
OWASP categories by analyzing the different attributes of
identified vulnerabilities. A collection of attributes such as
threat description, threat type, etc that are common across
multiple security tools have identified. Table II provides a list
of the selected attributes together with a short description.

TABLE II. ATTRIBUTES USED FOR CASE-BASED REASONING

Attribute Description
Threat The description of the vulnerability where it

includes a clause related to actual problem.
Examples: “Code should not be dynamically
injected and executed”, “Credentials should not
be hard-coded”

Type It can be a Bug, a Vulnerability or a Code
Smell

Severity Five severity levels are considered.
BLOCKER: Bug with a high probability to
impact the behavior of the application in pro-
duction. The code must be immediately fixed.
CRITICAL: A bug with a low probability to
impact the behavior of the application. The
code must be immediately reviewed.
MAJOR: Quality flaw which can highly im-
pact the developer productivity.
MINOR: Quality flaw which can slightly im-
pact the developer productivity.
INFO: Neither a bug nor a quality flaw, just a
finding.

Effort The time (in minutes) estimate to fix the issue
and update the tests.

Technical Debt The time estimate to fix all maintainability
issues (Code smells).

Language The programming language that the issue oc-
curs. For example : Javascript, Java, C#

Upon identifying and categorizing the security bugs, they
are converted into bug objects. Each bug object contains
the relevant details of bugs that will be the output of this
component. The bug objects sent out by the Security Bug
Pre-processor are transformed into Bug category objects. Ten
Bug category objects are created with respect to OWASP
T10 which contains details of each Bug object belongs to a
particular category. Theses Bug category objects are sent to
the Association Loader component.

C. Knowledge base and Association Inference Module

Association Loader used for querying the Knowledge
Base. A Prolog converter is developed using SWI-Prolog to
communicate with Java. Each bug category will be used to
query the Knowledge Base, and the associated threat type

www.ijacsa.thesai.org 712 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Source
Code

Case-based
Reasoning

OWASP Bug
Categories

Query
Association

Association
Loading

Pre-processing

Data Flow
Diagram

Microsoft TMT

Pre-processing

Association
Linking

STRIDE Threat
Categories

OWASP
Facts

STRIDE
Facts

Semantic
Similarity
Values

Rules
Output

ST
R

ID
E

C
at

eg
or

iz
at

io
n

of
 S

ec
ur

ity
 F

la
w

s

O
W

AS
P

C
at

eg
or

iz
at

io
n

of
 S

ec
ur

ity
 B

ug
s

As
so

ci
at

io
n

In
fe

re
nc

e
M

od
ul

e

Kn
ow

le
dg

e
Ba

se

Fig. 3. Architecture of the Proof-of-Concept Implementation.

results held inside the Association Loader. The associated
threat type results and the Bug Category Objects are sent to
the Association Linker. Threat category objects from STRIDE
Transformer and associated threat types and Bug objects from
Association Loader will be the input to the association linker.
After that, the Association objects generated. The Association
objects are sent out from the Association Linker to the Output
Builder.

The Knowledge Base is built using the SWI-Prolog. All
the facts and rules described previously are contained in the
Knowledge Base. The Knowledge Base has the capability of
updating when the OWASP categories or Proactive controls
revised. On the other hand, knowledge base explicitly allows
expanding the knowledge contained in it using the additional
knowledge of security experts.

V. EVALUATION

The main focus of the evaluation is to find whether the
potential root causes of an identified security bug lie in the

design phase of the software application. Two case studies
have employed for the evaluation process.

a) Case study 1 - User Authentication component: :
Fig. 4 presents the DFD of the user authentication in a web-
based application. It consists of two processes, one external
entity, and a single data store together with associated data
flows. In the evaluation process, threat modeling is conducted
to identify the architectural-level security flaws, and static
analysis is used to capture the security bugs at the imple-
mentation level. The association derived between security
bugs and the threats are based on the security bug categories
and threat categories. Table III depicts the possible threats
identified by the threat modeling process. Similarly, through
static code analysis, A2, A5, and A6 categories3 of OWASP
have captured. The results produced from the threat modeling
process and the static code analysis provided as input to find
the association between them. The derived associations present
in Table IV.

3A1 to A10 are the top 10 threat categories of OWASP

www.ijacsa.thesai.org 713 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Then, the highly relevant causes of the security bug cate-
gories were identified, and the corresponding countermeasures
were applied to remove the security bugs in the source code.
After repeating static analysis, it was observed that previously
designated A2, A5 and A6 bug categories were removed
successfully. Hence, it was evident that by removing the
potential security specific root causes at the design level leads
to resolve the security bugs at the code level.

TABLE III. IDENTIFIED THREATS OF THE USER AUTHENTICATION
COMPONENT

Threat Type No: of Threats

S 6
T 4
R 4
I 2
D 9
E 8

TABLE IV. ASSOCIATIONS DERIVED FOR CASE STUDY 1

OWASP Type Derived association

A2 S, T, R, I, E
A5 T, R, I, E
A6 S, T, R

Fig. 4. DFD of the user Authentication Component of a Web Application.

b) Case study 2 - Large-scale web based application:
: A large-scale industry project is selected to evaluate the
scalability of the proposed approach. Fig. 5 presents a part of
the DFD of the application. The full diagram is not presented
due to its complexity with higher number of processes and

Fig. 5. Part of the DFD of the Large-Scale Web based Application.

data stores. Similar to Case study 1, DFD diagram is subjected
to threat modeling and code base subjected to static analysis
using the tools mentioned above. Summary of the identified
threats presents in Table V. Based on the static code analysis,
26 security bugs related to A2 and A6 categories of OWASP
have identified. The results produced from the threat modeling
process and the static code analysis provided as input to find
the association between them. The associations between threats
and bugs that are derived from this approach is presented
in Table VI. Then the corresponding countermeasures were
applied to remove the security bugs in the source code.
After repeating static analysis, it was observed that previously
designated A2, A6 bug categories were removed successfully.

TABLE V. IDENTIFIED THREATS OF THE LARGE-SCALE INDUSTRY
APPLICATION

Threat Type No: of Threats

S 12
T 0
R 0
I 5
D 5
E 5

A. Threats to Validity

The accuracy of the results obtained from the experiments
depends on the analysis outputs given by SonarQube and MS
Threat Modeling Tool. Despite the fact that the associations
derived from this approach depict the possible causes for a
security bug, even with such an association, pinpointing the

www.ijacsa.thesai.org 714 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

TABLE VI. ASSOCIATIONS DERIVED FOR CASE STUDY 2

OWASP Type Derived association

A2 S, T, R, I, E
A6 S, T, R

exact location of the source code is improbable with a Level
0 DFD. Therefore, it is essential to consider the lower level
DFDs at the threat modeling phase for efficient capturing of
security bugs.

On the other hand, static code analysis tools may not be
capable of capturing all the bug categories in OWASP Top
10. Hence, this approach is unable to derive associations for
each OWASP Top 10 vulnerabilities contained in the source
code. Therefore a manual code review is required to identify
the remaining vulnerabilities. However, manual code reviews
are not feasible with large-scale, complex projects.

VI. CONCLUSIONS

This paper presents a Knowledge-modeling approach to
infer the associations among design artifacts and source code
to reveal whether the root causes for security bugs lie in the de-
sign phase. This research employed a frame-based approach for
the knowledge representation of security-specific information
extracted from design documents and source code. Evaluation
results imply that the knowledge-modeling approach success-
fully detects whether design flaws are propagated to the im-
plementation phase. Besides, this paper provides experimental
evidence of the usefulness and applicability of the concept of
Building Security In. Moreover, this research contributes to the
body of knowledge in secure software engineering by filling
the research gap in interlinking security artifacts.

This approach has several limitations. First, security vul-
nerabilities at the design phase are detected solely based on
DFDs, which is mainly due to the unavailability of tools to
discover vulnerabilities of the other types of design artifacts
such as UML diagrams. Secondly, the proof-of-concept imple-
mentation is entirely depending on the results produced by the
Threat Modeling Tools and Static Analysis Tools. Thus, the
derived associations are also could be biased to those tools.

The framework could serve as a stepping stone to the
researchers in the field of software security, which was lack-
ing previously. On the other hand, the knowledge base has
provisions to evolve with different security aspects. As future
work, the experiments are expected to repeat for large-scale
open-source software systems. Furthermore, it is planned to
improve this research to directly interlink security bugs with
security flows by utilizing attack trees or case-based reasoning.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support
provided by the National Research Council of Sri Lanka (Grant
no: NRC 15-74).

REFERENCES

[1] S. Lipner, “The trustworthy computing security development lifecycle,”
in Computer Security Applications Conference, 2004. 20th Annual.
IEEE, 2004, pp. 2–13.

[2] G. McGraw, Software security: building security in. Addison-Wesley
Professional, 2006, vol. 1.

[3] M. Kreitz, “Security by design in software engineering,” ACM SIGSOFT
Software Engineering Notes, vol. 44, no. 3, pp. 23–23, 2019.

[4] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information
retrieval models for recovering traceability links between code and
documentation,” in Software Maintenance, 2000. Proceedings. Inter-
national Conference on. IEEE, 2000, pp. 40–49.

[5] A. Abeyratne, C. Samarage, B. Dahanayake, C. Wijesiriwardana, and
P. Wimalaratne, “A security specific knowledge modelling approach
for secure software engineering,” Journal of the National Science
Foundation of Sri Lanka, vol. 48, no. 1, 2020.

[6] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[7] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in Innovative Smart Grid Tech-
nologies Conference Europe (ISGT-Europe), 2017 IEEE PES. IEEE,
2017, pp. 1–6.

[8] D. Wichers and J. Williams, “Owasp top-10 2017,” OWASP Foundation,
2017.

[9] S. M. Srinivasan and R. S. Sangwan, “Web app security: A comparison
and categorization of testing frameworks,” IEEE Software, vol. 34, no. 1,
pp. 99–102, 2017.

[10] M. Willberg, “Web application security testing with owasp top 10
framework,” 2019.

[11] W. E. Zhang and Q. Z. Sheng, Managing Data From Knowledge Bases:
Querying and Extraction. Springer, 2018.

[12] Y. Jia, Y. Qi, H. Shang, R. Jiang, and A. Li, “A practical approach to
constructing a knowledge graph for cybersecurity,” Engineering, vol. 4,
no. 1, pp. 53–60, 2018.

[13] M. Howard and S. Lipner, The security development lifecycle. Mi-
crosoft Press Redmond, 2006, vol. 8.

[14] M. Frydman, G. Ruiz, E. Heymann, E. César, and B. P. Miller,
“Automating risk analysis of software design models,” The Scientific
World Journal, vol. 2014, 2014.

[15] X. Yuan, E. B. Nuakoh, J. S. Beal, and H. Yu, “Retrieving relevant
capec attack patterns for secure software development,” in Proceedings
of the 9th Annual Cyber and Information Security Research Conference.
ACM, 2014, pp. 33–36.

[16] B. J. Berger, K. Sohr, and R. Koschke, “Automatically extracting threats
from extended data flow diagrams,” in International Symposium on
Engineering Secure Software and Systems. Springer, 2016, pp. 56–
71.

[17] L. Lambert, “Building security into your software development,” Tech.
Rep., 2018.

[18] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Sv-af—a security
vulnerability analysis framework,” in Software Reliability Engineering
(ISSRE), 2016 IEEE 27th International Symposium on. IEEE, 2016,
pp. 219–229.

[19] C. Wijesiriwardana and P. Wimalaratne, “Fostering real-time software
analysis by leveraging heterogeneous and autonomous software reposi-
tories,” IEICE TRANSACTIONS on Information and Systems, vol. 101,
no. 11, pp. 2730–2743, 2018.

[20] M. Rath, M. Goman, and P. Mäder, “State of the art of traceability in
open-source projects,” 2017.

[21] C. Wijesiriwardana and P. Wimalaratne, “Software engineering data an-
alytics: A framework based on a multi-layered abstraction mechanism,”
IEICE Transactions on Information and Systems, vol. 102, no. 3, pp.
637–639, 2019.

[22] E. Crifasi, S. Pike, Z. Stuedemann, S. M. Alnaeli, and Z. Altahat,
“Cloud-based source code security and vulnerabilities analysis tool for
c/c++ software systems,” in 2018 IEEE International Conference on
Electro/Information Technology (EIT). IEEE, 2018, pp. 0651–0654.

www.ijacsa.thesai.org 715 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

[23] R. Mahmood and Q. H. Mahmoud, “Evaluation of static analysis tools
for finding vulnerabilities in java and c/c++ source code,” arXiv preprint
arXiv:1805.09040, 2018.

[24] M. Abi-Antoun, D. Wang, and P. Torr, “Checking threat modeling
data flow diagrams for implementation conformance and security,” in
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering. ACM, 2007, pp. 393–396.

[25] T. UcedaVelez and M. M. Morana, Risk Centric Threat Modeling:
Process for Attack Simulation and Threat Analysis. John Wiley &
Sons, 2015.

[26] D. Merritt, Building expert systems in Prolog. Springer Science &
Business Media, 2012.

[27] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI communications,
vol. 7, no. 1, pp. 39–59, 1994.

www.ijacsa.thesai.org 716 | P a g e

