
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

A Microservices based Approach for City Traffic
Simulation

Toma Becea1, Honoriu Vãlean2
Automation and Computer Science Faculty

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

Abstract—The paper proposes a city traffic software simula-
tion based on actors which run independently of one another and
have specific characters in their behavior. To run indepentently
actors are modeled as microservices and they are running within
an orchestration framework. Their behavior is modeled as with
specific algorithms for each of their type, embedded in each
actor’s type code. They may act based on the data about all
the other actors, data which is gathered together by a single
entity called city simulator. An orchestration model is proposed
and all the actors use a communication protocol to offer data to
the city simulator and request data from it.

Keywords—Traffic simulation; microservices; distributed com-
puting

I. INTRODUCTION

A solution which simulates car, pedestrian, etc. traffic in
a given city may reap many benefits. It can help understand
patterns of traffic and its flow. It can help understand the
particularities and pecularities of a city’s streets arrangements,
together with their junctions. It can help identify bottlenecks. It
can help find solutions to rush problems and explore them. But
for those areas to be tackled, appropiate methods of simulating
traffic must be found and explored. We are proposing a
novel way of simulating traffic based on the microservices
orchestration concept and using a discrete microscopic logic
for the behavior of each actor.

The solution proposed is aiming to design a traffic simula-
tion software which surpasses the computing limits of a single
machine and of existing traffic simulation software and runs as
a distributed system. In close interplay with the fundamental
nature of distributed system (i.e. running a cohesive software
on multiple machines) the solution defines entities or actors,
modeled as separate microservices, such that the advantage is
twofold. First, an entity being a single microservice (and a
microservice containing only one entity) they will be easier
and natural scheduled and run across more than one machine.
Second, the independence of such an entity is also helping in
personalize its behavior in randomness and character, offering
different ways to model the traffic in a city and allowing more
nuanced studies as opposed to macroscopic solutions. This
solution can improve a system where only the global state
is computed.

We define a (city) actor as being an independent entity
which chose to move between two geographical points within
a city. As a character, it can be a car, a pedestrian or a bike. We
also define the city simulator as being a single entity (subject

to distributed and load balacing services) which keeps data
about the city (e.g. streets with city actors on them).

II. RELATED WORKS

Existing solutions have a general distinction of being
scattered across a spectrum: macroscopic, mesoscopic or mi-
croscopic being milestones across it. This distinction is caused
by how the traffic is modeled: on a macroscopic scale like
streets or sections of a highway or on microscopic level,
focusing on each car and its relation with neighbours. The
relation between a car and its neighbours, can also be modeled
as microscopic or nanoscopic.

Author in [1] describes an Agent Based Model (ABM) for
improved traffic routing and achieve a system-optimal traffic
flow. The similarity with the current paper is that the data
is generating at the agent level and the decision remains at
the same level, although there are two layers in total. First
is the microscopic layer which consists of all the intelligent
agents. The second layer is the macroscopic layer which
facilitates the communications between agents. However, the
main difference is that in [1] an agent is able communicate
only with the surrounding ones through the use of cellular
automata approach. Agents are communicating a handful of
data with their co-participants within a certain range: position,
velocity, route and type. Using the data they received they are
using a transition decision-making model, based on cellular
automata, to compute their next move.

In [2] the broad idea is to use a discrete event architec-
ture, in which there are logical processes for executing and
simulating a number of agents. For a computation intensive
aim those processes can be clustered into agent clusters with
dependencies between them, but the paper avoids presenting
the necessary details on how the distributed mechanics would
work. The particularity of this proposal is that it crosses the
boundaries of a single computing machine and pave a way
to distribute the load and information across machines, with
certain limitations and challenges.

An approach which is focused on junction modeling is
[3]. As opposed to the generality of various other related
works, [3] is focused on two specific and real junctions.
The simulation stems from SUMO, using real data acquired
from cameras placed in junctions (and analyzed with image
processing technologies) and is relaying traffic data to a Matlab
instance. The simulation is aiming at evaluating metrics of the
traffic which flows through junctions: arrival flow and queue

www.ijacsa.thesai.org 60 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

length. This idea is closely related to an enhancement proposed
in Section VI around junction modeling.

Although older, [4] deserves to be written about because
the real data, from the highway portions of interest, is fed
back into the simulation. Loop detectors, scattered across the
highways are read and their readings are used to generate
simulation models. The model is able to predict car densities
across multiple road sections, an ability which the current
paper is exploring and is basing its car actor’s algorithms onto.

III. IMPLEMENTATION

The entities which are participating into a traffic simulation
are called actors. They are two: the city actor and the city
simulator. The supporting containers are not themselves part of
traffic simulation but they do have an important and supporting
role. All of them are modeled as microservices and a short
introductory is needed although Section IV and paragraph III-E
offers a broader perspective around them.

A. Microservices

Microservices are not a new concept. The idea behind
them has existed since Linux kernel has started to be enriched
with a concept called namespaces [5]. This allows one set
of processes to see one set of resources while another set
of processes see another set of resources, where resources
might be, but not limited to, process IDs, file names and
network resources. Those linux kernel abilities form the base
of containers.

Thus, a container is a small set of processes which run in
isolation. They allow packaging a linux distro, a set of libraries
and a software development kit and on top of those the custom
code of an application. Taken together, those form an image,
which is essentially a tar gzipped file. Once the build process
of an image is finished, it can be spinned up in one or more
running containers. The custom code written and embedded in
the image is running in parallel in each container.

To go to solution for building, manipulating and running
images is Docker [6]. It allows easy software installation, it
works cross platform and it offers a smooth experience most
of the time.

B. City Simulator

The most common and easy solution to share data across
all the city actors is to have a centralized store to keep it. City
simulator acts as a centralized store for all other city actors.
In the current implementation the city simulator keeps a set of
data which can be described as a list of pairs, each pair having
a line and a real number, called density. The line is a series of
coordinates and in the proposed implementation their meaning
is a street which a city actor is reportedly traveling on it.

The density is defined as the number of actors (cars) which
are at a given moment present on a given segment of street.
If the city simulator has no entry of a street segment then it
will consider the density as being 0, i.e. there is no actor on
that street. The density is modeled as an unsigned integer.

Fig. 1 depicts the city simulator in relation with the other
entities. A notable exception is the web page. Its purpose is

Fig. 1. The relations of city simulator with other entities

not to participate in the same information exchange the other
entities have but to offer a visual interpretation about the way
the city and the other actors are interacting with one another.

As various actors send data about their location, the city
simulator needs to keep location and density data in its store. It
does not know of Open Street Map maps and its corresponding
map data sets but instead it requires any actor to send its
current set of coordinates which it is crossing or which it
left. If any other actor send the same set of coordinates, or
a subset of it then the first set of coordinates will have its
density incremented. Listing 1 shows the Go struct which is
used by an actor to send its report to the city simulator and
is used by the city simulator to decode a message received
from an actor. Apart from this line there are two more details
to complete the report picture. Listing 2 contains the type of
communications between actors and the citysimulator.

1 // Report is the base type for reporting
2 // status and vectors to a city entity
3 type Report struct {
4 CurrentLine [][]float64
5 ReportDetail int
6 }

Listing 1: Go struct for actor’s report

As part of this proposal the city simulator is made to be a
standalone entity (container) which communicates with actors.
This might not be the case for other types of communications,
as part of other architectures. One example can be the integra-
tion or the unifying of the city simulator with the city actor,
both becoming one entity. In this case the communication
between entities is subject to an entire panoply of choices.

C. Car Actor

The city actor represents a moving actor within a city. It can
be a car which moves across the city, it can be a bike or it can
be a pedestrian. Its naming suggests that it can be any entity
or living being which moves within a city and interacts with
the other entities or affects the other entities in some manner.
A pedestrian would directly interact with other pedestrians
but not with cars unless it crosses the street on red or on
unmarked places. A pedestrian would indirectly affect other
cars by willing to walk over a street crossing.

The implementation proposed here is aiming to model a
single type of actor: a car which moves between two points

www.ijacsa.thesai.org 61 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

across a city. Because the purpose of this paper is not to
tackle maps representation and routing through a city (in itself,
this area is way bigger than a mere technical paper) the city
actor is using two notable services: Open Street Map [7] and
GraphHopper [8]. Open Street Map is an open source licensed
map of the entire world. Graphhoper is an open source service
which offers directions APIs and route planning. It can use
Open Street Map as an underlying map provider. They provide
free tiers and paid subscription for accessing an API and
compute various routes. However, a city actor is not using
any public api but a special crafted container which contains
GraphHopper and an open street map embedded into it. Thus,
this container is running in parallel with the other city actors
and provides them with the routing API they need.

A first way to introduce randomness into the entire simu-
lation of a city is to choose a set of two coordinates inside the
given city, a set for each city actor. Then the actor proceeds
to ask GraphHopper service for a route between those two
points. Because each city actor ’lives’ only while its moving
across its route and ’dies’ as soon as it reached the finish
point, the entire city simulation which takes place is made of
independent, random and always new actors.

D. Interactions

An actor interacts, for the time being, only with the city
simulator by using a Go struct and a Go enum. They can be
seen in listings 1 and 2. The message sent from one side to
another has a general structure called Envelope. It is meant to
offer a top level message which can be serialized (or encoded,
the way to do this in Golgang, if not gRPC, is the gob pacakge
offered out of the box as a base package within the lanugage)
and passed around, enabling any party involved to understand
what this message is about and how to decode it.

Listing 3 show the top level message. It contains a message
type which instructs the reader what kind of message it has to
deal with and the possible types are the second part of listing
1: SendReport, AskForLine, RespondWithLine. Let’s take them
one by one. SendReport represents a message sent from an
actor to the city simulator and the Payload contains the report
seen in listing 2.

AskForLine is a message sent from an actor to the city
simulator in which the actor asks about the density of any line.
This way any actor can take conscious decisions on which
route to go on, based on what lies ahead in terms of street
densities. When a first route is chosen, between two desired
points, the actor can ask about each line which is part of
that route. The city simulator will respond with the known
density of it. If the actor desires, it can try to find another route
by asking GraphHopper service to compute a new route but
with an additional rule: avoid a certain point (street, junction,
etc.). RespondWithLine is the type of message which the city
simulator sends back to an actor after it received an AskForLine
message.

1 const (
2 // ReportOnTheLine is the report sent by one

agent to
3 // notify the city that he is currently

advancing
4 // through one line.
5 ReportOnTheLine = iota

6

7 // ReportOffFromLine is the report sent by one
agent to

8 // notify the city that he has finished
advancing through

9 // one line and has departed from it.
10 ReportOffFromLine = iota
11 )
12

13 const (
14 // SendReport is a message passed from an actor

to the city
15 // indicating its status (e.g. location).
16 SendReport = iota
17

18 // AskForLine is a message passed from an actor
to the city.

19 // A response is awaited.
20 AskForLine = iota
21

22 // RespondWithLine is a message passed from the
city to

23 // an actor and it contains line data.
24 RespondWithLine = iota
25 )

Listing 2: Go enumerations for messaging

1 // Envelope is the container for different messages
sent back

2 // and forth between an actor and a city
3 type Envelope struct {
4 MessageType int
5 Payload interface{}
6 }

Listing 3: Go top level struct (envelope)

E. Design Choices

As with every software project started from scratch there
are a number of choices to make when choosing software
stacks, programming languages, networking models, etc. This
section is aiming to explore the rationales behind some of those
decisions and how they influenced the building of the current
prototype.

A first choice is the programming language to write both
the city simulator and the city actor. Go programming langauge
is born out of Google and it resembles the philosophy they
were trying to embedded in it for taming the complexity of
their systems [9]. Today it has gained a lot of popularity and
tools like Kubernetes are wrritten entirely in Go, making it
the default language of the cloud technologies. It is a “C-
like” language and it has a familiar look but with few traits
which makes it different. Out of those, few are notable, not
only because they facilitate programming endeavors but also
because both city simulator and city actor are modeled around
them in their communications.

1 go func() {
2 for {
3 select {
4 case <-ticker.C:
5 advance(city, reportChan, lineChan)
6 case _ = <-lineChan:
7 //fmt.Println("Received answer with line", j)
8 }
9 }

10 }()

Listing 4: Go routine from city actor

www.ijacsa.thesai.org 62 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

Go routines are a lightweight thread of executing. Being
lightweight it means they can be easily started, with no
overhead and especially without the ceremony of dealing with
threads which other popular languages (e.g. Java) have. Listing
4 shows such a routine. It is a part of logic where the city
actor responds to either two events: the timer has expired
and a decision needs to be made or an information about
the line is currently traveling on has been received from the
city simulator. Another Go trait is the channels, an indexed
communication pipe where there are asynchronous writers and
readers, used to decouple two routines. Listing 4 also shows
couple of channels. Variables ticker and lineChan are two
channels. They are declared using a type and after that they
are used to write and read objects (or structs) of the respective
type. The select keyword acts like a switch, not on variables
and their values but on channels. It will execute the block of
code for the channel which has something new to deliver. All
those three concepts, goroutines, channels and select switches,
combined together makes it easy to write code which takes
advantage of multithreading paradigms and which has to run
in a heavy networking environment.

IV. ORCHESTRATION

The term orchestration means the handling of containers
and microservices in order to bring coherence into their
interaction and an unifying experience to the end user of a
service or of a product. They migth run on multiple nodes
(computers or virtual machines) and at the same time they need
to communicate with one another. They need to be updated in
place and without service disruption. Whenever one of them
crash they have to restart as quickly as possible. The services
have to be able to discover themselves without dealing with
intricancies of IP addresses, proxies, etc. Those are just few
concerns around orchestration and the current paper is not
aiming to provide a comprehensive view of what it means
and what can be achieved with it but rather to set a basis of
understanding enough context for the subject of simulating a
city with its traffic.

Author in [10] offers a comprehensive view of the current
state of orchestration of cloud providers. (to add details)

A. Current State

As noted above the standard in easiness of developing and
working with containers is Docker [6]. While it has an offering
of orchestrating containers, called docker-compose, which is
simple to start with, its functionality is limited in comparison
with other offerings, the most notable one being Kubernetes
[11]. Those are not the single tools available and many more
can be found but they offer a starting point (especially Docker)
and Kubernetes, altough it has a steep learning curve, it does
offer a comprehensive and complex panoply of details around
orchestration.

B. Implementation

The city simulator is, currently, a single service which
means it runs as a single instance as viewed by a city actor.
The city actor container runs in multiple instances and it has
the need to do so as part of the entire simulation workload.
The other two instances which run in the simulation are the

routing service, a Graphhopper instance, and the front end web
server which displays a web page for offering visual clues
about how the simulation is running. While they run as such
there should be an easy way, without friction and additional
compute logic to “discover” a certain service. A city actor
will need to connect itself to the routing service and to the
city simulator. At the same time the front end instance need
to connect itself to the city simulator to source its data.

C. Docker Compose

The docker-compose tool gives the ability to manipulate
more containers and services, with a simple file written in
yaml format. Listing 5 shows the docker-compose file in its
brevity and briefness. Let’s dissect it. There are four services:
graphhopper, citysim, cityactor and cityfront. Each of them
need an image to run and this image can be specified in two
ways: either as an image already compiled and hosted on an
container registry or as a local folder which contains a file
to build one (usually named dockerfile). Because Graphhoper,
once compiled with desired maps and settings do not need any
more development work, it is uploaded to a personal docker
registry and taken from there, whenever needed. The other
three services are the places where the most development
efforts take place therefore they need to be compiled or
recompiled each time the entire traffic simulation application
starts.

The containers which are running may need to have dif-
ferent properties. First and most important is the container
port which needs to be published. The port from inside the
container, where a certain process expect a TCP communica-
tion is forwarded to the local host port and thus is accessible
from outside the Docker internal network. Another detail of the
container is its dependency. For example cityactor cannot run
without textitGraphhopper because it doesn’t have any place
to obtain a route. Therefore it depends on Graphhopper, i.e. it
waits for GraphHopper to start first. And on citysim, of course.
The last bit of detail which can be seen here is the policy of
restarting a container. By default the policy is set to “No”
which means that the container will not be restarted if there
is any failure within it and it stops. However, for simulation
purposes, as we need a constant stream of city actors to swarm
through the city, the policy is set to “Always” which will restart
the container after if closes itself, i.e. it finishes its travel.

1 services:
2 graphhopper:
3 image: tomabecea/graphhopper:latest
4 ports:
5 - "8989:8989"
6 citysim:
7 build: ./city/citysim
8 ports:
9 - "9000:9000"

10 cityactor:
11 build: ./city/cityactor
12 depends_on:
13 - "graphhopper"
14 restart: always
15 cityfront:
16 build: ./cityfront
17 ports:
18 - "80:80"
19 depends_on:
20 - "citysim"

Listing 5: Docker-compose file

www.ijacsa.thesai.org 63 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

Finally, to run this docker compose there is a simple
command to bring everything to life: docker-compose up. This
will take everything which is in the docker-compose.yaml file,
will build the container if it has not been built before or if
any source code file has been changed and then will run all of
them in the order specified by the dependency graph.

The other detail of running this set of containers is to scale
up a specific service. In our case we would like to have more
than one city actor. Therefore the command to run is docker-
compose up – scale cityactor=1001. This way one thousand
and one city actors will be created. In combination with the
option of always restarting a container which exits, the entire
simulation will run virtually forever.

D. Kubernetes

While the docker compose offers a basic set of function-
alities to bootstrap our application, for a large number of
city actors a single computer might not suffice. Here comes
Kubernetes in play. Kubernetes [11] is an open-source system
for automating deployment, scaling and management of con-
tainerized applications. It originates from Google and is their
third approach on orchestrating microservices, as described in
[12].

While Docker-Compose runs on a single machine, Kuber-
netes is made to run on multiple machines called nodes. It
is by default enriched with certain abilities needed to run
in this configuration. Made initially to run with LXC and
Docker containers [13], it is now a more open system where
one can choose the container runtime interface, the container
network interface, storage interface, service meshes, etc. from
a broad range of vendors. On top of those base offerings, which
provides only the backbone of Kubernetes, a distributed appli-
cation must be built. The desired architecture of a Kubernetes
application may consists of many concepts and building bricks.
Using [14] as a starting point we can see that there are the most
simple and basic units, called pods, which may encompass one
or more containers (usually there is one main container and the
others, e.g. service mesh supporting side car, are called side
cars). There are deployments which gather together pods and
rollout or rollback control. There are services which makes
pods universally available into the cluster and makes them
discoverable, regardless of what node are they running onto
and abstracting away failures and upgrades. And then there
are replica sets, daemon sets, secrets, config maps and many
other resources. On top of those one is able to deploy own
custom resource definitions as well as custom controllers. Put
together, all those concepts have a rather intimidating allure.

For running the entire traffic simulation onto a Kubernetes
cluster we have the basic needs: all services are Docker
images. Once each service is correctly described using a yaml
format, each consisting of a service and deployment the entire
application can be deployed via kubectl command. The scaling
problem is solved using a similar approach with docker-
compose. The command will be kubectl scale –replicas=1001
deployment/cityactor. As before, with docker-compose, it is to
be noted the simple approach towards scaling: a core tenet of
distributed systems, a property which, as it stands for our use
case is quite simple to model. But for other applications, a
more sensible approach is needed, as noted by [15].

E. Networking Design

A distributed system has to carefully design the way in
which its services communicates between them. As the nature
of a distributed system is to run in multiple nodes or machines,
it is obvious that the communication medium between them
has to be one based on TCP/IP stack. Therefore the entire
modeling of networking relies on this assumption.

A simple and basic idea, noted here only to help on
constructing the final proposed solution, is to have each service
always located at a certain IP address and a certain port within
a network. This means, for example, the city simulator will
always be located at 192.168.0.101:7450. The other services
which need to be accessed will listen on similar IP addresses
and sockets. While this offers a convenient way to have them
unified, they are not suitable to run in other environments
than a development PC. In this case docker-compse will run
them such that they are accessible on local host address, i.e.
127.0.0.1:7450. As soon as there are multiple nodes involved
this model is not suitable anymore.

Enter the DNS (Domain Name System), the backbone of
the entire internet. In its simplest description, avoiding many
inherent and nitpicking details, it is a dictionary which keeps
track of every registered and easy to memorize name, e.g.
en.wikipedia.com and the IP addresses where it is located. Any
client which would like to access such an name will query first
the DNS resolvers and then it will proceed to send a message
to the obtained IP address. The most notable interaction of a
user with the DNS is the address bar of a browser where the
user inserts the name of the site they want to access and while
writing the address suggestions are displayed by the browser
with the help of recommandation engines [16].

When many resources are needed, to serve a great number
of users or to support a great number of city actors, a certain
service might be so busy with serving data that the compute
and memory resources it needs are greater than the underlying
hardware is able to support. Therefore it might be located
at few addresses at the same time and any client which
wants to access it should access the address where there are
available compute and memory resources to serve its queries.
Ideal would be to abstract or to decouple this information
from the client and make it transparent for it. To do this
the client needs to know only the service name and a certain
”networking” entity should route its request to the appropriate
available service. Such a entity could be a DNS authoritative
server which, based on the load, availability and latency of the
services will route the request to the appropriate node [17].

Docker and Kubernetes are doing a similar job. They offer
a DNS service and according to the load of each node where
a service run, a request is rooted to a node which will be
able to respond to it. This logic is completely decoupled from
the clients. Listings 6 and 7 shows how both the city front
and a city actor calls the city simulator. All what they do is
to use the address, the service name, which was specified in
the docker-compose file (listing 5). Docker or Kubernetes will
do the actual job to route the request to the appropriate node
of the service. One thing to note is the difference between
the two. A city client will communicate via TCP/IP using the
Go default serialization package while the city front use a
WebSocket communication technology (add reference to the

www.ijacsa.thesai.org 64 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

Fig. 2. Screenshot of the web interface showing the running simulation with a larger number of actors

design choices paragraph) but both of them are transparently
routed by Docker.

1 conn, err := net.Dial("tcp", "citysim:7450")
2 if err != nil {
3 fmt.Println("Error on dialing", err)
4 break
5 }
6 defer conn.Close()

Listing 6: City actor dialing City simulator

1 var startWebsocket = function (callback) {
2

3 var ws = new WebSocket("ws://citysim:9000/city")
4

5 ws.onopen = function(evt) {
6 console.log("OPEN");
7 ws.send("just sent some messageeeee")
8 }
9 ws.onclose = function(evt) {

10 console.log("CLOSE");
11 ws = null;
12 }
13 ws.onmessage = function(evt) {
14 callback(evt.data);
15 }
16 ws.onerror = function(evt) {
17 console.log("ERROR: " + evt.data);
18 }
19 }

Listing 7: City front dialing City simulator

V. RESULTS AND EVALUATION

Fig. 2 shows a screenshot of the web interface discussed
in paragraph III-B, showing a running simulation. The web
interface is a simple: a html/js only web page (vanilla js) which
connects to the city simulator as can be seen in listing 7. The
city simulator will send a notification to the web page server
each time the density changes for a certain line. It can be that

a new or first actor entered a certain line (a list of coordinates
which represent a street) or it can be that one or the last actor
left a line. The web page will draw any line with a density
greater than 0 on top of the map.

The map is sourced from Open Street Map [7] and is
showing the map zoomed to a specific city, same used by
the city actors in their walkings. Thus, whenever a city actor
reports that it is traveling across a line and this information
arrives at the web interface through the city simulator, the
respective line will be immediately drawn into the view.

A laptop used for simulating (MacBook Pro, 16 GB RAM,
i5 3.1 GHz) is able to run easily 50 city actors. Above a certain
threshold the bottleneck, surprisingly, is not the memory or the
cpu but the way docker handles network interfaces. For a larger
number of city actors a better tool must be used (see paragraph
IV-D). Fig. 2 shows a simulation with 50 actors running at the
same time throughout the city.

VI. CONCLUSIONS AND FUTURE WORK

The concept of modeling or simulating traffic using actors
or agents is widespread. The advantages it offers, compared to
macroscopic simulation techniques, is that more nuanced data
can be obtain, usually by simulating real events and situations
more easier when the agents can interact and influence each
other. On top of the actor (or agent, or entity) based model,
the current paper, compared with the other noted beforehand,
has shown the benefits of using today’s concepts of distributed
systems: containers and orchestration. Those ideas (or concepts
or programming frameworks), not novel in their basic traits but
novel in the ease of use, enable the scaling of simulation needs
across many more physical machines. In parallel with this the
code being written do not suffer from leaky abstractions of the
distributed nature it runs in. It is kept slim and focused, while
the frameworks used are taking care of all the other networking
details.

www.ijacsa.thesai.org 65 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

Microservices concept has been presented and together
with it the city simulator and the city actor types have been
introduced. Their interactions, through a specific protocol,
have been presented. Moreover, various other interactions,
with supporting roles (routing engine and web page) have
been presented: the routing engine can be called by any actor
via a REST based API and the web page keeps an open
WebSocket connection towards the city simulator to be notified
of any change. Design choices, lead by the programming
language (Go language) and container tool (Docker) have
been discussed, together with their advantages. Networking
details and design have been detailed, mostly lead by how
the Docker and Linux containers landscape work. Kubernetes,
as the de facto solution for microservices orchestration was
also presented. Finally, a brief description provided the results
of a simulation run on a single machine.

As with all technical projects, there are a number of
enhancements which can be further developed around the
concept of simulating a city traffic through actors running
in microservices, as presented in this paper. This section
will briefly propose few of those details in the following
paragraphs.

As the number of the actors are growing, a first bottlneck
in the current architecture will be the city simulator. It is a
single entity and it represents a single source of truth for
the actors. To keep it as single source of truth but at the
same time to scale it horizontally means that we need to
introduce few additional concepts. In [18] a first idea might be
of using multiple cloud providers for taking advantage of their
available compute resources and also for combining them. This
would serve both to the city simulator as well to the swarm
of city actors. The other part which remains is to keep the
city simulator as a single source of truth by taking advantage
of a distributed database. Something similar can be seen in
[19] where a NoSQL database is used for horizontally scaling.
To take advantage of the Kubernetes cluster there are similar
horizontally scalable databases which can be built upon. One
option is the distributed key-value store used by Kubernetes
itself: Etcd database [20].

A second idea for enhancing the simulation is to make the
actors to have a more granular and diverse logic of traversing
the city. The solution proposed into this paper is a basic one: an
actor has a route between two random points on the map and
then it goes on to travel across that route. It can also be made
to look for street densities in advance and act accordingly. If
a street is too crowded the actor might choose to avoid it and
compute a new route around it. A set of actors can be made
to always run between same points (to simulate, for example,
buses).

A third idea is to add more interactions between actors.
It has been discussed that a first interaction is an indirect
one: the number of actors on a certain street, a number called
density. But there are many more points of interactions. Let’s
take junctions. The city simulator can model any junction and
then it can permit actors to pass or not through it, while at
the same time incorporating real data as shown in [3]. Then
there are pedestrian crossings where different types of actors
can meet each other. Or subways access, elevators for them,
bus stations, etc.

A fourth idea is to have contained actors. A bus is an actor.
A person is an actor. If a person is waiting on a bus station
and then it takes a bus, there are two actors, but they are tied
together, or contained and are not independent anymore until
the actor-person choose to get out of the actor-bus. This means
the densities across sidewalkings and bus stations need to be
computed accordingly.

A fifth idea of enhancement is not tied to the way simula-
tion is working but to how it is presented. The web page can
display different colors based on the density of a line, offering
a visual clue on it. Also it can easily show more information
when the cursor is over a point of interest (a street, a junction,
etc.) or it can speed up a past simulation and it can display an
animation.

REFERENCES

[1] R. Alqurashi and T. Altman, “Hierarchical agent-based modeling for
improved traffic routing,” Applied Sciences, vol. 9, p. 4376, 10 2019.

[2] A. Keler, J. Kaths, F. Chucholowski, M. Chucholowski, G. Grigoropou-
los, M. Spangler, H. Kaths, and F. Busch, “A bicycle simulator for ex-
periencing microscopic traffic flow simulation in urban environments,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Nov 2018, pp. 3020–3023.

[3] H. Sutarto, “Urban traffic simulation using sumo open source tools,” 01
2016.

[4] J. Brügmann, M. Schreckenberg, and W. Luther, “Real-time traffic
information system using microscopic traffic simulation,” pp. 448–453,
Sep. 2013.

[5] Linux namespaces, “Linux namespaces — Wikipedia, the free
encyclopedia,” 2002, [Online; accessed 29-October-2019]. [Online].
Available: https://en.wikipedia.org/wiki/Linux namespaces

[6] Docker inc., “Docker,” 2019. [Online]. Available: www.docker.com
[7] OpenStreetMap community, “Open street map,” 2019. [Online].

Available: www.openstreetmap.org
[8] GraphHopper community, “Graphhopper,” 2019. [Online]. Available:

www.graphhopper.com
[9] A. A. Donovan and B. W. Kernighan, The Go programming language.

Addison-Wesley Professional, 2015.
[10] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container

technologies: A state-of-the-art review,” IEEE Transactions on Cloud
Computing, vol. 7, no. 3, pp. 677–692, July 2019.

[11] Cloud Native Computing Foundation, “Kubernetes,” 2019. [Online].
Available: www.kubernetes.io

[12] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” 2016.

[13] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.

[14] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive
into the future of infrastructure. ” O’Reilly Media, Inc.”, 2017.

[15] P. Jogalekar and M. Woodside, “Evaluating the scalability of distributed
systems,” IEEE Transactions on parallel and distributed systems,
vol. 11, no. 6, pp. 589–603, 2000.

[16] C. Risley, R. Lamb, and E. Guzovsky, “Domain name system lookup
allowing intelligent correction of searches and presentation of auxiliary
information,” Dec. 18 2001, uS Patent 6,332,158.

[17] E. S.-J. Swildens, R. D. Day, and V. Garg, “Scalable domain name
system with persistence and load balancing,” Apr. 18 2006, uS Patent
7,032,010.

[18] C. Liu, M. Shie, Y. Lee, Y. Lin, and K. Lai, “Vertical/horizontal resource
scaling mechanism for federated clouds,” pp. 1–4, May 2014.

[19] A. Naskos, A. Gounaris, and I. Konstantinou, “Elton: A cloud resource
scaling-out manager for nosql databases,” pp. 1641–1644, April 2018.

[20] etcd community, “etcd,” 2019. [Online]. Available: www.etcd.io

www.ijacsa.thesai.org 66 | P a g e


