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Abstract—Many methods and approaches have been 

proposed for analyzing and forecasting time series data. There 

are different Neural Network (NN) variations for specific tasks 

(e.g., Deep Learning, Recurrent Neural Networks, etc.). Time 

series forecasting are a crucial component of many important 

applications, from stock markets to energy load forecasts. 

Recently, Swarm Intelligence (SI) techniques including Cuckoo 

Search (CS) have been established as one of the most practical 

approaches in optimizing parameters for time series forecasting. 

Several modifications to the CS have been made, including 

Modified Cuckoo Search (MCS) that adjusts the parameters of 

the current CS, to improve algorithmic convergence rates. 

Therefore, motivated by the advantages of these MCSs, we use 

the enhanced MCS known as the Modified Cuckoo Search-

Markov Chain Monté Carlo (MCS-MCMC) learning algorithm 

for weight optimization in Higher Order Neural Networks 

(HONN) models. The Lévy flight function in the MCS is replaced 

with Markov Chain Monté Carlo (MCMC) since it can reduce 

the complexity in generating the objective function. In order to 

prove that the MCS-MCMC is suitable for forecasting, its 

performance was compared with the standard Multilayer 

Perceptron (MLP), standard Pi-Sigma Neural Network (PSNN), 

Pi-Sigma Neural Network-Modified Cuckoo Search (PSNN-

MCS), Pi-Sigma Neural Network-Markov Chain Monté Carlo  

(PSNN-MCMC), standard Functional Link Neural Network 

(FLNN), Functional Link Neural Network-Modified Cuckoo 

Search (FLNN-MCS) and Functional Link Neural Network-

Markov Chain Monté Carlo (FLNN-MCMC) on various physical 

time series and benchmark dataset in terms of accuracy. The 

simulation results prove that the HONN-based model combined 

with the MCS-MCMC learning algorithm outperforms the 

accuracy in the range of 0.007% to 0.079% for three (3) physical 

time series datasets. 

Keywords—Modified Cuckoo Search-Markov Chain Monté 

Carlo; MCS-MCMC; neural networks; higher order; time series 

forecasting 

I. INTRODUCTION 

Time series forecasting involves developing a model or 
method that captures or describes the observed time series in 
order to understand the underlying causes. This research field 
looks for the “why” behind the time series dataset. This often 
involves making assumptions about data forms and breaking 
down time series into constitutional components [1, 2]. The 
challenge in time series forecasting is to provide a selection of 
techniques to better understand a dataset. In order to 
understand the past and predict the future event, it is important 

to analyze and optimize time series data using appropriate 
algorithms to understand underlying causes. There are many 
types of time series. For example; physical, financial and so 
forth [1, 3-5]. Time series forecasting have been addressed 
using classic methods such as the Autoregressive Integrated 
Moving Average (ARIMA) [6, 7], the Autoregressive Moving 
Average (ARMA) [7] and more. This linear model is the 
perfect choice for modeling time series events. However, they 
did not produce satisfactory results because they assumed a 
linear relationship between the past values of the series and 
ignored the non-linear relationships between these models. 

Contrary, non-linear model such as Neural Networks (NN) 
has shown better performance as compared to linear models. 
Not to mention, it has been applied in dealing with issues of 
time series forecasting [8-12]. The NN is a type of parallel 
computer structure, which several of processing units are 
linked together thus that the computer’s memory is distributed, 
and information is passed in a parallel manner. Many NN 
architectures and algorithms have been developed thus far, 
namely multilayer feedforward networks, deep learning 
methods and so on [12-14]. Of these networks, the interest is 
gradually shifting towards using feedforward networks. 
Multilayer Perceptron (MLP), a class of feedforward networks, 
has been found to perform best in broader applications related 
to forecasting issues [1, 8-11]. The MLP is well-known for 
having the ability to map both linear and non-linear 
relationship if the number of nodes and layers are given 
sufficiently. However, MLP needs excessive learning time 
which may lead to overfitting [15, 16]. This is more likely to 
happen to the networks with many processing units and results 
in poor generalizability. The ability to generalize, that is to 
produce outputs from unknown inputs, is critical when the NN 
is used in time series forecasting. For this reason, networks 
with few parameters are preferred, fair enough to provide an 
adequate fit in order to avoid over-training [2, 15]. 

Therefore, to correct this failing, some Higher Order Neural 
Networks (HONN) is suggested. In this study, two (2) types of 
HONN were highlighted; Pi-Sigma Neural Network (PSNN) 
[17] and Functional Link Neural Network (FLNN) [18]. The 
PSNN utilizes product units at the output units that indirectly 
incorporate the capabilities of HONN while using a fewer 
number of weights and processing units. It has a regular 
structure, exhibits much faster learning, and is open to the 
incremental addition of units to attain a desired level of 
complexity. Meanwhile, the FLNN removes the need for 
hidden layers and hidden nodes by utilizing a higher order term 
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to expand its input spaces into higher dimensional space within 
the single layer units. This simple architecture reduced the 
number of trainable parameters needed whilst reduces the 
learning complexity during the network training [19]. Taken as 
a whole, HONN are simple in their architecture and have fewer 
number of trainable parameters to deliver the input-output 
mappings as compared to the standard NN. 

The standard method to train the NN is the well-known 
Backpropagation (BP) algorithm [20]. The existing BP 
algorithm, however, has several limitations including easily 
stuck into local minima, especially when dealing with highly 
non-linear problems [15]. The BP algorithm is also very 
dependent on the choices of initial values of the weights as 
well as other parameters. For instance, the BP algorithm is 
generally very slow as it requires small learning rates for stable 
learning. The momentum variation is usually faster than 
straightforward gradient descent since it allows higher learning 
rates while maintaining stability. However, it is still too slow 
for many practical applications. 

Therefore, we used the Modified Cuckoo Search-Markov 
Chain Monté Carlo (MCS-MCMC) learning algorithm [21], 
that employs the learning rules to find the optimal weights in 
HONN models, thus overcome the BP drawbacks for this 
forecasting issue, and apply this method to several physical 
time series datasets. The results were compared with standard 
MLP and several HONN-based models. This MCS-MCMC 
used to enhanced the Modified Cuckoo Search (MCS) [22] by 
adopting Markov Chain Monté Carlo (MCMC) random walk. 
Those can be achieved by Markov chain mixing and integrated 
autocorrelation of a function of interest [23]. Therefore, it is 
useful in speeding up the convergence rate and obtaining 
higher accuracy rate. 

Following this section, this paper is organized as follows: 
Section II presents the Related Works, followed by Section III 
which discuss the Architecture of HONN. Section IV poses the 
Experimental Results and Section V examines the 
Computational Results. Finally, Section VI concludes the work 
done. 

II. RELATED WORKS 

Weight optimizations are made in a wide range of diverse 
disciplines. Some methods that can be used to update weights 
in NN are BP, Genetic Algorithm (GA) [24, 25], Support 
Vector Machine (SVM) [26] and more. The concept of weight 
optimization by NN has become an active research field. It 
goes without saying that Swarm Intelligence (SI) played a role 
too. Among those swarm-based algorithms that have achieved 
significant popularity in the last few years are Evolutionary 
Algorithm (EA) [27, 28], Differential Evolution (DE) [29, 30], 
Artificial Bee Colony [16, 31] and Cuckoo Search [32]. 

The work presented in [33] combines Particle Swarm 
Optimization (PSO) and Extreme Learning Machine (ELM) to 
forecast the inflation rate in Indonesia. It uses PSO to optimize 
weight in order to obtain the optimal input values in ELM. 
In [34], the work binds the Ant Colony Optimization (ACO), 
PSO and 3-Opt algorithms. The PSO algorithm is used to 
optimize the parameter values used in the ACO algorithm for 
city selection operations, and defines the significance of inter-

city pheromone and distances. 3-Opt heuristic approach to 
boost the local solutions is applied to the proposed method. 
The performance of the combined method becomes very 
significant in terms of solution quality and robustness. In the 
meantime, the research in [35] dealt with Whale Optimization 
Algorithm to optimize the weights and biases. Based on the 
findings, this algorithm has demonstrated the ability to solve a 
wide range of optimization issues and surpass the BP 
algorithm. 

In conjunction with that, [36] presented GA with DE to 
change the weight parameters encoded within the structure by 
optimizing the network topology using GA and set the network 
weights using DE. Similar to [36], [37] combines GA and NN 
to increase the NN performance in diagnosing coronary artery 
disease. This somewhat shows surprising results which make 
the levels of accuracy, sensitivity and specificity achieved by 
that combination. In another study, [38] optimized the weight 
to speed up the convergence rate by reparametrizing the weight 
vectors in NN. Weight optimization is also studied by [39] 
using PSO. In his work, he combined the multiresolution 
analysis techniques with NN to forecast the next-day event. 
The findings suggested both results and good forecasting 
efficiency. Other research conducted by [40] used grid search 
technique to calculate the best value of SVM parameters. The 
use of those technique is crucial to forecast the time series 
event. The result shows that the SVM outperformed NN in 
terms of Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE). 

In particular, the key reason why weight parameters are 
optimized is to prevent local minima and convergence speed. 
This is because, weights are the relative strength of node-to-
node connections in NN. Besides, those optimization treats 
important topics such as having a particular way of 
manipulating and expanding the problem’s search space, which 
provides a detailed overview of how to manage such 
continuous domains. Instead, one of the well-known solutions 
is to find values of the variables that optimize the objectives. 
However, the variables are always limited, or somehow 
constrained. Therefore, in order to identify those values, 
experiments should focus on optimizing the objective functions 
or error functions due to the use of a common randomization 
arbitration and local search. Those parameter needs to be 
optimized subsequently to build up such appropriate and 
effective models. Once the effective models being developed, 
then the parameter is in its optimality conditions. It is however, 
the need for thorough research in order to evaluate the correct 
parameter measurement is still in doubt. 

III. ARCHITECTURE OF HONN 

In this study, the MCS-MCMC learning algorithm [21] is 
used to search for optimal weight parameters than can 
minimize the objective function in PSNN and FLNN network 
models. We replaced BP algorithm in the standard PSNN and 
FLNN with MCS-MCMC learning algorithm. The replacement 
is made to overcome the gradient-based learning algorithm 
drawbacks in BP algorithm that are slow, and easily get stuck 
into local minima [15]. Table I indicates the needs of MCS-
MCMC that overcome the existing BP and MCS learning 
algorithm. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

301 | P a g e  

www.ijacsa.thesai.org 

TABLE. I. COMPARISON OF BP, MCS AND MCS-MCMC LEARNING 

ALGORITHM 

BP MCS MCS-MCMC 

 Stuck into local 

minima. 

 Very dependent on 

the initial weights. 

 Need more 

parameter to be set 

up. 

 Caters slow 

convergence 

encountered 

by BP. 

 Less 

parameter to 

be set up. 

 Reduce complexity. 

 Speed up convergence 

rate. 

 Initialize weight value 

for better way/solutions 

and abondoned poor 

values. 

According to Table I, the MCS-MCMC is used for weight 
initialization and weight update (replacing the BP algorithm in 
the standard PSNN and FLNN). The weights and biases were 
calculated and updated for the complete training that represents 
the architecture. Those can be achieved by starting it with 
random values followed by several repeated attempts on 
discovering better solutions and abandoning the poor values. 
The architecture of Pi-Sigma Neural Network-Markov Chain 
Monté Carlo (PSNN-MCMC) and Functional Link Neural 
Network-Markov Chain Monté Carlo (FLNN-MCMC) are 
presented in Fig. 1 and Fig. 2. 

nxxx ,, 21  denotes input vectors, 
ijw  denotes adjustable 

weights for input vectors to linear summing unit,   is the 

non-linear activation function,
lhhh ,, 21

 indicates the 

summing units, y  is the output node and 
jkw  is the fixed 

weights from linear summing units to the output layer. 
Step-by-step process in PSNN-MCMC: 

Step 1: Initialize weights 
ijw  from input vector to the linear 

summing unit 
lh  with a random number using MCS-

MCMC learning algorithm. Those random weights are 

evaluated from layer-to-layer to improve the searching 

strategies to get the optimal weights set. 

Step 2: Transform the optimization parameters (weights and 

biases) into the objective function. 

Step 3: Feed the objective function into the MCS-MCMC 

learning algorithm to search for optimal weight 

parameters. 

Step 4: Calculate error. 

 

Fig. 1. The Architecture of PSNN-MCMC. 

 

Fig. 2. The Architecture of FLNN-MCMC. 

kji xxx ,,  is the input vector, 
ijkw  is the adjustable weight, 

y  is the output, and   is the non-linear activation function. 

Step-by-step process in FLNN-MCMC: 

Step 1: Initialize weights ijkw  with a random number using 

MCS-MCMC learning algorithm. 

Step 2: In the initial process, transform the standard FLNN 

architecture (weight and biases) into the objective 

function. 

Step 3: Feed the objective function, along with the training 

data, into the MCS-MCMC learning algorithm to 

search for optimal weight parameters to minimize the 

objective function. 

Step 4: Tune the weight changes using the MCS-MCMC 

learning algorithm based on the error calculation (the 

difference between actual and predicted outputs). 

Step 5: Obtain the optimal weights set from the training phase 

and used upon unseen data for forecasting. 

IV. EXPERIMENTAL RESULTS 

A. Data Preparation 

Appropriate datasets should be provided to determine the 
problems encountered and evaluate the performance of the 
proposed PSNN-MCMC and FLNN-MCMC, and other 
models; standard PSNN, Pi-Sigma Neural Network-Modified 
Cuckoo Search (PSNN-MCS), standard FLNN, Functional 
Link Neural Network-Modified Cuckoo Search (FLNN-MCS), 
and standard MLP. The performance are evaluated based on 
the lowest Mean Squared Error (MSE) [41, 42] and Root Mean 
Squared Error (RMSE) [43]. Based on the previous records, the 
maximum, minimum and average measurements of three (3) 
datasets are tabulated in Table II. 

TABLE. II. THE DATASETS EVALUATIONS 

Dataset Minimum Maximum Average Data Size 

Relative Humidity 69.5000 98.1000 85.9035 50, 840 

Temperature 23.7000 29.5000 26.7543 1, 813 

Santa Fe Laser 0 255 59.8661 3, 972 
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Relative Humidity: The datasets were collected from 
Malaysian Meteorological Department (MMD). Each dataset 
consists of 50, 840 instances which are covered from year of 
1992 until 2009 [44]. 

Temperature: The datasets were collected from MMD. 
Each dataset consists of 1, 813 that covers over year of 1992 
until 2009 [44]. 

Santa Fe Laser: A univariate time series derived from laser-
generated data recorded from a Far-Infrared-Laser in a chaotic 
state. This benchmark datasets are composed of a clean low-
dimensional non-linear and stationary time series with the total 
number of 3, 972 instances. 

The reason for choosing these datasets are due to the 
stability they owned compared to other datasets. The stability is 
depending on the types of data and factors affecting them [45, 
46]. For instance, the time series signals were observed on a 
highly non-stationary and/or non-linear range [47, 48]. 
Non-stationary is a common property to vary time-series 
models, which means, a variable has no clear tendency to 
return to a constant value or a linear trend. To note, the stability 
is the key to predictability. Therefore, a stable dataset is needed 
to predict the current trend. These physical time series data, 
later, were fed to all NN to capture the underlying rules of the 
movement. 

B. Data Pre-processing 

Mostly, data gathering somehow are loosely controlled. 
Thus, resulting in outliers, impossible data combinations, and 
may contains missing values. Therefore, the data need to be 
pre-processed to avoid errors and misleading results Fig. 3. The 
data pre-processing involves cleaning, shifting and normalizing 
the raw data into a format that improves the performance of the 
subsequent modules [18, 49]. 

C. Data Partition 

Data partitioning is highly required by NN to obtain best 
NN models. Hence, in this study, we divide the datasets into 
three (3) partitions: 60% for training, while 20% for both 
testing and validation. 

Training Set: Served the model for training purposes which 
allows the model to produce an output closer to the target 
value. Therefore, it must have more significant portion than the 
data being used for testing and validation. 

Validation Set: Used to evaluate a given model, in which 
the sample of data used to provide an unbiased evaluation of a 
model fit on the training dataset fine-tunes the model. This set 
is also essential to avoid overfitting. 

Data Shifting

Data Normalization

Data Cleaning

- transforms multiple array 

data to single array

- normalizes data between 

upper and lower bounds

- removes outliers and 

missing values

 

Fig. 3. Data Pre-Processing Process. 

Testing Set: Describes how the models will perform on 
new, unseen data in order to evaluate the model. This sample 
provides an unbiased evaluation of a final model fit on the 
training dataset. It is only used once a model is thoroughly 
trained. 

The split ratio of the datasets mainly relies on two (2) 
criteria. First, the total number of samples in the dataset. 
Second, the actual model going to be trained. Some models 
need substantial data to train upon. Therefore, in this study, 
more massive training sets should be optimized. Models with 
very few hyperparameters (e.g., momentum, learning rate, etc.) 
will be easy to validate and tune. As is, the validation set can 
probably reduce. However, if the model has many 
hyperparameters, an extensive validation must be set as well. 
All in all, like many other things in NN, the training-testing-
validation split ratio is also quite specific based on some 
instances, and it gets easier to make a judgment as more 
training used. 

D. Parameters Settings 

The parameters of an NN are learned during the training 
stage. Learning (or training) is a process by which the tunable 
weights of a network are adapted through a continuous process 
of simulation whereas the network is embedded. The most 
basic method of training a network is a trial-and-error 
procedure [15]. During the learning phase, the network learns 
until its weight continues to tweak. The same set of data is then 
processed many times as the connection weight continues to 
improve. Parameters must be specified during training for any 
given NN architecture. For all network models, input nodes are 
set between 5 and 7 nodes, higher nodes / nodes between 2 and 
5 (except for standard MLP) and one (1) for output nodes. The 
parameter settings for all network models are tabulated in 
Table III. 

TABLE. III. PARAMETER SETTINGS FOR ALL NETWORK MODELS 

Parameters Values References 

Initial weights  75.0,25.0  [15] 

Learning Rate 0.2 [15] 

Momentum 0.3 [15] 

Minimum Error  0.001 [15] 

Epoch 1000 [15] 

Initial Value, A  1 [23] 

Step size,   0.01 [23] 

Probability, 
P  0.25 [22] 

Initial Value,   1 [23] 

n  5 [23] 

a  4 [23] 

Minimum Error  0.001 [15] 

Number of Generation 1000 [22] 

Input Nodes 5 to 7 [15] 

Network’s Order 
2 to 5 (for rest of NN models) 

3 to 8 (for MLP) 
[15] 

Output Node 1 [15] 

Transfer Function Sigmoid [15] 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

303 | P a g e  

www.ijacsa.thesai.org 

V. COMPUTATIONAL RESULTS 

A. Relative Humidity Dataset 

Referring to Fig. 4, the MSE results for Relative Humidity 
with 5 to 7 input nodes are visualized. As the 5 inputs were 
supplied, FLNN-MCMC, PSNN-MCMC and PSNN-MCS lead 
the ranks. When inputs 6 and 7 were loaded, PSNN-MCMC, 
PSNN-MCS and FLNN-MCMC outperformed. Seemingly, 
based on the results, the performances of the network in which 
the learning method had been replaced by MCS-MCMC 
learning algorithm are much preferable compared to the 
networks with standard MCS algorithm. 

 
(a) 5 Inputs. 

 
(b) 6 Inputs. 

 
(c) 7 Inputs. 

Fig. 4. Performance Comparison on Relative Humidity. 

B. Temperature Dataset 

Fig. 5 graphically shows the performance comparison for 
all the networks on Temperature dataset. According to the 
results plotted in Fig. 5, the first, second and third ranks are 
FLNN-MCMC, PSNN-MCMC and FLNN-MCS for 5 inputs, 
FLNN-MCMC, FLNN-MCS and PSNN-MCMC for 6 and 7 
inputs. From these results, it is said that the incorporation of 
MCS-MCMC learning algorithm into both PSNN and FLNN 
network models could help to minimize the error rate, thus 
assists the network to converge quickly. As it has been pointed 
out, FLNN-MCMC shows the least MSEs compared to all 
network models generated. Therefore, by having the least 
MSE, it combines both the estimator’s variance and its bias to 
the extent that the estimated value is derived from the truth. In 
addition, the positive tendency in the Temperature dataset itself 
indicates that the data have a strong influence / fluctuation that 
is stable enough to handle the network model integrated with 
the MCS-MCMC learning algorithm. 

C. Santa Fe Laser Dataset 

In view of inputs 5, 6 and 7, the FLNN-MCMC also 
outperformed the other network models for 60:20:20 data 
partition. Fig. 6 shows the results with respect to iterations and 
MSE values. From these statistics, it can be noted that the 
FLNN-MCMC network model performed better than the other 
network models with stable results even when dealing with the 
Santa Fe Laser dataset’s temporal behavior. 

The current study includes trials of MCS-MCMC learning 
algorithm on various network models. From the results, it is 
proved that, in this study, it is affirmative that the networks 
with MCS-MCMC learning algorithm were well generalized 
and showed least error compared to other network models, 
which could represent non-linear function. The MCS-MCMC’s 
existence as the learning algorithm that replaces the existing 
BP algorithm enabled fast and rapid training. A significant 
advantage of the MCS-MCMC is that the learning algorithm 
can automatically adjust better parameters to find excellent 
parameter values with little user interference, which being 
accomplished through Markov chain mixing and a functional 
of interest integrated autocorrelation. Overall, the use of 
MCS-MCMC learning algorithm was discovered to be able to 
perform on various ranges of datasets. 

The MCS-MCMC is developed for initializing and 
updating the weights in HONN-based models. The use of 
Swarm Intelligence (SI) techniques in MCS-MCMC allows it 
to expand their input space to a higher dimensional space 
where linearity separable is possible has led to a significant 
effect on improving the network performance. The network is 
computationally efficient and is capable of modelling 
non-linear input-output mappings when learning the time series 
data, thus justified the potential use of this model by 
practitioners. Besides, the results clearly showed that the 
MCS-MCMC substantially at par with the computational 
efficiency of the training process, and has been developed in 
order to produce more realistic and acceptable results. 
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(a) 5 Inputs.      (b) 6 Inputs. 

 
(c) 7 Inputs. 

Fig. 5. Performance Comparison on Temperature. 

    
(a) 5 Inputs.      (b) 6 Inputs. 

 
(c) 7 Inputs. 

Fig. 6. Performance Comparison on Santa Fe Laser. 
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D. Discussions 

In this section, several issues raised by different NN 
comparisons are addressed. Because the results presented 
previously include extensive simulations, this section describes 
the observations obtained from the entire experimental results. 

1) Model performances based on ranking: The simulation 

results in Section V, Subsection A were summarized in Tables 

IV to VI. This tables cover inputs ranges from 5 to 7 and 

seven (7) network models. Table IV shows the overall rank for 

Relative Humidity on all networks. 

From Table IV, the PSNN-MCMC outperformed other 
network models by getting the highest average ranking. This 
demonstrates that the accuracy rate is enhanced by integrating 
the MCS-MCMC learning algorithm with HONN. Table V 
indicates the overall rank for Temperature on all networks. 

According to Table V, FLNN-MCMC outperformed the 
other network models by having the highest average rank. This 
is followed by FLNN-MCS and PSNN-MCMC in the second 
and third rank, respectively. Basically, those swarm-based 
learning algorithm helps to overcome the drawbacks of the 
existing BP algorithm. Table VI summarizes data on all 
networks from the Santa Fe Laser dataset. 

The results in Table VI show that the FLNN-MCMC 
provides a lower MSE than the other network models. This is 
accompanied by FLNN-MCS that falls into the second place 
and standard MLP in the third place. Based on these outcomes, 
it is concluded that implementing the swarm-based learning 
algorithm in HONN helps network models converge with 
lower iterations and lower error rate. Therefore, improves the 
network performance indirectly. 

TABLE. IV. OVERALL RANK FOR RELATIVE HUMIDITY ON ALL NETWORKS 
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TABLE. V. OVERALL RANK FOR TEMPERATURE ON ALL NETWORKS 
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TABLE. VI. OVERALL RANK FOR SANTA FE LASER ON ALL NETWORKS 
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Mean 

Rank 
5.67 6.00 5.00 4.67 2.00 1.00 3.67 

Overall 

Rank 
6 7 5 4 2 1 3 

2) The accuracy: In this section, we presented the result 

based on the percentage of RMSE and Accuracy. The RMSE 

used to measures how much error there is between the actual 

and the target output [42]. In other words, it tells how 

concentrated the data is around the line of best fit. In general, 

if the value of RMSE getting lower, the better performance 

will be produced. 

Tables VII to IX show the experimental results on all 
datasets. The table consisted of six (6) elements. The first 
element indicates the network model; and the second element 
designates the best network structure. This is accomplished by 
the method of trial-and-error procedure [15]. The third element 
specifies the number of trainable weights. Those values are 
collected during experiments. The fourth element is the RMSE 
value acquired through Equation (1): 
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n
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RMSE

n
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ii













             (1) 

where n  is the total number of data patterns, 
iP  and 

~

iP  

represent the actual and predicted output value, respectively. 
Equation (2) provides the sixth element (Accuracy in 
percentage). The simulation results later being compared in the 
form of accuracy rate. 

100
2

1  






 MSE
Accuracy

            (2) 

where MSE  is mean squared error [42]. 

TABLE. VII. EXPERIMENTAL RESULTS ON RELATIVE HUMIDITY 

Network 

Model 

Best 

Network 

Structure 

No. of 

Trainable 

Weights 

RMSE 
Accuracy 

(%) 

Standard PSNN 5-2-1 10 0.21801 97.624 

PSNN-MCS 7-5-1 35 0.02205 99.976 

PSNN-MCMC 7-2-1 14 0.02205 99.976 

Standard FLNN 7-4-1 127 0.03606 99.935 

FLNN-MCS 6-4-1 57 0.03071 99.953 

FLNN-MCMC 6-4-1 57 0.02931 99.957 

Standard MLP 7-7-1 56 0.03606 99.935 
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TABLE. VIII. EXPERIMENTAL RESULTS ON TEMPERATURE 

Network 

Model 

Best 

Network 

Structure 

No. of 

Trainable 

Weights 

RMSE 
Accuracy 

(%) 

Standard PSNN 5-3-1 15 0.07658 99.707 

PSNN-MCS 6-2-1 12 0.06372 99.797 

PSNN-MCMC 5-2-1 10 0.05051 99.872 

Standard FLNN 5-4-1 31 0.07681 99.705 

FLNN-MCS 6-4-1 57 0.05252 99.862 

FLNN-MCMC 7-3-1 120 0.02241 99.975 

Standard MLP 6-7-1 49 0.07746 99.700 

TABLE. IX. EXPERIMENTAL RESULTS ON SANTA FE LASER 

Network 

Model 

Best 

Network 

Structure 

No. of 

Trainable 

Weights 

RMSE 
Accuracy 

(%) 

Standard PSNN 7-4-1 28 0.08557 99.634 

PSNN-MCS 5-2-1 10 0.07767 99.698 

PSNN-MCMC 5-3-1 15 0.07154 99.744 

Standard FLNN 7-4-1 127 0.07810 99.695 

FLNN-MCS 6-4-1 57 0.02735 99.963 

FLNN-MCMC 6-4-1 57 0.02069 99.979 

Standard MLP 7-8-1 64 0.06782 99.770 

According to the results on Relative Humidity dataset (refer 
to Table VII), the HONN-based models being incorporated 
with MCS-MCMC learning algorithm give significant 
percentage around 99.953% to 99.976%. while for 
Temperature dataset (refer to Table VIII), the values vary from 
99.797% to 99.975%. For Santa Fe Laser dataset (refer to 
Table IX), the FLNN-MCMC achieved highest percentage of 
Accuracy with the value of 99.979%. 

The experimental results vary depending on the datasets. 
The algorithm can readily mapped the function if the data is 
sufficiently stable, thus delivering much better and stable 
outcomes. Otherwise, it could result in an extensive training 
algorithm. As the time series datasets exhibit a very strong 
trend, it shows obvious up and down movement. Therefore, 
during the training of such datasets, the networks were used to 
learn the precise values of each data point. This sometimes 
could lead the networks failed to respond well to the 
underlying chaotic structure within the data behaviour. Hence, 
to correctly predict the value from one point to another point is 
a challenging task. 

3) Threat to validity and improvements: In this study, the 

fairness of experimentations involving SI technique are 

levelled to minimize threats to validity. One of major 

concerned was regarding the validity of parameter setting for 

each SI technique. In order to ensure fair comparisons, all 

parameter settings for all the network models, involving the 

input settings, learning rate and stopping criteria are set with 

the same value (revisit Section III, D). Another concerned was 

regarding the network structure for all the network models; the 

standard PSNN, PSNN-MCS, PSNN-MCMC, standard 

FLNN, FLNN-MCS, FLNN-MCMC and standard MLP. The 

network structure for those network models cannot be 

equivalent for all datasets in the experiment as they may yield 

unfair results. Therefore, to ensure fair prediction performance 

results, the network structure issue is addressed. 

The critical part is on generalization. It is on how the 
network generates lowest MSE. For this reason, the best model 
is regarded to the NN structure that offers the greatest 
proportion of improvements. The simulation results are 
benchmarked against seven (7) NN models. The improvements 
for MCS-MCMC learning algorithm on both PSNN and FLNN 
for all datasets are measured in Equations (3) and (4). Let a  be 

standard PSNN, b  be PSNN-MCS, c  be PSNN-MCMC, d  be 

standard FLNN, e  be FLNN-MCS, f  be FLNN-MCMC and 

g  be standard MLP. 
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cprovementIm  denotes improvement for PSNN-MCMC 

while 
fprovementIm  denotes improvement for FLNN-MCMC 

[42]. The overall improvements for PSNN-MCMC and 
FLNN-MCMC are tabulated in Tables X to XI. The findings 
on Table X show that the PSNN-MCMC provides significant 
improvement in all datasets where the PSNN-MCMC can 
improve the accuracy. This is also applicable to FLNN-MCMC 
in Table XI. 

As can be seen from Tables X and XI, the MCS-MCMC 
learning algorithm can train and improve the accuracy of the 
HONN network model. Thus, it makes the best improvement 
on Relative Humidity dataset with the value of 0.707% on 
PSNN-MCMC and 0.670% on FLNN-MCMC when compared 
to other datasets. Both network models operate approximately 
0.007 % to 0.079%. 

TABLE. X. THE OVERALL IMPROVEMENTS OF PSNN-MCMC 

Datasets 
Network 

Structure 

Improvement of 

PSNN-MCMC (%) 

Relative Humidity 7-2-1 0.707 

Temperature 5-2-1 0.116 

Santa Fe Laser 5-3-1 0.079 

TABLE. XI. THE OVERALL IMPROVEMENTS OF FLNN-MCMC 

Datasets 
Network 

Structure 

Improvement of 

FLNN-MCMC (%) 

Relative Humidity 6-4-1 0.670 

Temperature 7-3-1 0.320 

Santa Fe Laser 6-3-1 0.391 
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As the time series have chaotic behavior, this approach 
offers significant advantages over the standard network models 
such as improved simulations and lower error rate, due to their 
ability to better approximate complex, non-smooth and often 
discontinuous training datasets. To conclude, it is confirmed 
that HONN, when incorporated with MCS-MCMC learning 
algorithm, helps to overcome the drawback of the existing BP 
algorithm that prone to overfit and stuck into local minima. 
Thus, improve the network performance and increase the 
accuracy by getting the highest average ranking. 

VI. CONCLUSION 

The higher demands for SI techniques justify the need for a 
more effective, better solutions approach. The findings of this 
study will redound to the benefit of the SI field, considering 
that SI plays a vital role in optimization issues today. 
Therefore, the MCS-MCMC learning algorithm nailing down 
the optimal weight values in HONN which helped in dealing 
with slow convergence and poor generalization. Those are 
derived from the findings which later will be used to predict 
the time series event better. This study may also advantageous 
for certain sectors such as meteorological department that 
applies the non-linearity relationship in meteorological process. 
On the other hand, by obtaining outstanding performance on 
various ranges of time series datasets, it may reduce the risk in 
decision making. Thus, this approach significantly matches the 
idea. Therefore, the effectiveness of any decision depends upon 
the nature of a sequence of events preceding the decision. 
Furthermore, this study would be beneficial to the researchers, 
as it can provide baseline information on the different approach 
of SI and NN. 
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