
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

299 | P a g e

www.ijacsa.thesai.org

A Modified Weight Optimization for Artificial Higher

Order Neural Networks in Physical Time Series

Noor Aida Husaini
1
, Rozaida Ghazali

2

Nureize Arbaiy3, Norhamreeza Abdul Hamid4

Faculty of Computer Science & Information Technology

Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Lokman Hakim Ismail
5

Faculty of Civil Engineering and Built Environment

Universiti Tun Hussein Onn Malaysia

Johor, Malaysia

Abstract—Many methods and approaches have been

proposed for analyzing and forecasting time series data. There

are different Neural Network (NN) variations for specific tasks

(e.g., Deep Learning, Recurrent Neural Networks, etc.). Time

series forecasting are a crucial component of many important

applications, from stock markets to energy load forecasts.

Recently, Swarm Intelligence (SI) techniques including Cuckoo

Search (CS) have been established as one of the most practical

approaches in optimizing parameters for time series forecasting.

Several modifications to the CS have been made, including

Modified Cuckoo Search (MCS) that adjusts the parameters of

the current CS, to improve algorithmic convergence rates.

Therefore, motivated by the advantages of these MCSs, we use

the enhanced MCS known as the Modified Cuckoo Search-

Markov Chain Monté Carlo (MCS-MCMC) learning algorithm

for weight optimization in Higher Order Neural Networks

(HONN) models. The Lévy flight function in the MCS is replaced

with Markov Chain Monté Carlo (MCMC) since it can reduce

the complexity in generating the objective function. In order to

prove that the MCS-MCMC is suitable for forecasting, its

performance was compared with the standard Multilayer

Perceptron (MLP), standard Pi-Sigma Neural Network (PSNN),

Pi-Sigma Neural Network-Modified Cuckoo Search (PSNN-

MCS), Pi-Sigma Neural Network-Markov Chain Monté Carlo

(PSNN-MCMC), standard Functional Link Neural Network

(FLNN), Functional Link Neural Network-Modified Cuckoo

Search (FLNN-MCS) and Functional Link Neural Network-

Markov Chain Monté Carlo (FLNN-MCMC) on various physical

time series and benchmark dataset in terms of accuracy. The

simulation results prove that the HONN-based model combined

with the MCS-MCMC learning algorithm outperforms the

accuracy in the range of 0.007% to 0.079% for three (3) physical

time series datasets.

Keywords—Modified Cuckoo Search-Markov Chain Monté

Carlo; MCS-MCMC; neural networks; higher order; time series

forecasting

I. INTRODUCTION

Time series forecasting involves developing a model or
method that captures or describes the observed time series in
order to understand the underlying causes. This research field
looks for the “why” behind the time series dataset. This often
involves making assumptions about data forms and breaking
down time series into constitutional components [1, 2]. The
challenge in time series forecasting is to provide a selection of
techniques to better understand a dataset. In order to
understand the past and predict the future event, it is important

to analyze and optimize time series data using appropriate
algorithms to understand underlying causes. There are many
types of time series. For example; physical, financial and so
forth [1, 3-5]. Time series forecasting have been addressed
using classic methods such as the Autoregressive Integrated
Moving Average (ARIMA) [6, 7], the Autoregressive Moving
Average (ARMA) [7] and more. This linear model is the
perfect choice for modeling time series events. However, they
did not produce satisfactory results because they assumed a
linear relationship between the past values of the series and
ignored the non-linear relationships between these models.

Contrary, non-linear model such as Neural Networks (NN)
has shown better performance as compared to linear models.
Not to mention, it has been applied in dealing with issues of
time series forecasting [8-12]. The NN is a type of parallel
computer structure, which several of processing units are
linked together thus that the computer’s memory is distributed,
and information is passed in a parallel manner. Many NN
architectures and algorithms have been developed thus far,
namely multilayer feedforward networks, deep learning
methods and so on [12-14]. Of these networks, the interest is
gradually shifting towards using feedforward networks.
Multilayer Perceptron (MLP), a class of feedforward networks,
has been found to perform best in broader applications related
to forecasting issues [1, 8-11]. The MLP is well-known for
having the ability to map both linear and non-linear
relationship if the number of nodes and layers are given
sufficiently. However, MLP needs excessive learning time
which may lead to overfitting [15, 16]. This is more likely to
happen to the networks with many processing units and results
in poor generalizability. The ability to generalize, that is to
produce outputs from unknown inputs, is critical when the NN
is used in time series forecasting. For this reason, networks
with few parameters are preferred, fair enough to provide an
adequate fit in order to avoid over-training [2, 15].

Therefore, to correct this failing, some Higher Order Neural
Networks (HONN) is suggested. In this study, two (2) types of
HONN were highlighted; Pi-Sigma Neural Network (PSNN)
[17] and Functional Link Neural Network (FLNN) [18]. The
PSNN utilizes product units at the output units that indirectly
incorporate the capabilities of HONN while using a fewer
number of weights and processing units. It has a regular
structure, exhibits much faster learning, and is open to the
incremental addition of units to attain a desired level of
complexity. Meanwhile, the FLNN removes the need for
hidden layers and hidden nodes by utilizing a higher order term

This work was funded by the Research Management Centre, Universiti

Tun Hussein Onn Malaysia (Research Fund E15501).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

300 | P a g e

www.ijacsa.thesai.org

to expand its input spaces into higher dimensional space within
the single layer units. This simple architecture reduced the
number of trainable parameters needed whilst reduces the
learning complexity during the network training [19]. Taken as
a whole, HONN are simple in their architecture and have fewer
number of trainable parameters to deliver the input-output
mappings as compared to the standard NN.

The standard method to train the NN is the well-known
Backpropagation (BP) algorithm [20]. The existing BP
algorithm, however, has several limitations including easily
stuck into local minima, especially when dealing with highly
non-linear problems [15]. The BP algorithm is also very
dependent on the choices of initial values of the weights as
well as other parameters. For instance, the BP algorithm is
generally very slow as it requires small learning rates for stable
learning. The momentum variation is usually faster than
straightforward gradient descent since it allows higher learning
rates while maintaining stability. However, it is still too slow
for many practical applications.

Therefore, we used the Modified Cuckoo Search-Markov
Chain Monté Carlo (MCS-MCMC) learning algorithm [21],
that employs the learning rules to find the optimal weights in
HONN models, thus overcome the BP drawbacks for this
forecasting issue, and apply this method to several physical
time series datasets. The results were compared with standard
MLP and several HONN-based models. This MCS-MCMC
used to enhanced the Modified Cuckoo Search (MCS) [22] by
adopting Markov Chain Monté Carlo (MCMC) random walk.
Those can be achieved by Markov chain mixing and integrated
autocorrelation of a function of interest [23]. Therefore, it is
useful in speeding up the convergence rate and obtaining
higher accuracy rate.

Following this section, this paper is organized as follows:
Section II presents the Related Works, followed by Section III
which discuss the Architecture of HONN. Section IV poses the
Experimental Results and Section V examines the
Computational Results. Finally, Section VI concludes the work
done.

II. RELATED WORKS

Weight optimizations are made in a wide range of diverse
disciplines. Some methods that can be used to update weights
in NN are BP, Genetic Algorithm (GA) [24, 25], Support
Vector Machine (SVM) [26] and more. The concept of weight
optimization by NN has become an active research field. It
goes without saying that Swarm Intelligence (SI) played a role
too. Among those swarm-based algorithms that have achieved
significant popularity in the last few years are Evolutionary
Algorithm (EA) [27, 28], Differential Evolution (DE) [29, 30],
Artificial Bee Colony [16, 31] and Cuckoo Search [32].

The work presented in [33] combines Particle Swarm
Optimization (PSO) and Extreme Learning Machine (ELM) to
forecast the inflation rate in Indonesia. It uses PSO to optimize
weight in order to obtain the optimal input values in ELM.
In [34], the work binds the Ant Colony Optimization (ACO),
PSO and 3-Opt algorithms. The PSO algorithm is used to
optimize the parameter values used in the ACO algorithm for
city selection operations, and defines the significance of inter-

city pheromone and distances. 3-Opt heuristic approach to
boost the local solutions is applied to the proposed method.
The performance of the combined method becomes very
significant in terms of solution quality and robustness. In the
meantime, the research in [35] dealt with Whale Optimization
Algorithm to optimize the weights and biases. Based on the
findings, this algorithm has demonstrated the ability to solve a
wide range of optimization issues and surpass the BP
algorithm.

In conjunction with that, [36] presented GA with DE to
change the weight parameters encoded within the structure by
optimizing the network topology using GA and set the network
weights using DE. Similar to [36], [37] combines GA and NN
to increase the NN performance in diagnosing coronary artery
disease. This somewhat shows surprising results which make
the levels of accuracy, sensitivity and specificity achieved by
that combination. In another study, [38] optimized the weight
to speed up the convergence rate by reparametrizing the weight
vectors in NN. Weight optimization is also studied by [39]
using PSO. In his work, he combined the multiresolution
analysis techniques with NN to forecast the next-day event.
The findings suggested both results and good forecasting
efficiency. Other research conducted by [40] used grid search
technique to calculate the best value of SVM parameters. The
use of those technique is crucial to forecast the time series
event. The result shows that the SVM outperformed NN in
terms of Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE).

In particular, the key reason why weight parameters are
optimized is to prevent local minima and convergence speed.
This is because, weights are the relative strength of node-to-
node connections in NN. Besides, those optimization treats
important topics such as having a particular way of
manipulating and expanding the problem’s search space, which
provides a detailed overview of how to manage such
continuous domains. Instead, one of the well-known solutions
is to find values of the variables that optimize the objectives.
However, the variables are always limited, or somehow
constrained. Therefore, in order to identify those values,
experiments should focus on optimizing the objective functions
or error functions due to the use of a common randomization
arbitration and local search. Those parameter needs to be
optimized subsequently to build up such appropriate and
effective models. Once the effective models being developed,
then the parameter is in its optimality conditions. It is however,
the need for thorough research in order to evaluate the correct
parameter measurement is still in doubt.

III. ARCHITECTURE OF HONN

In this study, the MCS-MCMC learning algorithm [21] is
used to search for optimal weight parameters than can
minimize the objective function in PSNN and FLNN network
models. We replaced BP algorithm in the standard PSNN and
FLNN with MCS-MCMC learning algorithm. The replacement
is made to overcome the gradient-based learning algorithm
drawbacks in BP algorithm that are slow, and easily get stuck
into local minima [15]. Table I indicates the needs of MCS-
MCMC that overcome the existing BP and MCS learning
algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

301 | P a g e

www.ijacsa.thesai.org

TABLE. I. COMPARISON OF BP, MCS AND MCS-MCMC LEARNING

ALGORITHM

BP MCS MCS-MCMC

 Stuck into local

minima.

 Very dependent on

the initial weights.

 Need more

parameter to be set

up.

 Caters slow

convergence

encountered

by BP.

 Less

parameter to

be set up.

 Reduce complexity.

 Speed up convergence

rate.

 Initialize weight value

for better way/solutions

and abondoned poor

values.

According to Table I, the MCS-MCMC is used for weight
initialization and weight update (replacing the BP algorithm in
the standard PSNN and FLNN). The weights and biases were
calculated and updated for the complete training that represents
the architecture. Those can be achieved by starting it with
random values followed by several repeated attempts on
discovering better solutions and abandoning the poor values.
The architecture of Pi-Sigma Neural Network-Markov Chain
Monté Carlo (PSNN-MCMC) and Functional Link Neural
Network-Markov Chain Monté Carlo (FLNN-MCMC) are
presented in Fig. 1 and Fig. 2.

nxxx ,, 21 denotes input vectors,
ijw denotes adjustable

weights for input vectors to linear summing unit, is the

non-linear activation function,
lhhh ,, 21

 indicates the

summing units, y is the output node and
jkw is the fixed

weights from linear summing units to the output layer.
Step-by-step process in PSNN-MCMC:

Step 1: Initialize weights
ijw from input vector to the linear

summing unit
lh with a random number using MCS-

MCMC learning algorithm. Those random weights are

evaluated from layer-to-layer to improve the searching

strategies to get the optimal weights set.

Step 2: Transform the optimization parameters (weights and

biases) into the objective function.

Step 3: Feed the objective function into the MCS-MCMC

learning algorithm to search for optimal weight

parameters.

Step 4: Calculate error.

Fig. 1. The Architecture of PSNN-MCMC.

Fig. 2. The Architecture of FLNN-MCMC.

kji xxx ,, is the input vector,
ijkw is the adjustable weight,

y is the output, and is the non-linear activation function.

Step-by-step process in FLNN-MCMC:

Step 1: Initialize weights ijkw with a random number using

MCS-MCMC learning algorithm.

Step 2: In the initial process, transform the standard FLNN

architecture (weight and biases) into the objective

function.

Step 3: Feed the objective function, along with the training

data, into the MCS-MCMC learning algorithm to

search for optimal weight parameters to minimize the

objective function.

Step 4: Tune the weight changes using the MCS-MCMC

learning algorithm based on the error calculation (the

difference between actual and predicted outputs).

Step 5: Obtain the optimal weights set from the training phase

and used upon unseen data for forecasting.

IV. EXPERIMENTAL RESULTS

A. Data Preparation

Appropriate datasets should be provided to determine the
problems encountered and evaluate the performance of the
proposed PSNN-MCMC and FLNN-MCMC, and other
models; standard PSNN, Pi-Sigma Neural Network-Modified
Cuckoo Search (PSNN-MCS), standard FLNN, Functional
Link Neural Network-Modified Cuckoo Search (FLNN-MCS),
and standard MLP. The performance are evaluated based on
the lowest Mean Squared Error (MSE) [41, 42] and Root Mean
Squared Error (RMSE) [43]. Based on the previous records, the
maximum, minimum and average measurements of three (3)
datasets are tabulated in Table II.

TABLE. II. THE DATASETS EVALUATIONS

Dataset Minimum Maximum Average Data Size

Relative Humidity 69.5000 98.1000 85.9035 50, 840

Temperature 23.7000 29.5000 26.7543 1, 813

Santa Fe Laser 0 255 59.8661 3, 972

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

302 | P a g e

www.ijacsa.thesai.org

Relative Humidity: The datasets were collected from
Malaysian Meteorological Department (MMD). Each dataset
consists of 50, 840 instances which are covered from year of
1992 until 2009 [44].

Temperature: The datasets were collected from MMD.
Each dataset consists of 1, 813 that covers over year of 1992
until 2009 [44].

Santa Fe Laser: A univariate time series derived from laser-
generated data recorded from a Far-Infrared-Laser in a chaotic
state. This benchmark datasets are composed of a clean low-
dimensional non-linear and stationary time series with the total
number of 3, 972 instances.

The reason for choosing these datasets are due to the
stability they owned compared to other datasets. The stability is
depending on the types of data and factors affecting them [45,
46]. For instance, the time series signals were observed on a
highly non-stationary and/or non-linear range [47, 48].
Non-stationary is a common property to vary time-series
models, which means, a variable has no clear tendency to
return to a constant value or a linear trend. To note, the stability
is the key to predictability. Therefore, a stable dataset is needed
to predict the current trend. These physical time series data,
later, were fed to all NN to capture the underlying rules of the
movement.

B. Data Pre-processing

Mostly, data gathering somehow are loosely controlled.
Thus, resulting in outliers, impossible data combinations, and
may contains missing values. Therefore, the data need to be
pre-processed to avoid errors and misleading results Fig. 3. The
data pre-processing involves cleaning, shifting and normalizing
the raw data into a format that improves the performance of the
subsequent modules [18, 49].

C. Data Partition

Data partitioning is highly required by NN to obtain best
NN models. Hence, in this study, we divide the datasets into
three (3) partitions: 60% for training, while 20% for both
testing and validation.

Training Set: Served the model for training purposes which
allows the model to produce an output closer to the target
value. Therefore, it must have more significant portion than the
data being used for testing and validation.

Validation Set: Used to evaluate a given model, in which
the sample of data used to provide an unbiased evaluation of a
model fit on the training dataset fine-tunes the model. This set
is also essential to avoid overfitting.

Data Shifting

Data Normalization

Data Cleaning

- transforms multiple array

data to single array

- normalizes data between

upper and lower bounds

- removes outliers and

missing values

Fig. 3. Data Pre-Processing Process.

Testing Set: Describes how the models will perform on
new, unseen data in order to evaluate the model. This sample
provides an unbiased evaluation of a final model fit on the
training dataset. It is only used once a model is thoroughly
trained.

The split ratio of the datasets mainly relies on two (2)
criteria. First, the total number of samples in the dataset.
Second, the actual model going to be trained. Some models
need substantial data to train upon. Therefore, in this study,
more massive training sets should be optimized. Models with
very few hyperparameters (e.g., momentum, learning rate, etc.)
will be easy to validate and tune. As is, the validation set can
probably reduce. However, if the model has many
hyperparameters, an extensive validation must be set as well.
All in all, like many other things in NN, the training-testing-
validation split ratio is also quite specific based on some
instances, and it gets easier to make a judgment as more
training used.

D. Parameters Settings

The parameters of an NN are learned during the training
stage. Learning (or training) is a process by which the tunable
weights of a network are adapted through a continuous process
of simulation whereas the network is embedded. The most
basic method of training a network is a trial-and-error
procedure [15]. During the learning phase, the network learns
until its weight continues to tweak. The same set of data is then
processed many times as the connection weight continues to
improve. Parameters must be specified during training for any
given NN architecture. For all network models, input nodes are
set between 5 and 7 nodes, higher nodes / nodes between 2 and
5 (except for standard MLP) and one (1) for output nodes. The
parameter settings for all network models are tabulated in
Table III.

TABLE. III. PARAMETER SETTINGS FOR ALL NETWORK MODELS

Parameters Values References

Initial weights 75.0,25.0 [15]

Learning Rate 0.2 [15]

Momentum 0.3 [15]

Minimum Error 0.001 [15]

Epoch 1000 [15]

Initial Value, A 1 [23]

Step size, 0.01 [23]

Probability,
P 0.25 [22]

Initial Value, 1 [23]

n 5 [23]

a 4 [23]

Minimum Error 0.001 [15]

Number of Generation 1000 [22]

Input Nodes 5 to 7 [15]

Network’s Order
2 to 5 (for rest of NN models)

3 to 8 (for MLP)
[15]

Output Node 1 [15]

Transfer Function Sigmoid [15]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

303 | P a g e

www.ijacsa.thesai.org

V. COMPUTATIONAL RESULTS

A. Relative Humidity Dataset

Referring to Fig. 4, the MSE results for Relative Humidity
with 5 to 7 input nodes are visualized. As the 5 inputs were
supplied, FLNN-MCMC, PSNN-MCMC and PSNN-MCS lead
the ranks. When inputs 6 and 7 were loaded, PSNN-MCMC,
PSNN-MCS and FLNN-MCMC outperformed. Seemingly,
based on the results, the performances of the network in which
the learning method had been replaced by MCS-MCMC
learning algorithm are much preferable compared to the
networks with standard MCS algorithm.

(a) 5 Inputs.

(b) 6 Inputs.

(c) 7 Inputs.

Fig. 4. Performance Comparison on Relative Humidity.

B. Temperature Dataset

Fig. 5 graphically shows the performance comparison for
all the networks on Temperature dataset. According to the
results plotted in Fig. 5, the first, second and third ranks are
FLNN-MCMC, PSNN-MCMC and FLNN-MCS for 5 inputs,
FLNN-MCMC, FLNN-MCS and PSNN-MCMC for 6 and 7
inputs. From these results, it is said that the incorporation of
MCS-MCMC learning algorithm into both PSNN and FLNN
network models could help to minimize the error rate, thus
assists the network to converge quickly. As it has been pointed
out, FLNN-MCMC shows the least MSEs compared to all
network models generated. Therefore, by having the least
MSE, it combines both the estimator’s variance and its bias to
the extent that the estimated value is derived from the truth. In
addition, the positive tendency in the Temperature dataset itself
indicates that the data have a strong influence / fluctuation that
is stable enough to handle the network model integrated with
the MCS-MCMC learning algorithm.

C. Santa Fe Laser Dataset

In view of inputs 5, 6 and 7, the FLNN-MCMC also
outperformed the other network models for 60:20:20 data
partition. Fig. 6 shows the results with respect to iterations and
MSE values. From these statistics, it can be noted that the
FLNN-MCMC network model performed better than the other
network models with stable results even when dealing with the
Santa Fe Laser dataset’s temporal behavior.

The current study includes trials of MCS-MCMC learning
algorithm on various network models. From the results, it is
proved that, in this study, it is affirmative that the networks
with MCS-MCMC learning algorithm were well generalized
and showed least error compared to other network models,
which could represent non-linear function. The MCS-MCMC’s
existence as the learning algorithm that replaces the existing
BP algorithm enabled fast and rapid training. A significant
advantage of the MCS-MCMC is that the learning algorithm
can automatically adjust better parameters to find excellent
parameter values with little user interference, which being
accomplished through Markov chain mixing and a functional
of interest integrated autocorrelation. Overall, the use of
MCS-MCMC learning algorithm was discovered to be able to
perform on various ranges of datasets.

The MCS-MCMC is developed for initializing and
updating the weights in HONN-based models. The use of
Swarm Intelligence (SI) techniques in MCS-MCMC allows it
to expand their input space to a higher dimensional space
where linearity separable is possible has led to a significant
effect on improving the network performance. The network is
computationally efficient and is capable of modelling
non-linear input-output mappings when learning the time series
data, thus justified the potential use of this model by
practitioners. Besides, the results clearly showed that the
MCS-MCMC substantially at par with the computational
efficiency of the training process, and has been developed in
order to produce more realistic and acceptable results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

304 | P a g e

www.ijacsa.thesai.org

(a) 5 Inputs. (b) 6 Inputs.

(c) 7 Inputs.

Fig. 5. Performance Comparison on Temperature.

(a) 5 Inputs. (b) 6 Inputs.

(c) 7 Inputs.

Fig. 6. Performance Comparison on Santa Fe Laser.

0.005864

0.006056

0.002551

0.005900

0.003101

0.001999

0.006000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0

200

400

600

800

1000

1200

M
S

E

It
er

a
ti

o
n

s

Network Models Iterations

0.005890

0.004060

0.003975

0.005900

0.002758

0.002162

0.006000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0

200

400

600

800

1000

1200

M
S

E

It
er

a
ti

o
n

s

Network Models Iterations

0.005894

0.004903

0.003677

0.006100

0.001066 0.000502

0.006000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0

200

400

600

800

1000

1200

M
S

E

It
er

a
ti

o
n

s

Network Models Iterations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

305 | P a g e

www.ijacsa.thesai.org

D. Discussions

In this section, several issues raised by different NN
comparisons are addressed. Because the results presented
previously include extensive simulations, this section describes
the observations obtained from the entire experimental results.

1) Model performances based on ranking: The simulation

results in Section V, Subsection A were summarized in Tables

IV to VI. This tables cover inputs ranges from 5 to 7 and

seven (7) network models. Table IV shows the overall rank for

Relative Humidity on all networks.

From Table IV, the PSNN-MCMC outperformed other
network models by getting the highest average ranking. This
demonstrates that the accuracy rate is enhanced by integrating
the MCS-MCMC learning algorithm with HONN. Table V
indicates the overall rank for Temperature on all networks.

According to Table V, FLNN-MCMC outperformed the
other network models by having the highest average rank. This
is followed by FLNN-MCS and PSNN-MCMC in the second
and third rank, respectively. Basically, those swarm-based
learning algorithm helps to overcome the drawbacks of the
existing BP algorithm. Table VI summarizes data on all
networks from the Santa Fe Laser dataset.

The results in Table VI show that the FLNN-MCMC
provides a lower MSE than the other network models. This is
accompanied by FLNN-MCS that falls into the second place
and standard MLP in the third place. Based on these outcomes,
it is concluded that implementing the swarm-based learning
algorithm in HONN helps network models converge with
lower iterations and lower error rate. Therefore, improves the
network performance indirectly.

TABLE. IV. OVERALL RANK FOR RELATIVE HUMIDITY ON ALL NETWORKS

In
p

u
ts

S
ta

n
d

a
rd

P
S

N
N

P
S

N
N

-

M
C

S

P
S

N
N

-

M
C

M
C

S
ta

n
d

a
rd

F
L

N
N

F
L

N
N

-

M
C

S

F
L

N
N

-

M
C

M
C

S
ta

n
d

a
rd

M
L

P

5 7 3 2 6 4 1 5

6 7 2 1 6 4 3 5

7 7 2 1 5 6 3 4

Mean

Rank
7.00 2.33 1.33 5.67 4.67 2.33 4.67

Overall

Rank
7 2 1 6 4 2 4

TABLE. V. OVERALL RANK FOR TEMPERATURE ON ALL NETWORKS

In
p

u
ts

S
ta

n
d

a
rd

P
S

N
N

P
S

N
N

-

M
C

S

P
S

N
N

-

M
C

M
C

S
ta

n
d

a
rd

F
L

N
N

F
L

N
N

-

M
C

S

F
L

N
N

-

M
C

M
C

S
ta

n
d

a
rd

M
L

P

5 4 7 2 5 3 1 6

6 5 4 3 6 2 1 7

7 5 4 3 7 2 1 6

Mean

Rank
4.67 5.00 2.67 6.00 2.33 1.00 6.33

Overall

Rank
4 5 3 6 2 1 7

TABLE. VI. OVERALL RANK FOR SANTA FE LASER ON ALL NETWORKS

In
p

u
ts

S
ta

n
d

a
rd

P
S

N
N

P
S

N
N

-

M
C

S

P
S

N
N

-

M
C

M
C

S
ta

n
d

a
rd

F
L

N
N

F
L

N
N

-

M
C

S

F
L

N
N

-

M
C

M
C

S
ta

n
d

a
rd

M
L

P

5 6 5 3 7 2 1 4

6 6 7 5 3 2 1 4

7 5 6 7 4 2 1 3

Mean

Rank
5.67 6.00 5.00 4.67 2.00 1.00 3.67

Overall

Rank
6 7 5 4 2 1 3

2) The accuracy: In this section, we presented the result

based on the percentage of RMSE and Accuracy. The RMSE

used to measures how much error there is between the actual

and the target output [42]. In other words, it tells how

concentrated the data is around the line of best fit. In general,

if the value of RMSE getting lower, the better performance

will be produced.

Tables VII to IX show the experimental results on all
datasets. The table consisted of six (6) elements. The first
element indicates the network model; and the second element
designates the best network structure. This is accomplished by
the method of trial-and-error procedure [15]. The third element
specifies the number of trainable weights. Those values are
collected during experiments. The fourth element is the RMSE
value acquired through Equation (1):

2

1

~

n

PP

RMSE

n

i

ii

 (1)

where n is the total number of data patterns,
iP and

~

iP

represent the actual and predicted output value, respectively.
Equation (2) provides the sixth element (Accuracy in
percentage). The simulation results later being compared in the
form of accuracy rate.

100
2

1

 MSE
Accuracy

 (2)

where MSE is mean squared error [42].

TABLE. VII. EXPERIMENTAL RESULTS ON RELATIVE HUMIDITY

Network

Model

Best

Network

Structure

No. of

Trainable

Weights

RMSE
Accuracy

(%)

Standard PSNN 5-2-1 10 0.21801 97.624

PSNN-MCS 7-5-1 35 0.02205 99.976

PSNN-MCMC 7-2-1 14 0.02205 99.976

Standard FLNN 7-4-1 127 0.03606 99.935

FLNN-MCS 6-4-1 57 0.03071 99.953

FLNN-MCMC 6-4-1 57 0.02931 99.957

Standard MLP 7-7-1 56 0.03606 99.935

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

306 | P a g e

www.ijacsa.thesai.org

TABLE. VIII. EXPERIMENTAL RESULTS ON TEMPERATURE

Network

Model

Best

Network

Structure

No. of

Trainable

Weights

RMSE
Accuracy

(%)

Standard PSNN 5-3-1 15 0.07658 99.707

PSNN-MCS 6-2-1 12 0.06372 99.797

PSNN-MCMC 5-2-1 10 0.05051 99.872

Standard FLNN 5-4-1 31 0.07681 99.705

FLNN-MCS 6-4-1 57 0.05252 99.862

FLNN-MCMC 7-3-1 120 0.02241 99.975

Standard MLP 6-7-1 49 0.07746 99.700

TABLE. IX. EXPERIMENTAL RESULTS ON SANTA FE LASER

Network

Model

Best

Network

Structure

No. of

Trainable

Weights

RMSE
Accuracy

(%)

Standard PSNN 7-4-1 28 0.08557 99.634

PSNN-MCS 5-2-1 10 0.07767 99.698

PSNN-MCMC 5-3-1 15 0.07154 99.744

Standard FLNN 7-4-1 127 0.07810 99.695

FLNN-MCS 6-4-1 57 0.02735 99.963

FLNN-MCMC 6-4-1 57 0.02069 99.979

Standard MLP 7-8-1 64 0.06782 99.770

According to the results on Relative Humidity dataset (refer
to Table VII), the HONN-based models being incorporated
with MCS-MCMC learning algorithm give significant
percentage around 99.953% to 99.976%. while for
Temperature dataset (refer to Table VIII), the values vary from
99.797% to 99.975%. For Santa Fe Laser dataset (refer to
Table IX), the FLNN-MCMC achieved highest percentage of
Accuracy with the value of 99.979%.

The experimental results vary depending on the datasets.
The algorithm can readily mapped the function if the data is
sufficiently stable, thus delivering much better and stable
outcomes. Otherwise, it could result in an extensive training
algorithm. As the time series datasets exhibit a very strong
trend, it shows obvious up and down movement. Therefore,
during the training of such datasets, the networks were used to
learn the precise values of each data point. This sometimes
could lead the networks failed to respond well to the
underlying chaotic structure within the data behaviour. Hence,
to correctly predict the value from one point to another point is
a challenging task.

3) Threat to validity and improvements: In this study, the

fairness of experimentations involving SI technique are

levelled to minimize threats to validity. One of major

concerned was regarding the validity of parameter setting for

each SI technique. In order to ensure fair comparisons, all

parameter settings for all the network models, involving the

input settings, learning rate and stopping criteria are set with

the same value (revisit Section III, D). Another concerned was

regarding the network structure for all the network models; the

standard PSNN, PSNN-MCS, PSNN-MCMC, standard

FLNN, FLNN-MCS, FLNN-MCMC and standard MLP. The

network structure for those network models cannot be

equivalent for all datasets in the experiment as they may yield

unfair results. Therefore, to ensure fair prediction performance

results, the network structure issue is addressed.

The critical part is on generalization. It is on how the
network generates lowest MSE. For this reason, the best model
is regarded to the NN structure that offers the greatest
proportion of improvements. The simulation results are
benchmarked against seven (7) NN models. The improvements
for MCS-MCMC learning algorithm on both PSNN and FLNN
for all datasets are measured in Equations (3) and (4). Let a be

standard PSNN, b be PSNN-MCS, c be PSNN-MCMC, d be

standard FLNN, e be FLNN-MCS, f be FLNN-MCMC and

g be standard MLP.

%100
7

(%)

c

gfedcba
c

provementIm c
 (3)

%100
7

(%)

f

gfedcba
f

provementIm f

 (4)

cprovementIm denotes improvement for PSNN-MCMC

while
fprovementIm denotes improvement for FLNN-MCMC

[42]. The overall improvements for PSNN-MCMC and
FLNN-MCMC are tabulated in Tables X to XI. The findings
on Table X show that the PSNN-MCMC provides significant
improvement in all datasets where the PSNN-MCMC can
improve the accuracy. This is also applicable to FLNN-MCMC
in Table XI.

As can be seen from Tables X and XI, the MCS-MCMC
learning algorithm can train and improve the accuracy of the
HONN network model. Thus, it makes the best improvement
on Relative Humidity dataset with the value of 0.707% on
PSNN-MCMC and 0.670% on FLNN-MCMC when compared
to other datasets. Both network models operate approximately
0.007 % to 0.079%.

TABLE. X. THE OVERALL IMPROVEMENTS OF PSNN-MCMC

Datasets
Network

Structure

Improvement of

PSNN-MCMC (%)

Relative Humidity 7-2-1 0.707

Temperature 5-2-1 0.116

Santa Fe Laser 5-3-1 0.079

TABLE. XI. THE OVERALL IMPROVEMENTS OF FLNN-MCMC

Datasets
Network

Structure

Improvement of

FLNN-MCMC (%)

Relative Humidity 6-4-1 0.670

Temperature 7-3-1 0.320

Santa Fe Laser 6-3-1 0.391

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

307 | P a g e

www.ijacsa.thesai.org

As the time series have chaotic behavior, this approach
offers significant advantages over the standard network models
such as improved simulations and lower error rate, due to their
ability to better approximate complex, non-smooth and often
discontinuous training datasets. To conclude, it is confirmed
that HONN, when incorporated with MCS-MCMC learning
algorithm, helps to overcome the drawback of the existing BP
algorithm that prone to overfit and stuck into local minima.
Thus, improve the network performance and increase the
accuracy by getting the highest average ranking.

VI. CONCLUSION

The higher demands for SI techniques justify the need for a
more effective, better solutions approach. The findings of this
study will redound to the benefit of the SI field, considering
that SI plays a vital role in optimization issues today.
Therefore, the MCS-MCMC learning algorithm nailing down
the optimal weight values in HONN which helped in dealing
with slow convergence and poor generalization. Those are
derived from the findings which later will be used to predict
the time series event better. This study may also advantageous
for certain sectors such as meteorological department that
applies the non-linearity relationship in meteorological process.
On the other hand, by obtaining outstanding performance on
various ranges of time series datasets, it may reduce the risk in
decision making. Thus, this approach significantly matches the
idea. Therefore, the effectiveness of any decision depends upon
the nature of a sequence of events preceding the decision.
Furthermore, this study would be beneficial to the researchers,
as it can provide baseline information on the different approach
of SI and NN.

ACKNOWLEDGMENT

This work was funded by the Research Management
Centre, Universiti Tun Hussein Onn Malaysia (Research Fund
E15501).

REFERENCES

[1] Gershenfeld, N.A. and A.S. Weigend, The future of time series: Learning
and understanding, in Pattern Formation In The Physical And Biological
Sciences. 2018, CRC Press. p. 349-429.

[2] Husaini, N.A., et al. Jordan pi-sigma neural network for temperature
prediction. in International Conference on Ubiquitous Computing and
Multimedia Applications. 2011. Springer.

[3] Costa, M., A.L. Goldberger, and C.-K. Peng, Multiscale entropy analysis
of complex physiologic time series. Physical review letters, 2002. 89(6):
p. 068102.

[4] Batt, R.D., S.R. Carpenter, and A.R. Ives, Extreme events in lake
ecosystem time series. Limnology and Oceanography Letters, 2017. 2(3):
p. 63-69.

[5] Bao, W., J. Yue, and Y. Rao, A deep learning framework for financial
time series using stacked autoencoders and long-short term memory. PloS
one, 2017. 12(7): p. e0180944.

[6] Zhang, G.P., Time series forecasting using a hybrid ARIMA and neural
network model. Neurocomputing, 2003. 50: p. 159-175.

[7] Said, S.E. and D.A. Dickey, Testing for unit roots in autoregressive-
moving average models of unknown order. Biometrika, 1984. 71(3): p.
599-607.

[8] Bishop, C.M., Neural networks for pattern recognition. 1995: Oxford
university press.

[9] Kolarik, T. and G. Rudorfer. Time series forecasting using neural
networks. in ACM Sigapl Apl Quote Quad. 1994. ACM.

[10] Brath, A., A. Montanari, and E. Toth, Neural networks and non-
parametric methods for improving real-time flood forecasting through
conceptual hydrological models. Hydrology and Earth System Sciences
Discussions, 2002. 6(4): p. 627-639.

[11] Shrestha, R.R., S. Theobald, and F. Nestmann, Simulation of flood flow
in a river system using artificial neural networks. Hydrology and Earth
System Sciences Discussions, 2005. 9(4): p. 313-321.

[12] Ali, Z., et al., Forecasting drought using multilayer perceptron artificial
neural network model. Advances in Meteorology, 2017. 2017.

[13] Ryu, S., J. Noh, and H. Kim, Deep neural network based demand side
short term load forecasting. Energies, 2017. 10(1): p. 3.

[14] Hewamalage, H., C. Bergmeir, and K. Bandara, Recurrent neural
networks for time series forecasting: Current status and future directions.
arXiv preprint arXiv:1909.00590, 2019.

[15] Ghazali, R., et al., The application of ridge polynomial neural network to
multi-step ahead financial time series prediction. Neural Computing &
Applications, 2008. 17: p. 311-323.

[16] Shah, H., et al., A quick gbest guided artificial bee colony algorithm for
stock market prices prediction. Symmetry, 2018. 10(7): p. 292.

[17] Shin, Y. and J. Ghosh. The pi-sigma network: An efficient higher-order
neural network for pattern classification and function approximation. in
IJCNN-91-Seattle International Joint Conference on Neural Networks.
1991. IEEE.

[18] Giles, C.L. and T. Maxwell, Learning, invariance, and generalization in
high-order neural networks. Applied optics, 1987. 26(23): p. 4972-4978.

[19] Garro, B.A., H. Sossa, and R.A. V´azquez. Design of artificial neural
networks using differential evolution algorithm. in Proceedings of the
17th international conference on Neural information processing: models
and applications. 2010. Springer-Verlag.

[20] Leung, H. and S. Haykin, The complex backpropagation algorithm. IEEE
Transactions on Signal Processing, 1991. 39(9): p. 2101-2104.

[21] Husaini, N.A., R. Ghazali, and I.T.R. Yanto. Enhancing modified cuckoo
search algorithm by using MCMC random walk. in 2016 2nd
International Conference on Science in Information Technology
(ICSITech). 2016. IEEE.

[22] Walton, S., et al., Modified cuckoo search: A new gradient free
optimisation algorithm. Chaos, Solitons & Fractals, 2011. 44(9): p. 710-
718.

[23] Hastings, W.K., Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 1970. 57(1): p. 97-109.

[24] Holland, J., Adaptation in natural and artificial systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial
Intelligence. 1992, MIT Press: Ann Arbor, USA.

[25] Goldberg, D., Genetic algorithms in search, optimization and machine
learning. 1989, Boston, USA: Addison Wesley.

[26] Vapnik, V.N., The nature of statistical learning. Theory, 1995.

[27] De Jong, K., Analysis of the behavior of a class of genetic adaptive
systems. 1975, University of Michigan: Ann Arbor, MI.

[28] Fogel, L., A. Owens, and W. MJ, Artificial intelligence through simulated
evolution. 1966, Chichester, UK: John Wiley.

[29] Storn, R. Differential evolution design of an IIR-filter. in IEEE
International Conference on Evolutionary Computation. 1996. Nagoya.

[30] dos Santos Coelho, L. and D.L. de Andrade Bernert, An improved
harmony search algorithm for synchronization of discrete-time chaotic
systems. Chaos, Solitons & Fractals, 2009. 41(5): p. 2526-2532.

[31] Karaboga, D., B. Akay, and C. Ozturk. Artificial bee colony (abc)
optimization algorithm for training feed-forward neural networks. in
Proceedings of the 4th international conference on Modeling Decisions
for Artificial Intelligence, ser. MDAI ’07. 2007. Springer-Verlag.

[32] Yang, X.S. and S. Deb. Cuckoo search via Lévy flights. in Proceedings of
the World Congress on Nature & Biologically Inspired Computing
(NaBIC '09. 2009. India: IEEE Publications.

[33] Alauddin, M.W., W.F. Mahmudy, and A.L. Abadi, Extreme Learning
Machine Weight Optimization using Particle Swarm Optimization to
Identify Sugar Cane Disease. Journal of Information Technology and
Computer Science, 2019. 4(2): p. 127-136.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

308 | P a g e

www.ijacsa.thesai.org

[34] Gülcü, Ş., et al., A parallel cooperative hybrid method based on ant
colony optimization and 3-Opt algorithm for solving traveling salesman
problem. Soft Computing, 2018. 22(5): p. 1669-1685.

[35] Aljarah, I., H. Faris, and S. Mirjalili, Optimizing connection weights in
neural networks using the whale optimization algorithm. Soft Computing,
2018. 22(1): p. 1-15.

[36] Mason, K., J. Duggan, and E. Howley. Neural network topology and
weight optimization through neuro differential evolution. in Proceedings
of the Genetic and Evolutionary Computation Conference Companion.
2017.

[37] Arabasadi, Z., et al., Computer aided decision making for heart disease
detection using hybrid neural network-Genetic algorithm. Computer
Methods and Programs in Biomedicine, 2017. 141: p. 19-26.

[38] Salimans, T. and D.P. Kingma. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. in
Advances in neural information processing systems. 2016.

[39] Lahmiri, S., A variational mode decompoisition approach for analysis and
forecasting of economic and financial time series. Expert Systems with
Applications, 2016. 55: p. 268-273.

[40] Samsudin, R., A. Shabri, and P. Saad, A comparison of time series
forecasting using support vector machine and artificial neural network
model. Journal of applied sciences, 2010. 10(11): p. 950-958.

[41] Chae, Y.T., et al., Artificial neural network model for forecasting sub-
hourly electricity usage in commercial buildings. Energy and Buildings,
2016. 111: p. 184-194.

[42] Hassim, Y.M.M. and R. Ghazali, Optimizing functional link neural
network learning using modified bee colony on multi-class
classifications, in Advances in Computer Science and its Applications.
2014, Springer. p. 153-159.

[43] Leva, S., et al., Analysis and validation of 24 hours ahead neural network
forecasting of photovoltaic output power. Mathematics and computers in
simulation, 2017. 131: p. 88-100.

[44] Department, M.M. Weather Forecast. 2010 [cited 2011 February, 18];
Available from: http://www.met.gov.my.

[45] Ribeiro, H.V., et al., Characterizing time series via complexity-entropy
curves. Physical Review E, 2017. 95(6): p. 062106.

[46] Rounaghi, M.M. and F.N. Zadeh, Investigation of market efficiency and
financial stability between S&P 500 and London stock exchange:
Monthly and yearly forecasting of time series stock returns using ARMA
model. Physica A: Statistical Mechanics and its Applications, 2016. 456:
p. 10-21.

[47] Akram, U., et al., An Improved Pi-Sigma Neural Network with Error
Feedback for Physical Time Series Prediction. International Journal of
Advanced Trends in Computer Science and Engineering, 2019. 8: p. 276-
284.

[48] Al-Jumeily, D., R. Ghazali, and A. Hussain, Predicting Physical Time
Series Using Dynamic Ridge Polynomial Neural Networks. PLOS ONE,
2014. 9(8): p. e105766.

[49] García, S., J. Luengo, and F. Herrera, Data preprocessing in data mining.
2015: Springer.

