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Abstract—The study aims at getting the Bayesian predication
intervals for some order statistics of future observations from the
distribution of Gompertz (Gomp (α, β)). Doubly Type-II censored
data has assisted obtaining in the presence of single outlier that
arose from the different same family members of distribution.
Single outlier of type β β0 and β+β0 are considered and bivariate
independent prior density for α and β are used. The problem of
solving the Double integral to obtain the closed form for α and β,
leads us to use MCMC for calculating the Bayesian Predication
Intervals. The use of numerical examples and statistical data
has enable to properly present and describe the procedure. We
conclude that the Bayesian predication intervals are shorter for
y1 than y5 when we are increasing the β0 value.
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I. INTRODUCTION

The adult death patterns can be effectively described
through the use of the Gompertz distribution ([17]; [6]). More-
over, the Gompertz mortality force for the decreased infant
and young adult levels of mortality extends to the whole life
population span without any observed deceleration of mortality
([16]). A continuous probability density function (pdf) and a
cumulative distribution function (cdf) are the constituents of
the Gompertz distribution.
The pdf as follows:

f(x) = αβ eαx− β (eαx−1), x > 0, α > 0, β > 0, (1)

and The cdf as follows:

F (x) = 1 − e− β (eαx−1). (2)

This distribution should be denoted with two Gomp α and
β parameters. The research conducted by [1] indicated that
a simple transformation relates the Gompertz distribution to
a certain distribution in the family of distributions. A further
research conducted by [7] showed that it is possible to get the
maximum likelihood parameter estimates the Gompertz model.
The study by [3] suggests the ways to apply it and provides

a more recent survey that enables to better understand the
model. At the same time, [19] made an attempt to reformulate
the Gompertz mortality force and get an insight into the new
formation relationship.

The analysis of the research by [18] enabled to trace the
connections between the Weibull, the Gompertz, and other
Type I extreme value distributions. Later, [9] managed to
obtain a Bayesian prediction, mixing two-component lifetime
model of Gompertz. In another study [10] derived a Bayesian
record statistics analysis from the Gompertz model. A nega-
tive Gompertz distribution was presented by later, [11] who
focused on the discussion of the negative aging parameter
rate. A generalized three-parameter Gompertz distribution was
presented by [8]), who provided a deep insight into the topic
under investigation. Furthermore, [2]worked on the Gompertz
model, and attempted to introduce a more generalized four-
parameter version of the model that was referred to as a
beta-Gompertz distribution. Also, the paper provides some
commonly used distributions, including generalized and beta-
exponential Gompertz distributions as sub-models. [15] pro-
posed a distribution of an exponentiated Weibull extension;
however, it was modified. It was further generalized and
discussed in the study by [8]. Author in [13] focused on
the investigation and discussion of the obtained prediction
intervals that are based on Gompertz doubly censored data.
There are some cases make Progressive Hybrid Censored
schemes (PHCS) difficult to apply when the failures may occur
before time [21]. Some researchers estimated and predicted the
Generalized Progressive Hybrid Censored Data for Gompertz
Distribution [20]. Whoever Gompertz distribution was studied
by many researchers such as [22].

The main objective of this paper, we assume that
XI , X2, · · · , Xn, is an ordered random sample of size n
drawn from a population whose pdf, is Gomp(α, β), which
is defined by equation 1, and that Y1, Y2, · · · , Ym. is a second
independent random sample (of size m) of future observations
from the same distributions. Bayesian prediction bounds for
the future observations Yt, Yz, · · · , Ym in the presence of a
single outlier of type β β0 and β + β0 are obtained.
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Observation is an outlier in the data set that is inconsistent
with the data set remainder ([5]). Hence, a single β β0, and β +
β0 type outliers are present in the future Gompertz population
sample. Gomp(α, β β0) is taken for a single type β + β0
outlier of the pdf , while in the case of single type β + β0
outlier the pdf is taken Gomp(α, β + β0).

In the study, the bounds of the Bayesian prediction are
received for the future Gopm (α, β) distribution observations
in the presence of a single outlier of type. It is considered
that both parameters α and β are unknown. The true value
(β, α) uncertainty is measured through the function of the
bivariate prior density that was discussed and applied with the
same model in the research conducted by [10].Furthermore, the
current research presupposes the construction of the predictive
interval that will be used for the future observation with the
presence of a single outlier of type with MCMC. The use of
statistics will assist in illustrating and presenting the procedure.

In this article, Section II explains the Likelihood Func-
tion. After that Section III discuss the Posterior distribution.
Moreover, Section IV clarify the Bayesian predication in the
presence of outliers for future observations with two schemes
β β0 and β + β0. Section V shows numerical example, which
are consider the previous two schemes. In the final Section VI,
we give the conclusion and opens future direction.

II. LIKELIHOOD FUNCTION

In this section, we assume x1, x2, · · · , xn is an ordered
random size n sample from the Gopm(α, β). The pdf and
cdf are given be (1) and (2) , respectively. Also, let x1 ≤
x2 ≤ · · · ≤ xk be the k smallest ordered observation, while
xr+1 ≤ xr+2 ≤ · · · ≤ xn, the n − r largest ordered
observations in the sample. The statistical analysis contains the
application of only the remaining ordered observations, that is,
x = (xk+1, xs+2, · · · , xr). Moreover, it is evident that when
k = 1, the sample will be a Type-II right censored sample. A
doubly censored sample pulled from population with pdf and
cdf as given in (1) and (2) that likelihood function is given as
follow:

L(α, β;x) ∝ [FX(xk+1; α, β)]k[1− FX(xr; α, β)]n−r

×
r∏

i=k+1

[fX(xi;α, β)], xs+1 ≥ 0

= (αβ)r−s[1− exp{−βT1(α; xk+1)}]k

× exp
{
α

r∑
i=s+1

xi − β T2(x;α)
}
. (3)

where

T1(α; xk+1)) = eαxk+1 − 1,

T2(α; x) = (n− r)eαxr +

r∑
i=k+1

eαxi − n+ s. (4)

The Bayesian prediction tends to bound the future observations
in the presence of a single outlier of type Gomp(α, β)
distribution when two parameters types α and β are both
dependent and unknown.

III. THE POSTERIOR DISTRIBUTION

To obtain the joint posterior density of α and β, we use a
bivariate prior density of the form:

π(α, β) = π1(α)π2(β), (5)

where

π1(α) =
γη11

Γ(η1)
αη1−1 e−αγ1 , (η1, γ1 > 0) (6)

and

π2(β) =
γη22

Γ(η2)
βη2−1 e−βγ2 (η2, γ2 > 0). (7)

The paper assumes that the joint prior density for the
parameter α and β is the form (5) and presented by Jaheen [10]
for the progressive censored data prediction from the Gompertz
model and applied by [13] for the prediction Gompertz doubly
censored data intervals.

The likelihood of the function presented by (3) and the
function of the joint prior density presented by (5)as well as
the function of the joint posterior density of α and β is

π∗(α, β|x) =
L(α, β; x)π1(α)π2(β)∫∞

0

∫∞
0
L(α, β; x)π1(α)π2(β)dαdβ

.(8)

The joint posterior density function of α and β given data can
be written as

π∗(β, α, |x) ∝ h1(β |α, data)h2(α| data)h3(α, β| data)
(9)

where h1(β |α, data) is a gamma density where the shape
parameter m = r − k + η1 and the scale parameter is
γ1 + T2(α; x). At the same time, h2(α| data) is a proper
density function of the form

h2(α|data) ∝ 1

[γ1 + T2(α; x)]m
αr−k+η2−1

e−α ( 1
γ2
−
∑r
i=k+1 xi) (10)

and h3(α, β| data)) is given by

h3(α, β|data) =
[
1− e−βT1(α; xk+1)

]s
. (11)

From equation (8) and it enables to see that a simple closed
form cannot express the equation. Therefore, the Bayes esti-
mators of the parameter α and β cannot be received in simple
closed forms. Hence, the paper suggests the approximation
(9) by applying the importance sampling technique that is
also presented by [14]. The importance sampling details are
presented below.

In this paper, we used the importance sampling procedure
to calculate the Bayes estimates for α, β as well as any
function of the parameters g(α, β). Moreover, the Algorithm
1 (presented below) is used to generate α and β from the
posterior density function (7).

Algorithm 1:
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Step 1 : Start with an (α0; β0).

Step 2 : set t = 1.

Step 3 : Generate αt from h2(α| data) using the method
developed by [12] with the N(αt−1, σ) proposal
distribution, where σ2 is the variance of the parameter
α.

Step 4 : Generate βt from gamma distribution with pdf
h2(β |α, data).

Step 5 : Put t = t+1.

Step 6 : Repeat steps 3-5 M times to obtain {(αt, βt), t =
1, 2, · · · , M}.

The approximate Bayes are applied to estimate any func-
tion of the parameters say g(α, β) under the squared functions
of error loss using the procedure of importance sampling, as
shown below:

ĝBS(α, β) =

M∑
i=1

g(αi, βi) g3(αi, βi|data)∑M
i=M0

g3(αi, βi|data)
, (12)

IV. BAYESIAN PREDICTION IN THE PRESENCE OF A
SINGLE OUTLIER FOR FUTURE OBSERVATIONS

The section introduces the prediction of the future obser-
vations in the presence of a single outlier. Also, it is assumed
that X1, X2, · · · , Xn is a random size n sample drawn from
the Gomp(α, β) population, where the pdf is presented by (1).
Let us assume that Y1, Y2, · · · , Ym is a second, independent,
unobserved size m sample received from the same population.
This sample is the future sample, and the aim of the study
is to get Bayesian prediction bounds for the sth oncoming
observation Ys, s = 1, 2, · · · , m in the presence of a single
outlier.

In the case of the size m sample, let Ys be the sth ordered
lifetime, 1 ≤ s ≤ m. Then the Ys density function for a given
θ in the presence of a single outlier is of the form f = f(y| θ)
and F = F (y|θ) are the distribution and density functions of
all ys which are not referred to be outliers as f∗ = f∗(y|θ)
and F ∗ = F ∗(y|θ) are those of an outlier ([4]). The f∗ and
F ∗ functions are received for the Gomp(α, β) model through
the replacement of parameter β by β β0 or β + β0 depending
on the outlier type.

f(ys| θ) = D(s) [(s− 1)F s−2(1− F )m−sF ?f

+(m− s)F s−1(1− F )m−s−1(1− F ?)f
+F s−1(1− F )m−sf?], (13)

where

D(s) =

(
m− 1

s− 1

)
(14)

A. Outliers of type ββ0

The Ys density function, in the presence of a single outlier
of type ββ0, in the Gomp(α, β) case may be received through
the substituting of (1) and (2) for f and F in (13). The f∗
and F ∗ values presented by (1) and (2), after the replacement
of β by ββ0. It is possible to simplify the density function
implementing the pdf g1(y2|α, β), where the cdf G1(ys|α, β)
is given as follows:

g1(ys|α, β) = D(s)αβ eαys
[
(m+ β0 − s)

s−1∑
j=0

A1j(ys)

+ (s− 1)

s−2∑
j=0

A2j(ys)
]
, ys > 0, (15)

where

A1j(ys) = a1j(s) exp {−βωj(s)φ(ys; α)} ,

A2j(ys) = a2j(s)
[

exp {−β ω1j(s)φ(ys; α)}

− exp {−β ωj+1(s)φ(ys; α)}
]
,

φ(ys; α) = (eαys − 1)

ωj(s) = m − s + β0 + j,

ω1j(s) = m − s + j + 1 (16)

and for ` = 1, 2,

a` j(s) = (−1)j
(
s− `
j

)
. (17)

and the pdf g1(ys|α, β) the cdf G1(ys|α, β) is given by

G1(ys|α, β) = D(s)
[
(m+ β0 − s)

s−1∑
j=0

A∗1j(ys)

+ (s− 1)

s−2∑
j=0

A∗2j(ys)
]
, ys > 0 (18)

where

A∗1j(ys) =
a1j(s)

ωj(s)
F (ys; α, βωj(s)),

A∗2j(ys) =
a2j(s)

ω1j(s)
F (ys; α, βω1j(s))

− a2j(s)

ωj+1(s)
F (ys; α, βωj+1(s)). (19)

The Bayesian predictive density of ys, s = 1, 2, · · · , m given
x is represented by

g∗1(ys|x) =

∫ ∞
0

∫ ∞
0

g1(ys|α, β)π∗(α, β|x) dα dβ. (20)

The Bayesian predictive distribution function of ys, s =
1, 2, · · · , m given x, α and β is given by

G∗1(ys |x) =

∫ ∞
0

∫ ∞
0

G1(ys|α, β)π∗(α, β|x) dα dβ. (21)

Supposing that {(αi, βi); i = 1, 2, · · · ,M} are MCMC
samples received from π∗(α, β|x), it is possible to get the
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simulation consistent estimators of g∗1(ys|x) and G∗(ys|x) can
be obtained as

ĝ∗1(ys |x) =

M∑
i=1

g1(ys|αi, βi)hi (22)

and

Ĝ∗1(ys |x) =

M∑
i=1

G1(ys|αi, βi)hi (23)

where

hi =
h3(αi, βi)
M∑
i=1

h3(αi, βi)

; i = 1, 2, · · · , M. (24)

A (1 − τ) 100 % Bayesian prediction interval for Ys is
as follows: P [L(x) ≤ Ys ≤ U(x)] = 1 − τ, where
L(x) and U(x) are the lower and the upper bounds for ys,
s = 1, 2, · · · ,m. Thus, equating of (23) 1− τ

2 and τ
2 , enables

to get the following:

P [Ys ≥ L(x)|x] = 1− τ

2
⇒ Ĝ∗1(L(x)|x) =

τ

2
(25)

and

P [Ys ≤ U(x)|x] =
τ

2
⇒ Ĝ∗1(U(x)|x) = 1− τ

2
. (26)

B. Type β + β0 Outliers

The ys density function, in the presence of a single outlier
of type β + β0, in the Gomp(α, β) case, can be received
through the substituting of (1) and (2) for F and f in (3). The
F ∗ and f∗ are presented by (1) and (2) after the replacement
of β by β + β0. Consequently, the density begins to form:

g2(ys|α, β) = D(s) eαys
[
(β (m−s+1)+β0)

s−1∑
j=0

B1j(ys)

+ β(s− 1)

s−2∑
j=0

B2j(ys)
]
, ys > 0, (27)

where

B1j(ys) = a1j(s) exp {− [β ω1j(s) + β0]φ(ys; α)}

B2j(ys) = a2j(s)
[

exp {−β ω1j(s)φ(ys; α)}

− exp
{
−
[
β ω1(j+1)(s) + β0

]
φ(ys; α)

} ]
, (28)

φ(ys; α)ω1j(s) are given in (16) and a`j(s), a2j(s) is given
for ` = 1, 2, respectively, by (17).
The cdf corresponding to the pdf g2(ys|α, β) is presented by

G2(ys|α, β) = D(s)
[
(β (m− s+ 1) + β0)

s−1∑
j=0

B∗1j(ys)

+ β(s− 1)

s−2∑
j=0

B∗2j(ys)
]
, ys > 0, (29)

where

B∗1j(ys) =
a1j(s)

β ω1j(s) + β0
F (ys; α, β ω1j(s) + β0),

B∗2j(ys) =
a2j(s)

β ω1j(s)
F (ys; α, β ω1j(s))

− a2j(s)

β ω1(j+1)(s) + β0
F (ys; α, β ω1(j+1)(s) + β0),

(30)

where F (ys; α, β m+ β0) is given by(2).

The Bayesian predictive distribution function of ys, s =
1, 2, · · · , m given x, α and β is given by

g∗2(ys|x) =

∫ ∞
0

∫ ∞
0

g2(ys|α, β)π∗(α, β|x) dα dβ, (31)

and the predictive cdf of ys, G∗2(ys|x) is given by

G∗2(ys|x) =

∫ ∞
0

∫ ∞
0

G2(ys|α, β)π∗(α, β|x) dα dβ, (32)

where G2(ys|α, β) is given by (29) and π∗(α, β|x) is given
by (9). It is evident that it is impossible to express (31) and
(32) in closed form. Therefore, they cannot be analytically
evaluated.
The use of MCMC samples {(αi, βi), i = 1, 2, · · · , M},
enable the obtaining of g∗2(ys|x) and G∗2(ys|x) simulation
consistent estimator, as follows:

ĝ∗2(ys|x) =

M∑
i=1

g2(ys|αi, βi)hi, (33)

and

Ĝ∗2(ys|x) =

M∑
i=1

G2(ys|αi, βi)hi, (34)

Where hi is given by (24). It is essential to highlight that it
is possible to use the same MCMC samples {(αi, βi), i =
1, 2, · · · , M}, to compute ĝ∗2(ys|x) and Ĝ∗2(ys|x) for all ys.
Also, A (1 − τ)100% Bayesian prediction intervals for is
P [L(x) ≤ Ys ≤ U(x)] = 1 − τ where L(x) and U(x)
are lower and upper ys Bayesian prediction bounds. Hence,
it is possible to get the lower and upper Bayesian prediction
bounds, L(x) and U(x), for ys, s = 1, 2, ·,m through solving
the following two nonlinear equations.

P [Ys ≥ L(x)|x] = 1− τ

2
⇒ Ĝ∗2(L(x)|x) =

τ

2
(35)

and

P [Ys ≤ U(x)|x] =
τ

2
⇒ Ĝ∗2(U(x)|x) = 1− τ

2
. (36)

It is possible to solve the two nonlinear equations (35) and (36)
through the use of an iterative method to receive the lower and
upper Bayesian prediction bounds for ys; s = 1, 2, · · · ,m.
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V. NUMERICAL EXAMPLE

Example 1. This example shows a doubly Type-II censored
sample, x(s+1), x(s+2), · · · , x(r), that is received through the
application of the following steps:

1 – For the hyperparameters given values η1 = 1.2 and
γ1 = 1.8 a generated value of α = 0.860986 is
received from the prior distribution with pdf (6).

2 – For the hyperparameters given values η2 = 1.4 and
γ2 = 1.7 a generated value of β = 0.409442 is
received from the prior distribution with pdf (7).

3 – The use of the generated values of α and β from two
prior steps, enables to generate a sample of size n =
30 from the Gomp(α, β) distribution with pdf , that is
represented by (2).

4 – The application of some sorting routine, assists in
obtaining a doubly Type-II censored different value
sample of size r = 20, 25, 30 and k = 0, 5, 10 from
the Gomp(α, β) distribution, where the deferment
value of r and k is presented in Tables I, II and III.

5 – Generate (αi, βi), i = 1, 2, · · · , M, through the use
of MCMC shown in Algorithm 1.

6 – The above generated doubly Type-II censored size
(r−s) sample, the 95 % Bayesian prediction links to
the future ordered values, y(1), y(2), · · · , y(m), m =
5 in the single types β β0 outliers, enable a numerical
calculation through solving the equations (25) and
(26).

Let us assume that we have one more size m = 5 sample
in the presence of a single outlier of type β β0. Hence, for the
given β0 values we seek to receive 95% Bayesian prediction
bounds for y1 to y5 of the failure future sample times. Tables
I, II and III represents these bounds with the corresponding β0
values.
Example 2. The 95% Bayesian prediction interval for a future

unobserved y1 to y5, which are the failure times in the future
size 5 sample in the presence of a single outlier of type β+β0
can be obtained on the basis of a generated doubly Type-II
censored sample of sizen from the Gomp (α, β) distribution.
Same different η1, γ1, η2, γ1 hyper-parameter values and the
same data set is presented in Example 1. Hence, these bounds
with the corresponding n = 30, r = 20, 25, 20 and k = n−r
and β0 values are shown in Tables IV, V and VI.

VI. CONCLUSION

The study investigated and discussed the single β β0 and
β + β0 type outliers through the application of the predictive
distribution function. Hence, the Bayesian prediction intervals
in the case of future homogeneous case observations can be
received by β0 = 1 in (18) or β0 = 0 in (29).
However, it is impossible in the no outlier case. The Gibbs
sampling technique was applied to generate MCMC samples.
Afterwards, the importance sampling methodology was used
to compute the Bayesian prediction problems in the presence
of a single outlier of both type. It is essential to highlight that
the Bayesian prediction intervals are shorter for y1 and larger
for the Bayesian prediction intervals for y5 due to the increase
of β0 value.

TABLE I. 95% BAYESIAN PREDICTION INTERVALS FOR y1, · · · , y5
IN THE PRESENCE OF A SINGLE OUTLIER OF TYPE β β0 , WHERE

n = 30, r = 20, k = 10. NOTE: OBS. IS OBSERVATIONS PP IS POINT
PREDICTORS, LB IS LOWER BOUND, UB IS UPPER BOUND, CP IS

COVERAGE PERCENTAGES.

β0 Obs y1 y2 y3 y4 y5
1 PP 0.492721 0.933387 1.35569 1.80134 2.37285

LB 0.017663 0.177097 0.460092 0.824819 1.29551
UB 1.39901 1.88431 2.30933 2.76994 3.43655
Length 1.38135 1.70721 1.84924 1.94513 2.14104
CP 95.77 % 95.62 % 95.03 % 94.79 % 93.86 %

2 PP 0.428709 0.836901 1.24704 1.69552 2.285
LB 0.014736 0.151347 0.403924 0.743443 1.19871
UB 1.2507 1.73927 2.1873 2.68116 3.38701
Length 1.23597 1.58792 1.78338 1.93772 2.1883
CP 95.17 % 95.84 % 95.91 % 96.12 % 95.65 %

3 PP 0.379907 0.77606 1.19357 1.65873 2.26774
LB 0.012642 0.13457 0.370458 0.700365 1.15708
UB 1.13273 1.66262 2.15497 2.67353 3.38666
Length 1.12009 1.52805 1.78451 1.97316 2.22958
CP 94.19 % 95.73 % 96.4% 96.77 % 96.31 %

4 PP 0.34137 0.735004 1.16389 1.64286 2.26251
LB 0.011069 0.122535 0.34753 0.6731 1.13514
UB 1.03625 1.62423 2.14778 2.67299 3.38665
Length 1.02518 1.5017 1.80025 1.99989 2.25152
CP 92.88 % 95.61 % 96.64 % 97.25 % 96.6 %

5 PP 0.310111 0.705889 1.14598 1.63502 2.2605
LB 0.009844 0.113362 0.33055 0.654265 1.12263
UB 0.955644 1.60625 2.14633 2.67296 3.38665
Length 0.945801 1.49289 1.81578 2.01869 2.26402
CP 91.31 % 95.49 % 96.86 % 97.55 % 96.77 %

TABLE II. 95% BAYESIAN PREDICTION INTERVALS FOR y1, · · · , y5
IN THE PRESENCE OF A SINGLE OUTLIER OF TYPE β β0 , WHERE

n = 30, r = 25, k = 5. NOTE:OBS. IS OBSERVATIONS PP IS POINT
PREDICTORS, LB IS LOWER BOUND, UB IS UPPER BOUND, CP IS

COVERAGE PERCENTAGES.

β0 Obs y1 y2 y3 y4 y5
1 PP 0.480366 0.912016 1.3272 1.76659 2.33151

LB 0.017118 0.171888 0.447624 0.804559 1.26715
UB 1.3691 1.84794 2.26819 2.72426 3.38507
Length 1.35198 1.67605 1.82057 1.9197 2.11793
CP 95.69 % 95.69 % 95.12 % 95.04 % 94.49 %

2 PP 0.417723 0.817269 1.22021 1.66216 2.24463
LB 0.014281 0.146862 0.392804 0.724791 1.17186
UB 1.22303 1.7047 2.14747 2.63631 3.33594
Length 1.20875 1.55784 1.75466 1.91152 2.16407
CP 94.88 % 95.76 % 95.86 % 96.25 % 96.03 %

3 PP 0.370002 0.757583 1.16762 1.6259 2.22759
LB 0.012251 0.130561 0.360161 0.682593 1.13091
UB 1.10696 1.62904 2.11549 2.62875 3.33559
Length 1.09471 1.49848 1.75533 1.94616 2.20467
CP 94. % 95.41 % 96.21 % 96.84 % 96.5 %

4 PP 0.332341 0.717339 1.13846 1.61028 2.22243
LB 0.010726 0.118871 0.337806 0.655895 1.10933
UB 1.01211 1.59117 2.10838 2.62822 3.33558
Length 1.00139 1.4723 1.77057 1.97233 2.22625
CP 92.5 % 95.15 % 96.33 % 97.33 % 96.79 %

5 PP 0.30181 0.688818 1.12087 1.60256 2.22046
LB 0.009539 0.109964 0.321256 0.637456 1.09703
UB 0.93294 1.57343 2.10694 2.62818 3.33558
Length 0.923401 1.46347 1.78568 1.99073 2.23855
CP 90.53 % 95.11 % 96.51 % 97.58 % 96.94 %
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