
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Code Readability Management of High-level
Programming Languages: A Comparative Study

Muhammad Usman Tariq1
Abu Dhabi School of Management

Abu Dhabi, UAE

Muhammad Bilal Bashir2, Muhammad Babar*3, Adnan Sohail4
Computing & Technology Department
IQRA University, Islamabad, Pakistan

Abstract—Quality can never be an accident and therefore,
software engineers are paying immense attention to produce
quality software product. Source code readability is one of those
important factors that play a vital role in producing quality
software. The code readability is an internal quality attribute that
directly affects the future maintenance of the software and re-
usability of same code in similar other projects. Literature shows
that readability does not just rely on programmer’s ability to
write tidy code but it also depends on programming language’s
syntax. Syntax is the most visible part of any programming
language that directly influence the readability of its code. If
readability is a major factor for a given project, the programmers
should know about the language that they shall choose to achieve
the required level of quality. For this we compare the readability
of three most popular high-level programming languages; Java,
C#, and C++. We propose a comprehensive framework for
readability comparison among these languages. The comparison
has been performed on the basis of certain readability parameters
that are referenced in the literature. We have also implemented an
analysis tool and performed extensive experiments that produced
interesting results. Furthermore, to judge the effectiveness of
these results, we have performed statistical analysis using SPSS
(Statistical Package for Social Sciences) tool. We have chosen the
Spearman’s correlation ad Mann Whitney’s T-test for the same.
The results show that among all three languages, Java has the
most readable code. Programmers should use Java in the projects
that have code readability as a significant quality requirement.

Keywords—Source code; high-level programming languages;
Java; C++; C#; code readability; code readability index

I. INTRODUCTION

Software engineering is different in nature as compared to
other engineering domains. Products may remain in use even if
there are some imperfections in them. But a software product
may go through several revisions even after development
is completed until software becomes faults free. Otherwise
customer may not accept and use it. Customers these days are
very smart and want to know what is going inside the software
and what does affect the future maintenance and cost.

Software go through several updates after the first version
due to some reasons; a feature was not implemented that
was required, a feature was incorrectly implemented, or a
new feature is now required. This is known as maintenance
and research shows that around 70% of the product cost is
spent on the maintenance [2] as shown in Fig. 1. Software
engineers need to ensure that the software they produce is
easy to maintain. There are many factors that affect software
maintainability and source code readability is one of them.
Readability is how quickly a reader can read and understand

Fig. 1. Cost Distribution among Software Process Activities [12]

the written text. Elements that make the text difficult to read
and understand include; long lines, insufficient contrast, and
long paragraph with no segmentation.

In a software product, readability means the ability to
read documentation and source code [10]. The documentation
serves as the means of communication among the stakeholders.
But the research shows that agile teams focus on working
software as compared to the documentation while communicat-
ing with the clients [10]. Collection of computer instructions
that are written in high-level programming language is called
source code. Source code is the significant part of software
readability in terms of re-usability, cost, maintenance, and
robustness. Software industry is facing problems to minimize
the software development cost, which is affected by many
factors. Researchers are trying to identify those factors and
ways to eliminate or at least reduce their impact to reduce
the overall cost. According to Collar et al. [11] improved
readability saves developer’s time while reading the code that
eventually helps in bringing down the overall development
cost. Readability is important not only during development
time to improve software quality [1] but also during mainte-
nance because reading the code is the first stage of maintenance
[3]. Research also shows that the maintainability of a software
is measured by the readability and understand-ability of code.
[12].

If for a given project, project manager foresees that a
large number of programmers will be required, programmers
are geographically distributed, programmers will be changing
over the period of time, new programmers will be hired, or
customers will change the requirements then code readabil-
ity becomes a major concern. Generally code readability is
calculated using proportion between number of lines and the

www.ijacsa.thesai.org 595 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

comments that are written for the programmer. The project
manager should select a programming language, which is not
only suitable for project’s functional requirements but should
also offer required level of readability. This selection is vital
because the correct selection will positively affect the quality
of the software.

In this research we have conducted a comparative study
on readability of high-level programming languages. We have
chosen Java, C++, and C# for this purpose. According to the
TIOBE programming community index [15], Java, C++ and
C# are among the top five high-level programming languages.
These languages are maximally used, so we have computed
the readability value of these languages. For this first we
have devised a comprehensive framework and used it for the
analysis. The analysis is three-fold, we have not only used
general text readability indexes, code readability indexes, but
also have included the expert opinions. The end results clearly
shows that Java has been the best as far as readability is
concerned among all.

Rest of the paper is organized as follows. Section II
presents brief description on literature review of existing text
readability assessment techniques. Section III covers all the
proposed techniques for code readability analysis. In Section
IV, we present our novel framework to perform comparative
analysis among programming languages. Section V presents
experiment details and results. We analyze results using sta-
tistical techniques in Section VI. Finally we conclude the
discussion in Section VII and future directions in Section VIII.

II. LITERATURE REVIEW

In this section, we present literature review of readability
metrics to assess the natural languages. Readability tests not
only determine readability but also predict the reading ease.
Most of the tests are language neutral but some of them are
used for certain languages. We have used four natural language
metrics for code readability assessment on the basis of their
popularity and they are described in this section along with
some others.

A. Coleman–Liau Index

Colman–Liau is a readability index similar to automated
readability index (ARI) [16] but different from other indexes
used to estimate the readability of text. This index is developed
by Pahal et al. [3]. This index considers letters per word rather
than text as a whole. It was used to calculate readability
mechanically from samples of hard copy text. It does not
require characters from words and it only calculates the length
in characters. The formula of Coleman-Liau index is given
below:

CLI = 0.0588L− 0.296S − 15.8

In the above mentioned equation “L” is average number of
letters, whereas, “S” is average number of sentences.

B. SMOG

SMOG stands for “Simple Measure of Gobbledygook”.
McLaughlin [14] created this index in 1969 in article, SMOG
Grading. It estimates the time (years) to read the text required
by any person. As compared to other readability metrics,
SMOG is better and provide more accurate results. SMOG
metric is calculated with the following formula:

SMOG = 3 + SquarerootofPolysyllableCount

C. Flesch-Kincaid Readability Index

The Flesch-Kincaid [17] index is improved version of
Flesch Reading Ease Readability Formula [3]. It checks the
reading ease of the give text. If the value is high, it means the
text readability is high. But if the value is low then it means
text is difficult to read. The grade level is calculated with the
following formula:

FKRI = 206.835−1.015
(

Totalwords
TotalSentences

)
−84.6

(
TotalSyllables
TotalWords

)
Shorter sentences and words give best results. The score

between 60 and 69 is considered average readability while
score between 0 and 29 is considered confusing for the reader.
The complete list of values and their interpretations is provided
in Table I.

TABLE I. VALUE RANGES AND DESCRIPTION [17]

Score Grade Level
90-100 Very Easy
80-89 Easy
70-79 Fairly Easy
60-69 Standard
50-59 Fairly Difficult
30-49 Difficult
0-29 Very Confusing

D. The Gunning’s Fog Index

Gunning [18] propose this index and it is also known as
FOG index in short. It can be calculated by using the following
formula:

FOG = 0.4(ASL+ PHW )

The average sentence length is added to the percentage
of hard word (PHW). And average sentence length (ASL)
is calculated by ratio of words count to the total number of
sentences. Ideal score for FOG readability is 7 or 8 and if score
goes higher than 12, it is considered as hard to read text.

E. The Automated Readability Index (ARI)

Senter [19] design automated readability index (ARI) test
to access the understandability of text. Word difficulty and
sentences are used in ARI. ARI calculate the readability value
and output will be compared with grade level. Here is the
formula of ARI:

www.ijacsa.thesai.org 596 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

ARI = 4.71

(
Characters

Words

)
+ 0.5

(
Words

Sentences

)
− 21.43

Characters are the number of letters and numbers. Words
are the number of words and spaces and sentences are the
number of sentences.

III. CODE READABILITY INDEXES

The most important parameter of maintainable software is
readability, because changes in the system are made through
source code [3]. Less readable source code is harder to main-
tain than a code that is readable. Most of the time managers
reject the code due to lack of code readability. In this section
we present some code readability index that we find in the
literature.

A. Deepa and Dua (2015)

Deepa and Dua [4] explain that readability depends upon
simple sequences and unnecessary loops complicate the pro-
gram. In this paper code readability is calculated on the basis
of software developer judgment. Authors use two copies of
the same program for their study. First copy of the program
is less readable as proper indentation was not applied whereas
the second copy was well formatted using a beautifier tool.
Authors also propose a new metric for readability assessment.
They perform experiments using novel readability metric and
find out that the program written and formatted properly with
the help of beautifier has more readability as compared to the
other one. The metric that authors use have some parameters
including; lines of code, line length, and number of comment
lines, number of blank lines, number of lines after semicolon,
number of spaces after directive statement and number of
method.

B. Tashtoush (2013)

Tashtoush [5] develops an approach called “impact of
programming features on code readability” (IPFCR). In this
approach author studies the impact of various features and
their effect on code readability. For evaluation he uses feature
code readability tool (CRT). Author conducts the survey on a
random number of expert programmers to access the level of
impact. 25 readability features are proposed for survey; mean-
ingful name, comments, spacing, indents, short scope, line
length distribution, identifier name length, arithmetic formula,
identifier frequency, if-else, nested if, switch, for loop, do while
loop and nested loop [5]. Programmers evaluated features
into positive and negative factors based on their understand-
ability. The results are evaluated using SPSS statistical tool.
ANOVA test is used to remove the biased from data. The top
three features that come from survey were meaningful names,
consistency and comments. And the lowest impact features
were nested loops, arithmetic formula and recursive function.
Some of them have neutral impact on readability.

C. Sivaprakasam and Sangeetha (2012)

Sivaprakasam and Sangeetha [7] have conducted a study
that shows that readability has a global effect on software
budget. In this paper authors define the relationship between
software quality and source code readability. Mostly software
metrics are used to measure the complexity of software.
Authors have developed an automated readability tool, which
is 80% more effective than human judgment. Authors have
performed extensive experiments to evaluate the readability
of code and for this they selected code snippets from the
developed projects. The size of snippets is important because
too small snippets may reflect incorrect or misleading scores.
The scores authors have used range from 1 to 5 where 5
means more readable and 1 means least readable. Authors have
ensured that all the snippets have some features including line
length, number of character, identifier length indentation, loops
and many other features. For a large number of experiments
this technique is useful for conducting readability index.

D. Relf (2004)

Relf [8] examines in this paper that identifier naming
standards that improve the code readability are acceptable by
software professionals. Author claims that naming standards
affect source code readability and that greatly impact code
maintainability. To examine the impact of naming standards
author collects 21 naming standards from research. These
include multiple underscore characters, outside underscore
character, numeric digits, naming convention anomaly, iden-
tifier encoding, short identifier name, long identifier name,
number of words, class qualification, abstract words, constant
qualification, numeric identifier name and some others. Author
analyzes some codes written in ADA and Java programming
languages and rates these programs on the basis of naming
standards used from 1 to 5 (1 is strong acceptance and 5 is
strong rejection). This study also states that expert program-
mers accept the naming standards more than the beginners.

E. DeYoung, Kampen, Topolski (1992)

An automated readability measure will be useful for devel-
opers during coding as it will continuously assessing their code
and assisting them to improve. DeYoung et al. [9] examine
the machine computable and human-judged program features.
They identify that length of identifiers and are very useful in
predicting code readability. Using analyzer generated quality
of comments, logicality of control flow and meaningfulness of
identifier names are studied to find out whether these predic-
tors are worthy for readability estimation [9]. The proposed
predictors increase the proportion of readability of judgments
from 41% to 72%. Authors also claim that when logicality of
control flow is added as a predictor, it produces better results
as compared to human judgment but somehow these predictors
are expensive to obtain.

F. Buse and Westley (2008)

Buse and Westley [2] perform a detailed empirical study
to calculate readability of code. For this they have chosen 100
snippets and around 120 annotators that grade these snippets.
The biggest issue in this research is that authors have used 19
parameters including line length, identifiers, identifier length,

www.ijacsa.thesai.org 597 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

indentation, keywords, numbers, comments, periods, commas,
spaces, parenthesis, arithmetic operators, comparison opera-
tors, assignment, branches, loops, blank lines, occurrences of
any character and occurrences of any single identifier, which
are difficult to calculate. From these parameters authors have
constructed automated readability measurement and proved
that it will be 80% more effective than human judgment.
Furthermore, he discusses that how readability has potential
for improving programming language design with respect to
software quality. Authors also suggest to decrease the param-
eters for readability analysis and sets this as future work for
their research.

G. Relf (2005)

Relf [6] describes a practical study to show whether coder
increases the readability of his programs if he gets support
from source code editor that provides vibrant responses on
his identifier naming practices. Software coder should adopt
a standard for software interface to gain benefits. This paper
is useful for both student and professional software coder for
maintaining the code and significant for the improvement of
code readability. Author uses only one parameter for code
readability that is identifier naming practices.

H. Daryl, Hindle, and Devanbu (2011)

Daryl et al. [13] propose to use entropy for predictive mod-
eling approach. Authors study that whether size of the code
impact the readability of the code or not. They have used six
parameters including mathematical equations, average number
of comments, and maximum indention, maximum word, max-
imum line length and maximum occurrence character in the
code snippets. Author also used Halstead’s metrics to find the
size of code on the mean readability. For mean readability total
number of operators and operands are combined and formulate
the Halstead’s metrics. For measuring the Entropy total number
of tokens and unique token is counted. Also Entropy model
improves the performance in term of prediction and readability
but byte entropy does not improve the prediction.

IV. FRAMEWORK FOR COMPARATIVE ANALYSIS

In this section we present the framework we have proposed
for performing the comparative analysis among the selected
three programming languages (Java, C#, and C++).

The main objective of our work is to compare the read-
ability of three of the top five most popular programming
languages. In proposed framework we compare the human
judgment with readability index: ARI (Automated Readability
Index), SMOG, FOG, and FKG. The framework is presented
in Fig. 2.

To perform comparison first we have to find the programing
parameters that can affect the readability of source code. For
this we select the constructs from the research work of Buse
and Westley [2]. Second step is to compute the effect of these
constructs on the readability of Java, C# and C++ languages.
To calculate the effect, we have selected code snippets of Java,
C# and C++ languages. After snippets selection, online survey
is conducted, in which expert opinion is obtained and results
are obtained for every selected programming construct. Se-
lected snippets are measured with different readability indexes.

Fig. 2. The Proposed Framework

Text readability indexes include ARI (Automated Readability
index), SMOG Fog, and Flesch Kincaid Grade level, while
the code readability includes Halstead’s complexity. The effect
of readability by each construct is then calculated with these
readability indexes.

A. Selection of Readability Parameters

Readability of code is normally linked with comments and
naming standards and also called the important factor that
impact readability but there are some other aspects the affect
the readability. Number of parameters are used in coding that
make the code possible and easy to build. There are number
of parameters that we find in the literature [2] out of those
we have chosen 14 to conduct this comparative study. Table
II presents this list of selected parameters.

TABLE II. PARAMETERS USED FOR CODE READABILITY COMPARISON

Sr. No. Parameter Notation
1 Parenthesis PAR
2 Indent IND
3 Spaces SPA
4 Class Distribution CD
5 Arithmetic Equations AE
6 For Loop FL
7 Nested Loop NL
8 Do-While Loop DWL
9 IF-Else IE
10 Switch SWI
11 Blanks Lines BL
12 Line Length (characters) LL
13 Arrays ARR
14 Comparison Operators CO

www.ijacsa.thesai.org 598 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

B. Selection of Code Snippets

A small section of source code or text is called code
snippet. Normally they are defined in effective unit of large
programs model. In the readability model, first we select the
code snippets of Java, C++ and C#. As we know snippets
are the small portion of source code, thus we select a small
human readable codes that are neither too short nor too long.
Each snippet contains a parameter to check their readability
impact of that we have discuss earlier. Snippet does not include
comments, header functions, and blank lines because they are
not meaningful. Secondly code snippets should be logically
clear to respondent so, he/she can easily read them. Finally,
these snippets are given to the annotators (explain functionality
of codes). The ratings for the code snippets are assigned from
1 to 5 where 4 and 5 mean that code is more readable and
rank 1 and 2 mean that code is less readable and rank 3 is for
average. To perform the online survey, we have used Google
Forms and Excel sheets. Respondent can choose one rank (1
to 5) against each language.

V. COMPARATIVE ANALYSIS

In this section we perform detailed comparative analysis
using the proposed framework presented in the previous sec-
tion. First we present the details and results of the Survey that
we have conducted with the help of programmers of different
skill and level.

A. Survey

As mention earlier a set of snippets are selected for human
judgment for estimating readability. In Table II, we have
presented 14 language constructs that we have chosen to
compare the readability of selected programming languages.
For every construct we have prepared 6 to 7 pieces of codes
for all three languages. Then they are presented to 100
programmers including IT professionals, Programmers, and
Computer Science Students. According to their judgment they
have ranked snippets. Participant have to rank each snippet
from 1 to 5 where 1 is less readable and 5 is more readable.

Each snippet contains a parameter that affects the code
readability. And against each parameter participant rank the
code readability. Each participant was given the same question-
naires using Google Forms. To improve the visibility results
of the survey are presented in bar-chart form in Fig. 3.

We can notice that as per the experts, code snippets written
in Java are more readable for almost every selected program-
ming construct. The results also show that C# performs better
for two language constructs including DO-While and For Loop
is more readable.

B. Code Readability Index

We have computed code readability index for all the
selected code snippets against all the selected language
constructs using Halstead’s metric. Halstead’s metric
proposed by Maurice Howard Halstead is used to measure
the complexity of a program. It depends upon the actual
implementation of program which is computed from some
operators and operands. It can also computes words size,
errors and testing time for C++, C# and Java codes. The

Fig. 3. Results of the Code Readability Comparison

parameters used by Halstead’s metric are mentioned below:

n1: Number of unique operators
n2: Number of unique operands
N1: Total number of operators
N2: Total number of operands

The following list presents the various parameters and
their expressions that are offered by Halstead’s metric to
compute different aspects of programs written in programming
languages:

V ocabulary : n = n1 + n2

Size : N = N1 +N2

V olume : V = length ∗ log2V ocabulary

Difficulty : D =

(
n1

2

)
∗
(
N1

n2

)
Efforts : E = Difficulty ∗ V olume

ProgramLevel : L = V ∗/V

TestingT ime : T =
Efforts

S
,whereS = 18seconds

In order to apply the above mentioned metrics on the code
snippets, we have developed a source code readability tool
(SCRT). SCRT calculates the vocabulary of code, size, volume
efforts, errors, testing time and difficulty of the code for all
the programs. After calculating these different metrics we have
presented the results in upcoming tables including Table III,
Table IV, and Table V for Java, C#, and C++, respectively.

After obtaining the results of Halstead’s matrices, we have
plotted one of the aspects, which is “difficulty” with the help
of a line chart to compare the results of all three languages.
The results in Fig. 4 clearly show that C++ programs are more
difficult to read and understand as compared to the programs
written in Java or C#. Mostly Java seems to be less difficult
among all the languages in nearly all the language constructs
except for comparison operator and arithmetic expressions.

www.ijacsa.thesai.org 599 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

TABLE III. HALSTEAD’S METRIC RESULTS FOR JAVA LANGUAGE

Params Vocab Size Volume Difficulty PRO Level Quality
PAR 09 21 066.56 03.66 0.46 1.61
IND 19 78 331.33 08.05 0.254 1.037
SPA 8 16 048.00 01.50 0.57 1.115
CD 08 13 039.00 0.125 0.80 NA
CO 09 51 161.66 11.11 0.18 1.12
AE 14 85 323.62 11.25 0.16 1.064
FL 11 27 093.40 03.18 0.42 0.81
NL 13 41 151.71 04.03 0.330 0.60
DWL 13 25 092.51 02.42 0.54 1.76
IE 15 31 012.11 01.83 0.51 0.83
SWI 17 48 196.19 01.41 0.38 1.68
LL 22 43 191.75 03.86 0.51 NA
ARR 14 30 114.22 02.35 0.493 2.07
SCO 13 36 133.21 03.23 0.45 2.1

TABLE IV. HALSTEAD’S METRIC RESULTS FOR C# LANGUAGE

Params Vocab Size Volume Difficulty PRO Level Quality
PAR 08 19 57.0 3.75 0.45 1.41
IND 13 66 244.22 8.46 0.21 0.34
SPA 14 20 76.14 0.53 0.78 1.12
CD 10 17 56.47 0.1 0.73 NA
CO 12 49 175.66 5.83 0.25 1.32
AE 15 73 285.20 7.8 0.20 1.04
FL 11 27 93.41 3.63 0.41 0.85
NL 13 40 148.01 3.76 0.33 0.62
DWL 13 24 88.81 2.15 0.56 1.83
IE 15 26 101.57 1.16 0.61 2.31
SWI 15 42 164.08 1.06 0.38 0.59
LL 20 42 181.52 5.4 0.46 0.97
ARR 14 29 110.41 2.14 0.51 1.89
SCO 11 29 100.32 3.00 0.32 0.52

C. Text Readability Index

Now we calculate the readability of the code with various
different text readability indexes. There are many metrics
available for the same and among those we have chosen
some most popular metrics listed below. After that we have
applied them on all the selected code snippets of all three
programming languages. The results are presented in Table
VI, Table VII, and Table VIII. Before presenting the results,
below are the metrics that we have applied to calculate text
readability indexes:

• ARI

• FOG

• FKG Level

• SMOG

TABLE V. HALSTEAD’S METRIC RESULTS FOR C++ LANGUAGE

Params Vocab Size Volume Difficulty PRO Level Quality
PAR 11 23 79.56 3.63 0.69 1.54
IND 20 51 220.41 2.97 0.39 0.35
SPA 14 32 121.83 3.21 0.47 0.47
CD 12 50 226.17 5.02 0.47 1.244
COM 09 51 161.66 12.26 0.228 0.34
AE 20 82 354.39 10.5 0.173 0.25
FL 14 36 137.06 4.57 0.40 1.01
NL 17 52 212.54 7.05 0.26 0.31
DWL 15 36 140.64 5.66 0.41 0.549
IE 19 40 169.91 3.36 0.48 0.55
SWI 19 50 212.39 3.13 0.39 0.42
LL 31 101 500.37 8.70 0.26 1.57
ARR 16 41 164 5.06 0.40 0.43
SCO 15 36 140.64 3.96 0.33 0.45

Fig. 4. Comparison of Readability Difficulty among Java, C#, and C++

TABLE VI. TEXT READABILITY INDEX FOR JAVA LANGUAGE

Parameters ARI FOG FKG SMOG Average
PAR 11.30 08.41 02.28 08.09 07.52
IND 20.14 11.82 01.73 11.18 11.21
SPA 08.91 12.67 07.49 07.79 09.21
CD 18.90 12.62 11.24 09.24 13.00
AE 01.46 04.68 -00.40 09.00 03.68
FL 15.73 07.60 03.14 13.00 09.86
NL 01.57 05.16 01.50 07.89 04.03
DWL 01.63 06.11 02.61 08.56 04.72
IE 04.11 06.54 02.11 08.09 05.21
SWI 03.39 06.40 01.40 08.83 05.05
SCO 08.39 05.83 01.62 10.14 06.49
LL 06.80 06.15 00.99 08.65 05.64
ARR 18.54 21.85 09.29 11.06 15.18
COM 05.86 05.90 01.66 08.09 05.37

TABLE VII. TEXT READABILITY INDEX FOR C# LANGUAGE

Parameters ARI FOG FKG SMOG Average
PAR 09.90 03.86 02.75 08.00 06.12
IND 17.38 12.91 02.10 11.30 10.92
SPA 11.88 12.00 07.47 08.00 09.83
CD 21.04 13.30 12.21 09.55 14.03
AE 10.23 06.35 03.31 09.85 07.44
FL 15.05 08.70 05.76 13.63 10.78
NL 04.91 07.02 03.98 08.29 06.05
DWL 05.42 08.65 05.56 08.91 07.13
IE 07.05 08.07 04.4 08.47 06.99
SWI 07.58 07.14 03.71 09.48 06.97
SCO 08.65 07.16 03.87 10.81 07.62
LL 05.97 08.04 03.56 09.08 06.66
ARR 19.05 20.23 09.56 11.24 15.02
COM 06.80 06.15 0.999 08.65 05.64

The obtained results after computing text readability in-
dexes, are plotted with the help of bar-chart. Fig. 5 shows
the results for all three programming languages against all
programming constructs. The results again show that Java
language codes are more readable as compare to C# and
C++. But in some constructs such as comparison operators,
arithmetic equations and scope C# is more readable as per
text readability index.

VI. STATISTICAL ANALYSIS

In this section we present statistical analysis that we have
performed on the results obtained after experiments. For this
we have chosen T-test for the same. The T-test is used to
compare the two sample means. Where one sample means

www.ijacsa.thesai.org 600 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

TABLE VIII. TEXT READABILITY INDEX FOR C++ LANGUAGE

Parameters ARI FOG FKG SMOG Average
PAR 8.38 04.66 01.69 07.35 05.52
IND 09.3 11.91 08.29 09.48 09.74
SPA 03.08 06.54 01.51 07.79 04.73
CD 15.09 13.02 09.90 11.00 12.25
AE 02.94 06.22 02.05 08.09 04.82
FL 19.72 18.83 13.98 11.94 16.12
NL 02.69 08.65 03.99 07.69 05.75
DWL 05.38 10.80 06.43 08.47 07.77
IE 03.19 08.14 04.16 08.09 05.89
SWI 04.38 08.82 05.30 08.65 06.79
SCO 09.3 11.20 08.20 09.4 09.53
LL -00.39 07.20 03.36 07.35 04.38
ARR 09.88 10.31 05.06 12.27 09.38
COM 04.59 08.66 03.6 08.00 06.22

Fig. 5. Comparison of Text Readability Index among Java, C#, and C++

can be paired with other sample mean observation. In paired
T-Test each entity is measured twice, result will be given in
pairs. Table IX presents Halstead’s arithmetic mean, standard
deviation and standard mean error are given for all three
languages (Java, C#, C++). Table X presents paired correlation
between Java and Halstead index, C# and Halstead index and
C++ and Halstead index of C++. Where correlation r ¿ 0.50
shows the strong relationship and r ¡ 0.50 shows the weak
positive relationship.

TABLE IX. MEAN, STD. DEVIATION, AND STD. ERROR MEAN

Mean N Std. Deviation Std. Error
Java 4.0089 99 0.27024 0.02716
Halstead Java 3.3005 99 0.81316 0.08173
C# 3.8054 99 0.51242 0.05150
Halstead C# 3.7690 99 0.82096 0.08251
C++ 3.8856 99 0.32749 0.03291
Halstead C++ 3.8871 99 0.41251 .04146

TABLE X. CORRELATION BETWEEN MEAN, STD. DEVIATION, AND STD.
ERROR MEAN

N Correlation Sig.
Java & Metric Readability-Java 99 0.730 0.191
C# & Metric Readability-C# 99 0.529 0.001
C++ & Metric Readability-C++ 99 0.610 0.553

The statistical results show that Java programming lan-
guage has been found being more readable as compared to

other programming languages.

VII. CONCLUSION

Code readability influences maintenance of a software at
great deal. Due to its salient importance, we have conducted
a comparative study to estimate readability of the codes
produced by Java, C#, and C++ programming languages. We
identify important language constructs that affect the code
readability and then propose a novel framework to compare
the codes using three different dimensions. First we have
performed an expert survey involving programmers and experts
to judge the readability of codes. Then we have applied
code readability and text readability indexes to again calculate
readability of the same programs. We have computed these
indexes using a source code readability tool (SCRT). The
experiment results show that Java language produces more
readable code as compared to C# and C++. Only for a few
language constructs like comparison operators and arithmetic
operator. We have also statistically analyzed the results using
SPSS tool to verify the effectiveness of experiments. This
analysis also verifies that Java language code is more readable
than C# and C++.

VIII. FUTURE WORK

In future we are planning to extend our analysis on other
famous languages also including Python and VB.NET. Other
than these, we are also looking to conduct an analysis on
programming languages that are used specifically for mobile
application development.

REFERENCES

[1] S. Fakhoury, D. Roy, A. Hassan and V. Arnaoudova, ”Improving Source
Code Readability: Theory and Practice,” 2019 IEEE/ACM 27th In-
ternational Conference on Program Comprehension (ICPC), pp. 2-12,
Montreal, QC, Canada, 2019.

[2] Buse, R.PL., Westley R.W. ”A metric for software readability.” Pro-
ceedings of the 2008 international symposium on Software testing and
analysis, pp. 121-130, Seattle, WA, USA, July 20-24, 2008.

[3] Pahal, Ankit, and Rajender S. Chillar. ”Code Readability: A Review of
Metrics for Software Quality.”International Journal of Computer Trends
and Technology (IJCTT) – Volume 46 Number 1- April 2017

[4] Deepa D., Dua A. K. “Evaluation of Quality of Source Code By Code
Readability. International Journal of Advanced Research in Computer
Science and Software Engineering, 2015.

[5] Tashtoush, Y. ”Impact of programming features on code readability.”
International Journal of Software Engineering and its Applications.
7(6):441-458. November 2013.

[6] Relf, P.A., ”Tool assisted identifier naming for improved software read-
ability: an empirical study”, In International Symposium on Empirical
Software Engineering, Noosa Heads, Qld., Australia, November 17-18,
2005.

[7] Sivaprakasam., P, Sangeetha., V. “Improving software qualitythrough
the development ofcode readability” International Journal of Advanced
Research in Computer and Communication Engineering Vol. 1, Issue 6,
August 2012.

[8] Relf, P.A., ”Achieving software quality through source code readability”,
Quality Contract Manufacturing LLC., 2004.

[9] DeYoung, G.E., Kampen, G.R. and Topolski, J.M. ”Analyzer-generated
and human-judged predictors of computer program readability.” Proceed-
ings of the 1982 conference on Human factors in computing systems. pp
223-228, Gaithersburg, Maryland, USA, March 15-17, 1982.

[10] Sivaprakasam, P., and V. Sangeetha. ”An accurate model of software
code readability.” International Journal of Engineering Research and
Technology.ESRSA Publications (2012).

www.ijacsa.thesai.org 601 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

[11] Collar Jr, Emilio, and Ricardo Valerdi. ”Role of software readability on
software development cost.” 2006.

[12] Aggarwal, Krishan K., Yogesh Singh, and Jitender Kumar Chhabra.
”An integrated measure of software maintainability.” Reliability and
maintainability symposium, 2002.Proceedings.Annual.IEEE, 2002.

[13] Daryl, P., Hindle, A., and Devanbu, P., ”A simpler model of software
readability”, In Proceedings of the 8th working conference on mining
software repositories, pp. 73-82, Waikiki, Honolulu, HI, USA, May 21-
22, 2011.

[14] McLaughlin, G. Harry. ”SMOG grading-a new readability formula.”
Journal of reading 12.8 (1969): 639-646.

[15] TIOBE. https://www.tiobe.com/tiobe-index/. (accessed on October 17,
2019).

[16] Automated Readability Index (ARI).
https://en.wikipedia.org/wiki/Automated readability index. (accessed on
October 18, 2019).

[17] Kincaid, J.P., Fishburne, R.P., Rogers, R.L., & Chissom, B.S., ”Deriva-
tion of new readability formulas (automated readability index, fog count,
and flesch reading ease formula) for Navy enlisted personnel.” Research
Branch Report 8–75. Chief of Naval Technical Training: Naval Air
Station Memphis. 1975.

[18] Gunning, Robert., ”The Technique of Clear Writing”. McGraw-Hill. pp.
36–37. 1952.

[19] Senter, R.J.; Smith, E.A. (November 1967). ”Automated Readability
Index”. Wright-Patterson Air Force Base: iii. AMRL-TR-6620. Retrieved
March 18, 2012.

www.ijacsa.thesai.org 602 | P a g e


