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Abstract—In recent times, dimension size has posed more 

challenges as compared to data size. The serious concern of high 

dimensional data is the curse of dimensionality and has 

ultimately caught the attention of data miners. Anomaly 

detection based on local neighborhood like local outlier factor 

has been admitted as state of art approach but fails when 

operated on the high number of dimensions for the reason 

mentioned above. In this paper, we determine the effects of 

different distance functions on an unlabeled dataset while digging 

outliers through the density-based approach. Further, we also 

explore findings regarding runtime and outlier score when 

dimension size and number of nearest neighbor points (min_pts) 

are varied. This analytic research is also very appropriate and 

applicable in the domain of big data and data science as well. 
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I. INTRODUCTION 

An outlier also known as anomaly could be defined as a 
data point that seems very dissimilar from other points based 
on some criteria [1,17]. This point should not be categorized as 
noise since it is likely to discover some very unexpected but 
useful information. 

Outlier detection could be categorized in three different 
ways based on approaches [2,3], i.e. cluster-based, distance-
based and density or local neighborhood-based. These 
approaches resemble each other as they operate on some notion 
of similarity. The only difference is the level of granularity or 
level of detail in terms of its analysis methodology. The local 
neighborhood approach differs from the global neighborhood 
method as shown in Fig. 1. Here point 1 (redpoint) is detected 
as an outlier for both approaches but the latter approach does 
not recognize point 2 (orange point) as an anomalous point. 

Most of well-known outlier detection techniques work on 
full dimensional data. However, their performance gets 
deteriorated because of some intrinsic features present in data 
having a high number of dimensions [4]. Even techniques 
based on dimensionality reduction cannot resolve this problem 
as feature irrelevance/relevance is determined locally. 
Researches solved this inherent problem by formulating 
methodology on subspaces (a subset of attributes) [5]. 

However, it is not feasible to scan all subspaces within 
complete data as only the brute force technique assures all sets 
of attributes to explore anomalies inside data. But as far as its 
time complexity is concerned, it proves expensive enough. So 
there is desperate need to study and revise proximity functions 
to be applied on full feature space of data. A comparison of 
different proximity functions regarding high dimensional data 
answers the question of how outlier detection of high 
dimensional data could be coped with its inherent problems. 
Outliers have been classified either binary or scored which 
depends on the approach to be applied while exploring within 
datasets as shown in Fig. 2. 

 

Fig. 1. An Outlier (Global vs Local) Figure. 
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Fig. 2. Outlier Detection Techniques. 

II. PROBLEM DESCRIPTION 

A. Motivation 

Before experimenting and proving the hypothesis, we study 
and analyze how to deal with the curse of dimensionality when 
anomaly detection of high dimensional data is to be explored. 
As discussed earlier, subspace-based outlier detection is not a 
perfect solution regarding time expense and accuracy of 
results.  We come across the following three reasons why 
investigating the problem is necessary, namely, i) Similarity of 
data points, ii) Curse of dimensionality, iii) Accuracy of 
outliers data. 

B. Likeness 

When the number of dimensions grows then at some point, 
distance functions cannot determine relative difference due to 
convergence of distance between any two data points. As 
shown in equation 1, when dimensionality grows to infinity 
then difference regarding the distance between farthest and 
nearest point is indistinguishable [6]. Hence there arises the 
importance of proximity function when most outlier detection 
techniques use the notion of distance. 

Lim
𝑑𝑖𝑚→∞

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.𝑚𝑎𝑥−𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.𝑚𝑖𝑛

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.𝑚𝑖𝑛
= 0             (1) 

C. Curse of Dimensionality 

The high number of dimensions is hard to describe, tedious 
to visualize and it becomes infeasible to dig out all subspaces 
due to exponential growth of all combinations of subspaces 
when each new dimension is added. 

D. Accuracy of Outliers 

Subspace anomaly detection techniques, as devised by 
many researchers, cannot explore all subspaces hidden in 
datasets for reasons discussed earlier. Hence outliers with 
accurate scores could not be retrieved which affects overall 
confidence in the accuracy of results. 

III. RELATED WORK 

Outlier's definition proposed by Hawkins is accepted 
universally as it is very precise and straightforward, that is “An 
outlier is an observation that deviates so much from other 
observations as to arouse suspicion that it was generated by a 
different mechanism” [7]. There are many well-known 
domains in which outlier detection is being applied fruitfully 
like fault detection in the engineering field, fraud detection in 
the financial sector, intrusion detection in computer networks, 
etc. [8,9]. In a broad sense, outliers are classified/detected as 
either binary or scored depending upon methodology to be 
utilized or the requirement of stakeholders [10,11]. 

Amongst the class of local neighborhood-based outlier 
detection, the local outlier factor is an algorithm proposed by 
Hans-Peter Kriegel et al. in 2000 for finding abnormal data 
points by calculating the local deviation (outliers) of a given 
data point with respect to its neighbors [12, 18, 19]. 

Local Outlier Probability (LoOP) [13] is a method derived 
from local outlier factor but using inexpensive local statistics to 
become less sensitive to the choice of the parameter k. Besides, 
the resulting values are scaled to a value range of 0 to 1. 

A novel method, Local Subspace Classifier (LSC) is used 
in [14] that is based on the feature vector extraction method. 
LSC determines outlier measure based on time increment for 
distance applied on the model. This method was improved in 
terms of computation in [15] by proposing method Fast LSC. 
In this approach, clustering is used to reduce the amount of 
data and hence proves ten times faster as compared to the LSC 
method. 

Bo Tang [16] detects outliers based on distance function 
utilizing a density-based approach. He utilizes three types of 
measures to determine density estimation which are classic k 
nearest neighbors, reverse nearest neighbors and shared nearest 
neighbors. 
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IV. EXPERIMENTAL WORK 

The proposed research is evaluated and tested in 
RapidMiner and ELKI tools which are specialized ones for 
data mining and outlier detection tasks. Artificial data is 
generated to test and compare results with other algorithms. 
Public/Real data having a different number of dimensions and 
records present on research database websites like KDD and 
UCI machine learning laboratory is used for experimentation 
of algorithms. 

As dimensionality grows towards infinity (number of 
dimensions large enough), the distance between any two data 
points approaches to zero (small enough to differentiate). 
That’s why the Local Outlier Factor (LOF) of all data points 
gives similar points that exhibit that all data points are equally 
dispersed. As the value of Euclidean distance is different than 
Manhattan distance, so we get different results for LOF applied 
to the same dataset as shown in Table I.  We can observe that 
the difference of LOF for Manhattan distance is higher than 
that of Euclidean distance. A Manhattan distance replaces 
Euclidean geometry with Taxicab geometry in which the 
distance between two data points is the sum of the absolute 
differences of their cartesian coordinates. 

A dataset named “Concrete Data” extracted from UCI 
Machine Learning Repository is chosen for research 
experimentation. It is real data having 9 attributes and 1031 
instances. Amongst the class of local neighborhood algorithms, 
LOF is selected to test and compare results on different 
proximity functions. Value of K (minimum points) is also 
varied to judge its effect on net results. The density of points is 
similar when a score of LOF is approximately equal to one. 
Outlier points are those which possess LOF score greater than 
one whereas inlier points show score less than one. Different 
proximity functions applied to density-based outlier detection 
(LOF) are discussed below. Euclidean distance is also known 
as the Pythagorean metric (shown in equation 2). It calculates 
straight line distance between any two data points. 

𝑑 (𝑥, 𝑦) = √∑ (𝑥𝑖 −  𝑦𝑖)2𝑛

𝑖=1
            (2) 

Manhattan distance also known as the taxicab metric 
(shown in equation 3) finds the rectilinear distance between 
any two data points. This taxicab geometry has been used in 
regression analysis since the eighteenth century. 

𝑑 (𝑥, 𝑦) = √∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1             (3) 

Squared Euclidean distance is also extensively used in 
regression analysis. Optimization problems are relatively more 
easily solvable using this metric. It is determined using 
equation 4. 

𝑑2 (𝑥, 𝑦) = (𝑥1 −  𝑦1)2 + (𝑥2 − 𝑦2)2 +  − − + (𝑥𝑛 −
 𝑦𝑛)2                    (4) 

A density based outlier detection algorithm, i.e. LOF is 
measured using equation 5 where LrdK represents local 
reachability of a point amongst k min_pts and NeighK denotes 
the neighborhood of a point for k min_pts. 

LOFk(p) =
∑

𝐿𝑟𝑑𝑘(𝑝′)

𝐿𝑟𝑑𝑘(𝑝)𝑝′𝜀 𝑁𝑒𝑖𝑔ℎ𝑘(𝑝)

𝑁𝑒𝑖𝑔ℎ𝑘(𝑝)
             (5) 

In Fig. 3, the run time of the LOF is shown while being 
applied on different proximity functions along with variation in 
several neighboring points also known as min_pts (k). 

This graph clearly shows that run time for Squared 
Euclidean distance is minimum as compared to other proximity 
functions. It is also authenticated for different values of k (5, 
10, 15) that other distance functions are relatively time 
expensive. 

A comparison of outlier-ness and inlier-ness is shown in 
Fig. 4, where outlier score (outlier factor) and several outliers 
are compared for different proximity functions. Results reveal 
that the Squared Euclidean function gives much better results 
as both score and number get inclined. 

Fig. 5 reveals an effect on the outlier score as the 
dimensionality of data is increased. The different number of 
dimensions to be used are 2, 4, 6 and 9. From this graph, we 
can conform to two very important things. First is that distance 
between points diminishes as the number of dimensions is 
increased, it is confirmed as the outlier score decreases by an 
increasing number of dimensions. Second is that the outlier 
score for points has reasonable differences for Squared 
Euclidean function as compared to other distance functions. 

It could be concluded that high dimensional data requires to 
choose proximity function carefully while detecting outliers. In 
our work, Squared Euclidean proves to be very efficient for 
high dimensional data as its run time and outlier score are far 
better than that of other proximity functions. 

TABLE I. LOF COMPARISON FOR EUCLIDEAN AND MANHATTAN DISTANCE 

Dataset  Euclidean Distance, k=2 Manhattan Distance, k=2 

      ID=1: 8.0 0.0 1.0 2.0 2.0 8.0 lof=1.018 lof=1.024 

 ID=2: 10.0 9.0 1.0 2.0 2.0 11.0 lof=0.982 lof=0.986 

      ID=3: 4.0 8.0 1.0 2.0 2.0 7.0 lof=1.018 lof=1.013 

      ID=4: 3.0 1.0 1.0 2.0 2.0 2.0 lof=1.097 lof=1.307 

      ID=5: 0.0 4.0 1.0 2.0 2.0 14.0 lof=0.980 lof=0.988 

 

Min-LOF=0.982 

Max-LOF=1.097 

Min-LOF=0.986 

Max-LOF=1.307 

Difference-LOF=0.116 Difference-LOF=0.318 
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Fig. 3. LOF Comparison for different Proximity Functions. 

 

Fig. 4. A Comparison of Outlier and Inlier Scores. 

 

Fig. 5. Effect of Dimensionality on Outlier Score. 

V. LIMITATION 

The above experimentation works on numerical or 
continuous data only but it could be adapted for other data 
types if the distance between data points is quantifiable. For 
example, the edit distance metric calculates the distance 
between words containing alphabetical letters. 

VI. CONCLUSION 

Knowledge discovery has been utilized through outlier 
detection, a subfield of data mining. Data science and data 
mining help businessmen while taking crucial decisions for an 
organization. Local neighborhood-based outlier detection has 
been accepted as a state of art methodology while detecting 
outliers amongst different densities of clusters. High 
dimensional data pose serious challenges to data miners due to 
its inherent problems that result in the failure of traditional 
techniques. Another solution being tried is to find outliers 
within subspaces which compromises accuracy and also proves 
expensive in terms of its time complexity. In this study, we 
have compared results in terms of outlier-ness, inlier-ness, run 
time, dimensionality variation and different values of minimum 
points (k) when applied for different proximity functions to be 
utilized in density-based techniques. We have concluded that 
the Squared Euclidean function proves to be a very efficient 
proximity function while detecting outliers amongst high 
dimensional data. 
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